Perfect Failure Detection with Very Few Bits

Pierre Fraigniaud ¹ Sergio Rajsbaum ² C. Travers³ Petr Kuznetsov ⁴ Thibault Rieutord ⁴

¹IRIF, Paris ²UNAM, Mexico ³LaBRI, Bordeaux ⁴ParisTech, Paris

ANR Descartes, Chasseneuil, Octobre 2017

Failure Detectors [Chandra Toueg 96]

- Distributed device
- Give (unreliable) information on failures

Modular Distributed Computing

Modular Distributed Computing

Modular Distributed Computing

Failure detector D is <u>the weakest for task T</u>

- **1** There is a protocol for T using D
- **2** Any f.d. D' that can be used to solve T can emulate D

Failure detector D is <u>the weakest for task T</u>

- **1** There is a protocol for T using D
- **2** Any f.d. D' that can be used to solve T can emulate D

Minimum information on failures required to solve T

Failure Detectors

• Local failure detection module at each proc.

Failure Detectors

- Local failure detection module at each proc.
- Provide information on other proc. failures

Perfect failure detector ${\bf P}$

Perfect failure detector ${\bf P}$

• Provide each proc. with a list of proc ids.

Perfect failure detector ${\bf P}$

- Provide each proc. with a list of proc ids.
- No false alarm

Perfect failure detector ${\bf P}$

- Provide each proc. with a list of proc ids.
- No false alarm
- Eventually outputs the set of non-faulty processes

Failure detector ϕ

Failure detector ϕ

• Provide each proc. with an integer

Failure detector ϕ

- Provide each proc. with an *integer*
- Lower bound on the number of failures

Failure detector ϕ

- Provide each proc. with an integer
- Lower bound on the number of failures
- Eventually tight

Ρ

 ϕ

Ρ

• List of proc ids.

 ϕ • integer $f, 0 \le f \le n$

Ρ

- List of proc ids.
- n bits per process

- ϕ integer $f, 0 \le f \le n$
- log n bits per process

Ρ

- List of proc ids.
- n bits per process

- ϕ
- integer $f, 0 \le f \le n$
- log n bits per process

And yet:

Theorem (Mostefaoui, Raynal, T.)

P and ϕ are equivalent: any task that can be solved using *P* (resp. ϕ) can also be solved using ϕ (resp. *P*)

How many bits per proc. are needed to achieve perfect failure detection ?

How many bits per proc. are needed to achieve perfect failure detection ?

Theorem (upper bound) There exists a failure detector μP as powerful as P that outputs $O(Ack^{-1}(n))$ bits per proc

How many bits per proc. are needed to achieve perfect failure detection ?

Theorem (upper bound)

There exists a failure detector μP as powerful as P that outputs $O(Ack^{-1}(n))$ bits per proc

Theorem (lower bound)

No failure detector *outputting* a **constant** *number of bits per proc. can emulate* **P**

• Message passing

- Message passing
- Asynchronous

- Message passing
- Asynchronous
- n processes

- Message passing
- Asynchronous
- **n** processes
- Crash failures

- Message passing
- Asynchronous
- n processes
- Crash failures
- Unique ids

Distributed Encoding of the Integers [Fraigniaud, Rajsbaum, T. LATIN'16]

Counting the Stars

• verify(5, $\boxed{01 \ | \ 11 \ | \ 00 \ | \ 01 \ | \ 01}$) ? \longrightarrow YES

• verify(5, 01 11 00 01 01) ? \longrightarrow YES • verify(3, 11 00 01) ? \longrightarrow NO

Distributed Encoding of the Integers

• \mathcal{A} alphabet
Distributed Encoding of the Integers

- \mathcal{A} alphabet
- $f : \mathcal{A}^* \to \{ \textbf{YES}, \textbf{NO} \}$

Distributed Encoding of the Integers

- \mathcal{A} alphabet
- $f : \mathcal{A}^* \to \{ \textbf{YES}, \textbf{NO} \}$

such that for each $n \in \mathbb{N}$ there exists a <u>code of n</u> $\mathbf{c_n} \in \mathcal{A}^n$: **1** $\mathbf{f}(c_n) = \mathbf{YES}$ and

Distributed Encoding of the Integers

- \mathcal{A} alphabet
- $f : \mathcal{A}^* \to \{ \textbf{YES}, \textbf{NO} \}$

such that for each $n \in \mathbb{N}$ there exists a <u>code of $n \mathbf{c_n} \in \mathcal{A}^n$ </u>:

- **1** $\mathbf{f}(c_n) = \mathbf{YES}$ and
- **2** For every <u>sub-word</u> c' of c_n , f(c') = NO

distributed code of **n** $C(\mathbf{n}) = \underbrace{n, n, \dots, n}_{n \text{ times}}$

distributed code of \mathbf{n} $C(\mathbf{n}) = \underbrace{n, n, \dots, n}_{n \text{ times}}$

$$f(x_1,\ldots,x_\ell) = \mathbf{YES} \iff x_1 = x_2 = \ldots = x_\ell = \ell$$

distributed code of **n**

$$C(\mathbf{n}) = \underbrace{n, n, \dots, n}_{\mathbf{n} \text{ times}}$$

$$f(x_1, \dots, x_\ell) = \mathbf{YES} \iff x_1 = x_2 = \dots = x_\ell = \ell$$

Alphabet of N symbols to encode the first N integers

distributed code of **n**

$$C(\mathbf{n}) = \underbrace{n, n, \dots, n}_{\mathbf{n} \text{ times}}$$

$$f(x_1, \dots, x_\ell) = \mathbf{YES} \iff x_1 = x_2 = \dots = x_\ell = \ell$$

Alphabet of N symbols to encode the first N integers

Challenge: Compact encoding

0000

$\operatorname{code} \operatorname{of} 4$

0000 00**11**0 code of 4 code of 5

0000 00**11**0 0**11**0**1**0 code of 4 code of 5 code of 6

0000 code of 4 00110 code of 5 011010 code of 6 1101010 10101011 010101111 **111111**00**1**0 11111001011 111100101111 1110010111111 ÷ : . code of $2^{257} - 2$ 11111111111 1

0000 code of 4 00110 code of 5 011010 code of 6 **110101**0 10101011 010101111 not a sub-word 1111110010 11111001011 111100101111 1110010111111 . code of $2^{257} - 2$

Let
$$w, w' \in \{0, 1\}^*$$

 $w \leq_* w' \iff w$ is a sub-word of w' w 1010
 w' 001110111110

Let
$$w, w' \in \{0, 1\}^*$$

 $w \leq_* w' \iff w$ is a sub-word of $w' = \begin{array}{cc} w & 1010 \\ w' & 001110111110 \end{array}$
Bad Sequence

A sequence w_1, w_2, \ldots, w_ℓ of words of $\{0, 1\}^*$ is **bad** iff for every i < j, $w_i \not \leq_* w_j$

Well-quasi Order

Higman's lemma $(\{0,1\}^*, \preceq_*)$ is a well-quasi order

Well-quasi Order

Higman's lemma $(\{0,1\}^*, \leq_*)$ is a well-quasi order That is, every bad sequence over $\{0,1\}^*$ is finite

Higman's lemma

 $(\{0,1\}^*, \preceq_*)$ is a well-quasi order

That is, every bad sequence over $\{0,1\}^*$ is finite

Length Function Theorem [Schmitz et al., ICALP'11]

Bad sequences w_1, w_2, \ldots, w_ℓ over $\{0, 1\}^*$ with

•
$$|w_1| \leq d$$

•
$$|w_i| \leq i$$

have length bounded by L(d) where L is a function of Ackermannian growth

A Bad Sequence

Encoding from Multi Diagonal Sequence

Encoding from Multi Diagonal Sequence

$$A = \{0,1\} imes \mathbb{N}$$

 $Code(n): (0, i), (1, i), (0, i), \dots, (1, i), (0, i), (1, i)$

Encoding from Multi Diagonal Sequence

$$A = \{0,1\} imes \mathbb{N}$$

 $Code(n): (0, i), (1, i), (0, i), \dots, (1, i), (0, i), (1, i)$

 $f((b_1, d_1), (b_2, d_2), \dots, (b_n, d_n)) = \textbf{YES} \iff$ $\textbf{1} \quad d_1 = d_2 = \dots = d_n = i$ $\textbf{2} \quad b_1, \dots, b_n \text{ is the sequence of length } n \text{ in } D_i$

How many bits to distributively encode the first n integers?

Code(n): $(0, i), (1, i), (0, i), \dots, (1, i), (0, i), (1, i)$

How many bits to distributively encode the first n integers?

 $Code(n): (0, i), (1, i), (0, i), \dots, (1, i), (0, i), (1, i)$

 \implies 1 + log(*i*) bits

How many bits to distributively encode the first n integers?

$$Code(n): (0, i), (1, i), (0, i), \dots, (1, i), (0, i), (1, i)$$

Perfect Failure Detection from Distributed Encoding

Failure detector $\mu \mathbf{P}$:

- Encode an upper bound on the number of alive processes
- Eventually converge to the (code of the) number of non-faulty processes

• Constant fd output at each proc in each epoch

• $w_1 w_2 w_4 w_5 \leq_* \operatorname{code}(a_i)$, where # alive(epoch i) $\leq a_i$

- At most **n** epochs
- $a_1 \ge a_2 \ge \ldots \ge a_\ell$

• At most **n** epochs

•
$$a_1 \ge a_2 \ge \ldots \ge a_\ell$$

• $\mathbf{a}_{\ell} = \#$ alive(last epoch) = # correct procs

From μP to P

• Recall: $\mathbf{w} \leq_* \operatorname{code}(a_i)$ and $|Alive(\operatorname{epoch} i)| \leq \mathbf{a_i}$

From μP to P

- Recall: $\mathbf{w} \preceq_* \operatorname{code}(a_i)$ and $|Alive(\operatorname{epoch} i)| \leq \mathbf{a_i}$
- Code def.: w ≺_{*} code(a_i) ⇒ f(w) = false and f(code(a_i)) = true
From μP to P

- Recall: $\mathbf{w} \preceq_* \operatorname{code}(a_i)$ and $|Alive(\operatorname{epoch} i)| \leq \mathbf{a_i}$
- Code def.: w ≺_{*} code(a_i) ⇒ f(w) = false and f(code(a_i)) = true
- Hence, if $\mathbf{f}(w) = true$ then $\{p_1, \dots, p_n\} \setminus Q \subseteq$ Faulty

Dirty Collect

• w_1, w_2, w_3, w_4 sampled in \neq epochs

Dirty Collect

- w_1, w_2, w_3, w_4 sampled in \neq epochs
- f(w) = true ?? f(w) = false ??

Clean Collect

• At most **n** epochs

Clean Collect

- At most **n** epochs
- \implies In a sequence of *n* collects, at least one is **clean**

From μP to P

Collect *i* is *successful* if (1) terminates and (2)
 f(w_i) = true

From μP to P

- Collect *i* is *successful* if (1) terminates and (2)
 f(w_i) = true
- If for some set Q, there are *n* successful collects P output = $\{p_1, \ldots, p_n\} \setminus Q$

- Outputs O(log Ack⁻¹(n)) bits per processes
- Can emulate the perfect failure detector P

- Outputs O(log Ack⁻¹(n)) bits per processes
- Can emulate the perfect failure detector P
- (**P** can also emulate μ **P** see the paper)

• Outputs $O(\log Ack^{-1}(n))$ bits per processes

Outputs O(log Ack⁻¹(n)) bits per processes

Is there a f.d. D that

- can emulate P
- **2** outputs less than $\log Ack^{-1}(n)$ bits per process ?

Outputs O(log Ack⁻¹(n)) bits per processes

Is there a f.d. D that

- can emulate P
- **2** outputs less than $\log Ack^{-1}(n)$ bits per process ?

Theorem

No failure detector with constant-size output can emulate P

Lower Bound Proof

Assume for contradiction D f.d. such that

• Constant range *R*, (independant of *n*)

Assume for contradiction D f.d. such that

- Constant range *R*, (independant of *n*)
- $T_{D \rightarrow P}$ (can emulate P)

Assume for contradiction D f.d. such that

- Constant range *R*, (independant of *n*)
- $T_{D \rightarrow P}$ (can emulate P)

Ingredients

- Ramsey's theorem
- Well quasi-order theory

Construct two executions \boldsymbol{e} and \boldsymbol{e}' :

- indistinguishable for some non-faulty processes
- with $Correct(e) \subsetneq Correct(e')$

Construct two executions \boldsymbol{e} and \boldsymbol{e}' :

- indistinguishable for some non-faulty processes
- with $Correct(e) \subsetneq Correct(e')$

 \implies

in $e' T_{D \rightarrow P}$ erroneously outputs a non-faulty process

• As R_D is finite, $\exists \mathbf{d} \in D$ output infinitely many times at q

• As R_D is finite, $\exists \mathbf{d} \in D$ output infinitely many times at q

• As R_D is finite, $\exists \mathbf{d} \in D$ output infinitely many times at q

• Constant failure detector output

From Executions to Words

Let e an (infinite) execution in which crashes are initial

From Executions to Words

Constant f.d. output (d_i) at each non-faulty process q_i

From Executions to Words

Constant f.d. output $\left(d_{i}\right)$ at each non-faulty process q_{i}

 $e \longrightarrow \mathbf{w}_{\mathbf{e}} = \mathbf{d}_1 \mathbf{d}_3 \mathbf{d}_5 \in R_D^*$

• (Higman's Lemma) $(R_D^* \preceq_*)$ is a *wqo*

- (Higman's Lemma) $(R_D^* \preceq_*)$ is a *wqo*
- $\implies \text{ For large enough } L, \\ \exists i, j : 1 \le i < j \le L \text{ and } \mathbf{w_i \text{ subword of } w_j}$

execution e'w' = xabyc

.

execution e'w' = xabycexecution e \xrightarrow{X} $q'_1 \stackrel{X}{\longrightarrow}$ <u>x x</u> w = abca $a \rightarrow$ a a a q_2' q_1 þ **b**→ q'_3 q_2 _____y C C C \xrightarrow{y} a′₄ q₃ C C C $q_{\rm F}'$ a (or b, c) may be output at processes with distinct ids

in e and e'.

execution e'w' = xabycexecution e ____X X $q'_1 \stackrel{X}{\longrightarrow}$ w = abca a q_2' q_1 q_2' \rightarrow \xrightarrow{y} C C C _____y a′₄ _____ **a** (or **b**, **c**) may be output at processes with distinct ids

in e and e'. Rely on **Ramsey's Theorem** to get rid of ids

- Perfect failure detection with O(Ack⁻¹(n)) bits per process
- Perfect failure detection with constant output is impossible

- Perfect failure detection with O(Ack⁻¹(n)) bits per process
- Perfect failure detection with constant output is impossible
- Applications of wqo theory to distributed computing

- Perfect failure detection with O(Ack⁻¹(n)) bits per process
- Perfect failure detection with constant output is impossible
- Applications of wqo theory to distributed computing

Future work:

- Perfect failure detection with O(Ack⁻¹(n)) bits per process
- Perfect failure detection with constant output is impossible
- Applications of wqo theory to distributed computing Future work:
 - Close the gap between lower and upper bounds

- Perfect failure detection with O(Ack⁻¹(n)) bits per process
- Perfect failure detection with constant output is impossible
- Applications of wqo theory to distributed computing Future work:
 - Close the gap between lower and upper bounds
 - Failure detector as (distributed) encoder: Relation between output size and failure detector power

- Perfect failure detection with O(Ack⁻¹(n)) bits per process
- Perfect failure detection with constant output is impossible
- Applications of wqo theory to distributed computing Future work:
 - Close the gap between lower and upper bounds
 - Failure detector as (distributed) encoder: Relation between output size and failure detector power
 - Other application of the distributed encoding of the integers

Thanks!
Coloring Subsets of Processes

c assigns a color to each subset of processes
$$\mathbf{c}(Q = \{q_1, \dots, q_k\}) \in \mathbb{R}_D^k$$

Coloring Subsets of Processes

Coloring Subsets of Processes

 $\mathbf{c}(\{q_1,\ldots,q_3\}) = (\mathbf{d_1},\mathbf{d_2},\mathbf{d_3})$

$$\mathbf{c}: Q = \{q_1, \ldots, q_k\} o R_D^k$$

$$\mathbf{c}: Q = \{q_1, \ldots, q_k\} o R_D^k$$

Ramsey's Theorem

• For any *m*, *k*

$$\mathbf{c}: Q = \{q_1, \ldots, q_k\} o R_D^k$$

Ramsey's Theorem

- For any m, k
- There exists n = g(m, k) such that

$$\mathbf{c}: Q = \{q_1, \ldots, q_k\} o R_D^k$$

Ramsey's Theorem

- For any *m*, *k*
- There exists n = g(m, k) such that
- There exists a *m*-subset **S** of the *n* procs such that

$$\mathbf{c}: Q = \{q_1, \ldots, q_k\} o R_D^k$$

Ramsey's Theorem

- For any m, k
- There exists n = g(m, k) such that
- There exists a *m*-subset **S** of the *n* procs such that
- Every k-subset of **S** has the same color

$$\mathbf{c}: Q = \{q_1, \ldots, q_k\} o R_D^k$$

Ramsey's Theorem

- For any m, k
- There exists n = g(m, k) such that
- There exists a *m*-subset **S** of the *n* procs such that
- Every k-subset of **S** has the same color

Intuitively

For any $q \in \mathbf{S}$,

- For failure pattern with k correct procs and initial crashes
- F.d output at q depends only on the rank of its id

Failure Detector Specification

- A failure detector D
 - Outputs symbols in some range R_D
 - Is defined with respect to failure patterns

Failure Pattern

Failure Pattern

$$\mathcal{F}:\mathbb{N}\to 2^{\{p_1,\ldots,p_n\}}$$

For each failure pattern, D defines which outputs are valid

- History : H(p, t) is the output at process p at time t
- $D(\mathcal{F}) =$ valid histories for failure pattern \mathcal{F}

Failure detectors D and D' are equivalent

There exist two asynchronous, crash-resilient protocols

- $T_{D \to D'}$ that emulates D' using D
- $T_{D' \rightarrow D}$ that emulates D using D'