Perfect Failure Detection

with Very Few Bits

Pierre Fraigniaud ! Sergio Rajsbaum 2 C. Travers3

Petr Kuznetsov # Thibault Rieutord #

HRIF, Paris 2UNAM, Mexico 3LaBRI, Bordeaux
4ParisTech, Paris

ANR Descartes, Chasseneuil, Octobre 2017

Failure Detectors [Chandra Toueg 96]

e Distributed device

e Give (unreliable) information on failures

Modular Distributed Computing

Protocol
Failure Communication
Detector Primitives
4 N\
Network

Modular Distributed Computing

Protocol

Failure Commumcatnon
Detector Primitives

-

Network

Modular Distributed Computing

Protocol

(

Failure
Detector

Commumcatnon
Primitives

-

Network y

Relative Hardness of Distributed Task

Failure detector D is the weakest for task T
<

©® There is a protocol for T using D
® Any f.d. D’ that can be used to solve T can emulate D

Relative Hardness of Distributed Task

Failure detector D is the weakest for task T
<

©® There is a protocol for T using D
® Any f.d. D’ that can be used to solve T can emulate D

Minimum information on failures required to solve T

Failure Detectors

= N - \ TN = \ == \ T \

e Local failure detection module at each proc.

Failure Detectors

- \ - \ N - \ - 3 - \

e Local failure detection module at each proc.
¢ Provide information on other proc. failures

Perfect Failure Detector

L f f
P1 P2 %] Pa Ps
{pl) p4}

Perfect failure detector P

Perfect Failure Detector

|,
P1 P2 %] Pa Ps
{pl) p4}

Perfect failure detector P

¢ Provide each proc. with a list of proc ids.

Perfect Failure Detector

—
- b A&
P1 P2 %] Pa Ps

{p1,pa}

Perfect failure detector P
¢ Provide each proc. with a list of proc ids.

e No false alarm

= 8 66

P1 P2 %] Pa Ps
{pl , Pa, p5}

Perfect failure detector P
e Provide each proc. with a list of proc ids.
e No false alarm

e Eventually outputs the set of non-faulty processes

Failure Detector ¢

=) A i
¥
P1 P2 P3 Pa Ps
2

Failure detector ¢

Failure Detector ¢

=) A i
¥
P1 P2 P3 Pa Ps
2

Failure detector ¢
e Provide each proc. with an integer

Failure Detector ¢

—
— B, A
P1 P2 P3 Pa Ps
2

Failure detector ¢
e Provide each proc. with an integer

e Lower bound on the number of failures

Failure Detector ¢

J——
=) O N A
P1 P2 P3 Pa Ps
3

Failure detector ¢
e Provide each proc. with an integer
e Lower bound on the number of failures

e Eventually tight

In a n-process system

P ¢

In a n-process system

P ¢
e List of proc ids. e integer f,0<f <n

In a n-process system

P ¢
e List of proc ids. e integer f,0<f <n
e n bits per process e logn bits per process

In a n-process system

P ¢
e List of proc ids. e integer f,0<f <n
e n bits per process e logn bits per process

And yet:
Theorem (l\/lostefaoui, Raynal, T.)

P and ¢ are equivalent: any task that can be solved using P
(resp. ¢) can also be solved using ¢ (resp. P)

This talk

How many bits per proc. are needed to achieve
perfect failure detection 7

This talk

How many bits per proc. are needed to achieve
perfect failure detection 7

Theorem (upper bound)

There exists a failure detector ;/P as powerful as P that
outputs O(Ack 1(n)) bits per proc

This talk

How many bits per proc. are needed to achieve
perfect failure detection 7

Theorem (upper bound)

There exists a failure detector ;/P as powerful as P that
outputs O(Ack 1(n)) bits per proc

Theorem (lower bound)

No failure detector outputting a constant number of bits
per proc. can emulate P

(14)

8%

e Message passing

e Asynchronous

(14)

e Message passing

e Asynchronous

8%

Message passing
Asynchronous

n processes
Crash failures

Message passing
Asynchronous

n processes
Crash failures
Unique ids

Distributed Encoding

of the Integers
[Fraigniaud, Rajsbaum, T. LATIN'16]

Counting the Stars

Counting with Distributed Certificates

Counting with Distributed Certificates

5
“ %

Counting with Distributed Certificates

e verify(5,/01 |11 /00| 01|01 |)? — YES

Counting with Distributed Certificates

(0D)
(oD

-’
’

1] ’

’

e verify(5,/01 |11 /00| 01|01 |)? — YES
e verify(3,/ 11 | 00 | 01 |) ? — NO

Distributed Encoding of the Integers

e A alphabet

Distributed Encoding of the Integers

e A alphabet
o f: A" - {YES,NO}

Distributed Encoding of the Integers

e A alphabet
o f: A" — {YES,NO}
such that for each n € N

there exists a code of n c,, € A" :
® f(c,) = YES and

Distributed Encoding of the Integers

e A alphabet
o f: A" — {YES,NO}
such that for each n € N
there exists a code of n c,, € A" :
® f(c,) = YES and
® For every sub-word ¢’ of c,, f(c’) = NO

Simple Distributed Encoding

distributed code of n

n times

Simple Distributed Encoding

distributed code of n

n times

f(xt,....,.x)) =YES <= x;=x=...=x =/

Simple Distributed Encoding

distributed code of n

Cin)=n,n,...... . n
—_———
n times
f(xt,....,.x)) =YES <= x;=x=...=x =/

Alphabet of N symbols to encode the first N integers

Simple Distributed Encoding

distributed code of n

Cin)=n,n,...... . n
—_———
n times
f(xt,....,.x)) =YES <= x;=x=...=x =/

Alphabet of N symbols to encode the first N integers

Challenge: Compact encoding

Diagonal Sequence

0000 code of 4

Diagonal Sequence

0000 code of 4
00110 code of 5

Diagonal Sequence

0000 code of 4
00110 code of 5
011010 code of 6

Diagonal Sequence

0000 code of 4
00110 code of 5
011010 code of 6
1101010

10101011

010101111

1111110010

11111001011

111100101111
1110010111111

11111111111 ... 1 code of 2257 — 2

Diagonal Sequence

0000 code of 4
00110 code of 5
011010 code of 6
1101010

10101011

010101111
1111110010
11111001011
111100101111
111001011111

not a sub-word

11111111111 ... 1 code of 2257 — 2

Diagonal Sequence

0000 code of 4
00110 code of 5
011010 code of 6
1101010

10101011

010101111
1111110010
11111001011
111100101111
111001011111

not a sub-word

11111111111 1 code of 257 — 2
) H(4)-1

Aside: Well Quasi-order

Let w,w' € {0,1}*
w 1010

’ . /
w =, w <= wis a sub-word of w w 001110111110

Aside: Well Quasi-order

Let w,w' € {0,1}*
w 1010

’ . /
w =, w <= wis a sub-word of w w 001110111110

Bad Sequence
A sequence wy, wy, . .., w; of words of {0,1}* is bad iff for
every | < j, Wi s W,

Well-quasi Order

Higman's lemma
({0,1}*, =,) is a well-quasi order

Well-quasi Order

Higman's lemma
({0,1}*, =,) is a well-quasi order
That is, every bad sequence over {0,1}* is finite

Well-quasi Order

Higman's lemma
({0,1}*,<,) is a well-quasi order
That is, every bad sequence over {0,1}* is finite
Length Function Theorem [Schmitz et al., ICALP'11]
Bad sequences wy, wa, . .., w, over {0,1}* with

o [m|<d

o |wi| <
have length bounded by L(d) where L is a function of
Ackermannian growth

A Bad Sequence

0000
00110
011010
1101010
10101011

not a sub-word

1111110010
11111001011
111100101111
111001011111

11111111111, 1

Multi diagonal sequence

Multi diagonal sequence

Multi diagonal sequence

D
H{) encode integers H(1)... H(H(1)) — 1

H(H(1))

Multi diagonal sequence

D
H{) encode integers H(1)... H(H(1)) — 1

H(H(1))

encode integers H(H(1))... H(H(H(1))) —1

Encoding from Multi Diagonal Sequence

A=1{0,1} x N
Code(n) :

D;

n

Encoding from Multi Diagonal Sequence

A=1{0,1} x N
Code(n) : (0, 1), (1, 1), (0,1),....(1,),(0,7), (L)

D;

n

Encoding from Multi Diagonal Sequence

A=1{0,1} x N
Code(n) : (0, 1), (1, 1), (0,1),....(1,),(0,7), (L)

D;

n

f((bl, dl), (b2, dg), RN (b,-,, dn)) =YES <—
0di=d=...=d,=1i
® by,...,b, is the sequence of length nin D;

How many bits to distributively encode the first n integers?

Code(n) : (0,1, (1,1, (0,1),...,(1,i),(0,i), (1,1

How many bits to distributively encode the first n integers?
Code(n) : (0,1),(1,1),(0,4),...,(1,1),(0,1),(1,1)

— 1+ log(/) bits

How many bits to distributively encode the first n integers?
Code(n) : (0,1),(1,1),(0,4),...,(1,1),(0,1),(1,1)

— 1+ log(/) bits
where i = min{j : n < H/(1)}< Ack !(n)

Perfect Failure Detection
from
Distributed Encoding

Perfect failure detection from distributed encoding

Failure detector /P:
e Encode an upper bound on the number of alive processes

e Eventually converge to the (code of the) number of
non-faulty processes

p1

P2

P3

2

Ps

epoch i

epoch / +1

e Constant fd output at each proc in each epoch

o wywowaws <, code(a;), where # alive(epoch i) < a;

ep%ch 1 ep%ch 2 epoaczh l
time

e At most n epochs
ea;>a>...2a

ep%ch 1 ep%ch 2 epoaczh l
time

e At most n epochs
ea;>a>...2a
e a, = # alive(last epoch) = # correct procs

From uP to P

Let Q:{q1>--->q4}Q{Pl’---apn}
wi

q1

g2

qs . {W = W1W2W3W4]

epoaﬁh i

e Recall: w =<, code(a;) and |Alive(epoch i)| < &

From uP to P

LetQz{q1>--->Q4}§{Pl’---apn}

w1
q .

g2

qs . {W = W1W2W3W4]

epoaﬁh i

e Recall: w =<, code(a;) and |Alive(epoch i)| < &
o Code def.: w <, code(a;)) = f(w) = false
and f(code(a;)) = true

From uP to P

LetQz{q1>--->(74}§{Pl’---apn}

w1
q .

g2

qs . {W = W1W2W3W4]

epoaﬁh i

e Recall: w =<, code(a;) and |Alive(epoch i)| < &
o Code def.: w <, code(a;)) = f(w) = false
and f(code(a;)) = true
e Hence, if f(w) = true then {py,...,po} \ Q C Faulty

Dirty Collect

LetQ:{q17"'7q4}g{plv"wpn}

W
qi *—
qz2 ng
Q4 vg4 {W = W1W2W3W4]
ep%ci‘h]

e Wy, Wo, wa, wy sampled in # epochs

Dirty Collect

LetQ:{q17"'7q4}g{plv"-apn}

W
qi *—
qz2 ng
Q4 vg4 {W = W1W2W3W4]
ep%ci‘h]

e Wy, Wo, wa, wy sampled in # epochs
o f(w) = true 7?7 f(w) = false 77

Clean Collect

ep%clh 1 ep%czh 2 ep%c3h 3 ep%ch l
ccu\l’?ct cqj‘llgct cc‘u’%ct chllict
time

e At most n epochs

Clean Collect

ep%clh 1 ep%czh 2 ep%c3h 3 ep%ch l
ccu\l’?ct cqj‘llgct cc‘u’%ct chllict
time

e At most n epochs

= In a sequence of n collects, at least one is clean

From uP to P

ep%clh 1 ep%%h 2 ep%%h 3 ep%ch l
chlgct chllgct cqj\llgct chl&ct
time

o Collect i is successful if (1) terminates and (2)
f(w;) = true

From uP to P

ep%clh 1 ep%czh 2 ep%%h 3 ep%ch l

chlgct cc‘]\llgct cqj\llgct chl&ct
time
o Collect i is successful if (1) terminates and (2)
f(w;) = true

e |f for some set @, there are n successful collects
P OUtPUt = {pla s 7Pn} \ Q

(1P: Summary

Failure detector ;P
e Outputs O(log Ack !(n)) bits per processes
e Can emulate the perfect failure detector P

(1P: Summary

Failure detector ;P
e Outputs O(log Ack !(n)) bits per processes
e Can emulate the perfect failure detector P

e (P can also emulate ;P — see the paper)

Failure detector ;P
e Outputs O(log Ack~!(n)) bits per processes

Failure detector ;P
e Outputs O(log Ack !(n)) bits per processes

Is there a f.d. D that
@ can emulate P
@ outputs less than log Ack~1(n) bits per process ?

Failure detector ;P
e Outputs O(log Ack~!(n)) bits per processes

Is there a f.d. D that
@ can emulate P
@ outputs less than log Ack~1(n) bits per process ?

Theorem
No failure detector with constant-size output can emulate P

Lower Bound Proof

Assume for contradiction D f.d. such that
e Constant range R, (independant of n)

Lower Bound Proof

Assume for contradiction D f.d. such that
e Constant range R, (independant of n)
e Tp_p (can emulate P)

Lower Bound Proof

Assume for contradiction D f.d. such that
e Constant range R, (independant of n)
e Tp_p (can emulate P)

Ingredients
e Ramsey's theorem

o Well quasi-order theory

Construct two executions e and € :
e indistinguishable for some non-faulty processes
e with Correct(e) C Correct(e’)

Construct two executions e and € :
e indistinguishable for some non-faulty processes
e with Correct(e) C Correct(e’)

—
in € Tp_,p erroneously outputs a non-faulty process

From Executions to Words

Let e an (infinite) execution
q & &b dy dy & &

e As Rp is finite, 3d € D output infinitely many times at g

From Executions to Words

Let e an (infinite) execution
g 4% & ¢ & 4 &

e As Rp is finite, 3d € D output infinitely many times at g

From Executions to Words

Let e an (infinite) execution
g 4% & ¢ & 4 &

e As Rp is finite, 3d € D output infinitely many times at g

Execution é

q —4 d d

e Constant failure detector output

From Executions to Words

Let e an (infinite) execution in which crashes are initial

A,

q1

g2

as

A,

ga

as

From Executions to Words

Let e an (infinite) execution in which crashes are initial

a U ds d d

A,

g2
%A b ds 4 b 4
ga
o b b & s

Constant f.d. output (d;) at each non-faulty process g;

From Executions to Words

Let e an (infinite) execution in which crashes are initial

a U ds d d

A,

g2
%A b ds 4 b 4
ga
o b b & s

Constant f.d. output (d;) at each non-faulty process g;
(e — we = didsds € Ry

Towards Indistinguishable Executions

execution | associated word € R}

€1 w
€
e wi| =i

i

€L

Towards Indistinguishable Executions

execution | associated word € R}

€1 W1

& |[w]

e il =
e | Wi |

e (Higman's Lemma) (R}, =) is a wqgo

Towards Indistinguishable Executions

execution | associated word € R}

€1 W1

& |[w]

e il =
e | Wi |

e (Higman's Lemma) (R}, =) is a wqgo

— For large enough L,
3i,j:1<i<j<Land w;subword of w;

Towards Indistinguishable Executions

execution e’
w' = xabyc
execution e
X X X X
= !
w = abc q,
" a a a a , a a

Towards Indistinguishable Executions

execution e’
w' = xabyc
execution e
X X X X
= !
w = abc q,
a a a a a a
g1 o

9
a (or b, c) may be output at processes with distinct ids
in e and €.

Towards Indistinguishable Executions

execution e’
w' = xabyc
execution e
X X X X
= !
w = abc q,
a a a a a a
g1 o

T
a (or b, c) may be output at processes with distinct ids
in e and €. Rely on Ramsey’s Theorem to get rid of ids

Conclusion

Summary:

e Perfect failure detection with O(Ack=*(n)) bits per
process

e Perfect failure detection with constant output is
impossible

Conclusion

Summary:

o Perfect failure detection with O(Ack—1(n)) bits per
process

e Perfect failure detection with constant output is
impossible

e Applications of wqo theory to distributed computing

Conclusion

Summary:
o Perfect failure detection with O(Ack—1(n)) bits per
process
e Perfect failure detection with constant output is
impossible
e Applications of wqo theory to distributed computing

Future work:

Conclusion

Summary:
o Perfect failure detection with O(Ack—1(n)) bits per
process
e Perfect failure detection with constant output is
impossible
e Applications of wqo theory to distributed computing
Future work:
e Close the gap between lower and upper bounds

Conclusion

Summary:

e Perfect failure detection with O(Ack=*(n)) bits per
process

e Perfect failure detection with constant output is
impossible
e Applications of wqo theory to distributed computing
Future work:
e Close the gap between lower and upper bounds

e Failure detector as (distributed) encoder: Relation
between output size and failure detector power

Conclusion

Summary:

e Perfect failure detection with O(Ack=*(n)) bits per
process

e Perfect failure detection with constant output is
impossible
e Applications of wqo theory to distributed computing
Future work:
e Close the gap between lower and upper bounds

e Failure detector as (distributed) encoder: Relation
between output size and failure detector power

e Other application of the distributed encoding of the
integers

Thanks!

Coloring Subsets of Processes

c assigns a color to each subset of processes
(@ ={aq, .., a}) € Rp

1

a2

as

p # qi

Coloring Subsets of Processes

c assigns a color to each subset of processes
(@ ={aq, .., a}) € Rp

o —% 4 4 4
% @ < ¢ ¢ 4
w B b & @

Coloring Subsets of Processes

c assigns a color to each subset of processes
(@ ={aq, .., a}) € Rp

o —% 4 4 4
% @ < ¢ ¢ 4
w B b & @

c({q,.--,q3}) = (di.d2.d3)

Getting Rid of Ids

Getting Rid of Ids

c:Q={q,...,q} — Rp
Ramsey’s Theorem

e For any m, k

Getting Rid of Ids

c:Q={q,...,q} — Rp
Ramsey’s Theorem

e For any m, k
e There exists n = g(m, k) such that

Getting Rid of Ids

c:Q={q,...,q} — Rp
Ramsey’s Theorem
e For any m, k
e There exists n = g(m, k) such that
e There exists a m-subset S of the n procs such that

Getting Rid of Ids

c:Q={q,...,q} — RE
Ramsey’s Theorem
e For any m, k
e There exists n = g(m, k) such that
e There exists a m-subset S of the n procs such that
e Every k-subset of S has the same color

Getting Rid of Ids

c: Q:{q17an}_>Rg
Ramsey’s Theorem

e For any m, k

e There exists n = g(m, k) such that

e There exists a m-subset S of the n procs such that
e Every k-subset of S has the same color

Intuitively

For any g € S,
e For failure pattern with k correct procs and initial crashes
e F.d output at g depends only on the rank of its id

Failure Detector Specification

A failure detector D
e Outputs symbols in some range Rp

e s defined with respect to failure patterns

P1
P2 ﬂ“
P3 f"“

P4

Failure Pattern

P1

P2 ﬂ“
P3 f"“

P4

Failure Detector Specification

For each failure pattern, D defines which outputs are valid
e History : H(p, t) is the output at process p at time t
e D(F) = valid histories for failure pattern F

Failure Detector Equivalence

Failure detectors D and D’ are equivalent
<
There exist two asynchronous, crash-resilient protocols

e Tp_p that emulates D’ using D

e Tp_,p that emulates D using D’

