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Failure Detectors [Chandra Toueg 96]

• Distributed device

• Give (unreliable) information on failures
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Relative Hardness of Distributed Task

Failure detector D is the weakest for task T
⇐⇒

1 There is a protocol for T using D

2 Any f.d. D ′ that can be used to solve T can emulate D

Minimum information on failures required to solve T
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P vs. φ

In a n-process system

P

• List of proc ids.

• n bits per process

φ

• integer f , 0 ≤ f ≤ n

• log n bits per process

And yet:

Theorem (Mostefaoui, Raynal, T.)

P and φ are equivalent: any task that can be solved using P
(resp. φ) can also be solved using φ (resp. P)
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perfect failure detection ?

Theorem (upper bound)
There exists a failure detector µP as powerful as P that
outputs O(Ack−1(n)) bits per proc

Theorem (lower bound)
No failure detector outputting a constant number of bits
per proc. can emulate P
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Distributed Encoding
of the Integers

[Fraigniaud, Rajsbaum, T. LATIN’16]
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there exists a code of n cn ∈ An :
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2 For every sub-word c ′ of cn, f(c ′) = NO
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Let w ,w ′ ∈ {0, 1}∗
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Bad Sequence
A sequence w1,w2, . . . ,w` of words of {0, 1}∗ is bad iff for
every i < j , wi 6�∗ wj
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That is, every bad sequence over {0, 1}∗ is finite

Length Function Theorem [ Schmitz et al., ICALP’11]

Bad sequences w1,w2, . . . ,w` over {0, 1}∗ with

• |w1| ≤ d

• |wi | ≤ i

have length bounded by L(d) where L is a function of
Ackermannian growth
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Perfect Failure Detection
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Perfect failure detection from distributed encoding

Failure detector µP:

• Encode an upper bound on the number of alive processes

• Eventually converge to the (code of the) number of
non-faulty processes



µP

p1

p2

p3

p4

p5

x

x

epoch i epoch i + 1

•
w1

•
w2

•
w4

•
w5

• Constant fd output at each proc in each epoch

• w1w2w4w5 �∗ code(ai), where # alive(epoch i) ≤ ai
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From µP to P
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• Recall: w �∗ code(ai) and |Alive(epoch i)| ≤ ai

• Code def.: w ≺∗ code(ai) =⇒ f(w) = false
and f(code(ai)) = true

• Hence, if f(w) = true then {p1, . . . , pn} \ Q ⊆ Faulty
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• (Higman’s Lemma) (R∗D �∗) is a wqo

=⇒ For large enough L,
∃ i , j : 1 ≤ i < j ≤ L and wi subword of wj



Towards Indistinguishable Executions

execution e
w = abc
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•b •b •b •b

•y •y •y •y

•c •c •c •c

a (or b, c) may be output at processes with distinct ids
in e and e ′
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Rely on Ramsey’s Theorem to get rid of ids
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Conclusion

Summary:

• Perfect failure detection with O(Ack−1(n)) bits per
process

• Perfect failure detection with constant output is
impossible

• Applications of wqo theory to distributed computing

Future work:

• Close the gap between lower and upper bounds

• Failure detector as (distributed) encoder: Relation
between output size and failure detector power

• Other application of the distributed encoding of the
integers
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• Other application of the distributed encoding of the
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Thanks!



Coloring Subsets of Processes

c assigns a color to each subset of processes
c(Q = {q1, . . . , qk}) ∈ Rk

D

q1

q2

q3

p 6= qi x

•d1 •d1 •d1 •d1

•d2 •d2 •d2 •d2 •d2

•d3 •d3 •d3 •d3

c({q1, . . . , q3}) = (d1,d2,d3)
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Getting Rid of Ids

c : Q = {q1, . . . , qk} → Rk
D

Ramsey’s Theorem

• For any m, k

• There exists n = g(m, k) such that

• There exists a m-subset S of the n procs such that

• Every k-subset of S has the same color

Intuitively
For any q ∈ S,

• For failure pattern with k correct procs and initial crashes

• F.d output at q depends only on the rank of its id
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Failure Detector Specification

A failure detector D

• Outputs symbols in some range RD

• Is defined with respect to failure patterns



Failure Pattern
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p2

p3

p4

x

x

x

F : N→ 2{p1,...,pn}
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Failure Detector Specification

For each failure pattern, D defines which outputs are valid

• History : H(p, t) is the output at process p at time t

• D(F) = valid histories for failure pattern F



Failure Detector Equivalence

Failure detectors D and D ′ are equivalent
⇐⇒

There exist two asynchronous, crash-resilient protocols

• TD→D′ that emulates D ′ using D

• TD′→D that emulates D using D ′


