
Perfect Failure Detection

with Very Few Bits

Pierre Fraigniaud 1 Sergio Rajsbaum 2 C. Travers3

Petr Kuznetsov 4 Thibault Rieutord 4

1IRIF, Paris 2UNAM, Mexico 3LaBRI, Bordeaux
4ParisTech, Paris

ANR Descartes, Chasseneuil, Octobre 2017

Failure Detectors [Chandra Toueg 96]

• Distributed device

• Give (unreliable) information on failures

Modular Distributed Computing

Failure
Detector

Communication
Primitives

Network

Protocol

Asynchrony

Failu
res

Modular Distributed Computing

Failure
Detector

Communication
Primitives

Network

Protocol

Asynchrony

Failu
res

Modular Distributed Computing

Failure
Detector

Communication
Primitives

Network

Protocol

Asynchrony

Failu
res

Relative Hardness of Distributed Task

Failure detector D is the weakest for task T
⇐⇒

1 There is a protocol for T using D

2 Any f.d. D ′ that can be used to solve T can emulate D

Minimum information on failures required to solve T

Relative Hardness of Distributed Task

Failure detector D is the weakest for task T
⇐⇒

1 There is a protocol for T using D

2 Any f.d. D ′ that can be used to solve T can emulate D

Minimum information on failures required to solve T

Failure Detectors

1 2 3 4 5 6

• Local failure detection module at each proc.

• Provide information on other proc. failures

Failure Detectors

1 2 3 4 5 6

• Local failure detection module at each proc.

• Provide information on other proc. failures

Perfect Failure Detector

{p1,p4}
p1 p2 p3 p4 p5

Perfect failure detector P

• Provide each proc. with a list of proc ids.

• No false alarm

• Eventually outputs the set of non-faulty processes

Perfect Failure Detector

{p1,p4}
p1 p2 p3 p4 p5

Perfect failure detector P

• Provide each proc. with a list of proc ids.

• No false alarm

• Eventually outputs the set of non-faulty processes

Perfect Failure Detector

{p1,p4}
p1 p2 p3 p4 p5

Perfect failure detector P

• Provide each proc. with a list of proc ids.

• No false alarm

• Eventually outputs the set of non-faulty processes

Perfect Failure Detector

{p1,p4,p5}
p1 p2 p3 p4 p5

Perfect failure detector P

• Provide each proc. with a list of proc ids.

• No false alarm

• Eventually outputs the set of non-faulty processes

Failure Detector φ

2

p1 p2 p3 p4 p5

Failure detector φ

• Provide each proc. with an integer

• Lower bound on the number of failures

• Eventually tight

Failure Detector φ

2

p1 p2 p3 p4 p5

Failure detector φ

• Provide each proc. with an integer

• Lower bound on the number of failures

• Eventually tight

Failure Detector φ

2

p1 p2 p3 p4 p5

Failure detector φ

• Provide each proc. with an integer

• Lower bound on the number of failures

• Eventually tight

Failure Detector φ

3

p1 p2 p3 p4 p5

Failure detector φ

• Provide each proc. with an integer

• Lower bound on the number of failures

• Eventually tight

P vs. φ

In a n-process system

P

• List of proc ids.

• n bits per process

φ

• integer f , 0 ≤ f ≤ n

• log n bits per process

And yet:

Theorem (Mostefaoui, Raynal, T.)

P and φ are equivalent: any task that can be solved using P
(resp. φ) can also be solved using φ (resp. P)

P vs. φ

In a n-process system

P

• List of proc ids.

• n bits per process

φ

• integer f , 0 ≤ f ≤ n

• log n bits per process

And yet:

Theorem (Mostefaoui, Raynal, T.)

P and φ are equivalent: any task that can be solved using P
(resp. φ) can also be solved using φ (resp. P)

P vs. φ

In a n-process system

P

• List of proc ids.

• n bits per process

φ

• integer f , 0 ≤ f ≤ n

• log n bits per process

And yet:

Theorem (Mostefaoui, Raynal, T.)

P and φ are equivalent: any task that can be solved using P
(resp. φ) can also be solved using φ (resp. P)

P vs. φ

In a n-process system

P

• List of proc ids.

• n bits per process

φ

• integer f , 0 ≤ f ≤ n

• log n bits per process

And yet:

Theorem (Mostefaoui, Raynal, T.)

P and φ are equivalent: any task that can be solved using P
(resp. φ) can also be solved using φ (resp. P)

This talk

How many bits per proc. are needed to achieve
perfect failure detection ?

Theorem (upper bound)
There exists a failure detector µP as powerful as P that
outputs O(Ack−1(n)) bits per proc

Theorem (lower bound)
No failure detector outputting a constant number of bits
per proc. can emulate P

This talk

How many bits per proc. are needed to achieve
perfect failure detection ?

Theorem (upper bound)
There exists a failure detector µP as powerful as P that
outputs O(Ack−1(n)) bits per proc

Theorem (lower bound)
No failure detector outputting a constant number of bits
per proc. can emulate P

This talk

How many bits per proc. are needed to achieve
perfect failure detection ?

Theorem (upper bound)
There exists a failure detector µP as powerful as P that
outputs O(Ack−1(n)) bits per proc

Theorem (lower bound)
No failure detector outputting a constant number of bits
per proc. can emulate P

Model

id1

id2

id3 id4

id5

• Message passing

• Asynchronous

• n processes

• Crash failures

• Unique ids

Model

id1

id2

id3 id4

id5

• Message passing

• Asynchronous

• n processes

• Crash failures

• Unique ids

Model

id1

id2

id3 id4

id5

• Message passing

• Asynchronous

• n processes

• Crash failures

• Unique ids

Model

id1

id2

id3 id4

id5

• Message passing

• Asynchronous

• n processes

• Crash failures

• Unique ids

Model

id1

id2

id3 id4

id5

• Message passing

• Asynchronous

• n processes

• Crash failures

• Unique ids

Distributed Encoding
of the Integers

[Fraigniaud, Rajsbaum, T. LATIN’16]

Counting the Stars

Counting with Distributed Certificates

id1

id2

id3 id4

id5

01

11

00 01

01

• verify(5, 01 11 00 01 01) ? −→ YES

• verify(3, 11 00 01) ? −→ NO

Counting with Distributed Certificates

id1

id2

id3 id4

id5

01

11

00 01

01

• verify(5, 01 11 00 01 01) ? −→ YES

• verify(3, 11 00 01) ? −→ NO

Counting with Distributed Certificates

id1

id2

id3 id4

id5

01

11

00 01

01

• verify(5, 01 11 00 01 01) ? −→ YES

• verify(3, 11 00 01) ? −→ NO

Counting with Distributed Certificates

id1

id2

id3 id4

id5

01

11

00 01

01

• verify(5, 01 11 00 01 01) ? −→ YES

• verify(3, 11 00 01) ? −→ NO

Distributed Encoding of the Integers

• A alphabet

• f : A∗ → {YES,NO}

such that for each n ∈ N
there exists a code of n cn ∈ An :

1 f(cn) = YES and

2 For every sub-word c ′ of cn, f(c ′) = NO

Distributed Encoding of the Integers

• A alphabet

• f : A∗ → {YES,NO}

such that for each n ∈ N
there exists a code of n cn ∈ An :

1 f(cn) = YES and

2 For every sub-word c ′ of cn, f(c ′) = NO

Distributed Encoding of the Integers

• A alphabet

• f : A∗ → {YES,NO}

such that for each n ∈ N
there exists a code of n cn ∈ An :

1 f(cn) = YES and

2 For every sub-word c ′ of cn, f(c ′) = NO

Distributed Encoding of the Integers

• A alphabet

• f : A∗ → {YES,NO}

such that for each n ∈ N
there exists a code of n cn ∈ An :

1 f(cn) = YES and

2 For every sub-word c ′ of cn, f(c ′) = NO

Simple Distributed Encoding

distributed code of n
C (n) = n, n, , n︸ ︷︷ ︸

n times

f (x1, . . . , x`) = YES⇐⇒ x1 = x2 = . . . = x` = `

Alphabet of N symbols to encode the first N integers

Challenge: Compact encoding

Simple Distributed Encoding

distributed code of n
C (n) = n, n, , n︸ ︷︷ ︸

n times

f (x1, . . . , x`) = YES⇐⇒ x1 = x2 = . . . = x` = `

Alphabet of N symbols to encode the first N integers

Challenge: Compact encoding

Simple Distributed Encoding

distributed code of n
C (n) = n, n, , n︸ ︷︷ ︸

n times

f (x1, . . . , x`) = YES⇐⇒ x1 = x2 = . . . = x` = `

Alphabet of N symbols to encode the first N integers

Challenge: Compact encoding

Simple Distributed Encoding

distributed code of n
C (n) = n, n, , n︸ ︷︷ ︸

n times

f (x1, . . . , x`) = YES⇐⇒ x1 = x2 = . . . = x` = `

Alphabet of N symbols to encode the first N integers

Challenge: Compact encoding

Diagonal Sequence

0000 code of 4

00110 code of 5
011010 code of 6
1101010

010101111
1111110010
11111001011
111100101111

...
...

...
...

11111111111 1 code of 2257 − 2

Diagonal Sequence

0000 code of 4
00110 code of 5

011010 code of 6
1101010

010101111
1111110010
11111001011
111100101111

...
...

...
...

11111111111 1 code of 2257 − 2

Diagonal Sequence

0000 code of 4
00110 code of 5
011010 code of 6

1101010
010101111

1111110010
11111001011
111100101111

...
...

...
...

11111111111 1 code of 2257 − 2

Diagonal Sequence

0000 code of 4
00110 code of 5
011010 code of 6
1101010
10101011
010101111
1111110010
11111001011
111100101111
1110010111111
...

...
...

...
11111111111 1 code of 2257 − 2

Diagonal Sequence

0000 code of 4
00110 code of 5
011010 code of 6
1101010
10101011

010101111
1111110010
11111001011
111100101111
1110010111111
...

...
...

...
11111111111 1 code of 2257 − 2

not a sub-word

Diagonal Sequence

0000 code of 4
00110 code of 5
011010 code of 6
1101010
10101011

010101111
1111110010
11111001011
111100101111
1110010111111
...

...
...

...
11111111111 1 code of 2257 − 2

not a sub-word

H(4)-1

Aside: Well Quasi-order

Let w ,w ′ ∈ {0, 1}∗

w �∗ w ′ ⇐⇒ w is a sub-word of w ′
w 1010
w’ 001110111110

Bad Sequence
A sequence w1,w2, . . . ,w` of words of {0, 1}∗ is bad iff for
every i < j , wi 6�∗ wj

Aside: Well Quasi-order

Let w ,w ′ ∈ {0, 1}∗

w �∗ w ′ ⇐⇒ w is a sub-word of w ′
w 1010
w’ 001110111110

Bad Sequence
A sequence w1,w2, . . . ,w` of words of {0, 1}∗ is bad iff for
every i < j , wi 6�∗ wj

Well-quasi Order

Higman’s lemma
({0, 1}∗,�∗) is a well-quasi order

That is, every bad sequence over {0, 1}∗ is finite

Length Function Theorem [Schmitz et al., ICALP’11]

Bad sequences w1,w2, . . . ,w` over {0, 1}∗ with

• |w1| ≤ d

• |wi | ≤ i

have length bounded by L(d) where L is a function of
Ackermannian growth

Well-quasi Order

Higman’s lemma
({0, 1}∗,�∗) is a well-quasi order

That is, every bad sequence over {0, 1}∗ is finite

Length Function Theorem [Schmitz et al., ICALP’11]

Bad sequences w1,w2, . . . ,w` over {0, 1}∗ with

• |w1| ≤ d

• |wi | ≤ i

have length bounded by L(d) where L is a function of
Ackermannian growth

Well-quasi Order

Higman’s lemma
({0, 1}∗,�∗) is a well-quasi order

That is, every bad sequence over {0, 1}∗ is finite

Length Function Theorem [Schmitz et al., ICALP’11]

Bad sequences w1,w2, . . . ,w` over {0, 1}∗ with

• |w1| ≤ d

• |wi | ≤ i

have length bounded by L(d) where L is a function of
Ackermannian growth

A Bad Sequence

0000
00110
011010
1101010
10101011
10101011
010101111
1111110010
11111001011
111100101111
1110010111111
...

...
...

...
11111111111 1

not a sub-word

Multi diagonal sequence

D1

D2

D3

Multi diagonal sequence

D1

D2

D3

H(1)

H(H(1))

H(H(H(1)))

Multi diagonal sequence

D1

D2

D3

H(1)

H(H(1))

H(H(H(1)))

encode integers H(1) . . .H(H(1))− 1

Multi diagonal sequence

D1

D2

D3

H(1)

H(H(1))

H(H(H(1)))

encode integers H(1) . . .H(H(1))− 1

encode integers H(H(1)) . . .H(H(H(1)))− 1

Encoding from Multi Diagonal Sequence

A = {0, 1} × N

Code(n) :

(0, i), (1, i), (0, i), . . . , (1, i), (0, i), (1, i)

Di

010. . .0101n

f((b1, d1), (b2, d2), . . . , (bn, dn)) = YES⇐⇒
1 d1 = d2 = . . . = dn = i

2 b1, . . . , bn is the sequence of length n in Di

Encoding from Multi Diagonal Sequence

A = {0, 1} × N

Code(n) : (0, i), (1, i), (0, i), . . . , (1, i), (0, i), (1, i)

Di

010. . .0101n

f((b1, d1), (b2, d2), . . . , (bn, dn)) = YES⇐⇒
1 d1 = d2 = . . . = dn = i

2 b1, . . . , bn is the sequence of length n in Di

Encoding from Multi Diagonal Sequence

A = {0, 1} × N

Code(n) : (0, i), (1, i), (0, i), . . . , (1, i), (0, i), (1, i)

Di

010. . .0101n

f((b1, d1), (b2, d2), . . . , (bn, dn)) = YES⇐⇒
1 d1 = d2 = . . . = dn = i

2 b1, . . . , bn is the sequence of length n in Di

Compactness

How many bits to distributively encode the first n integers?

Code(n) : (0, i), (1, i), (0, i), . . . , (1, i), (0, i), (1, i)

=⇒ 1 + log(i) bits

where i = min{j : n < H j(1)}≤ Ack−1(n)

Di

Compactness

How many bits to distributively encode the first n integers?

Code(n) : (0, i), (1, i), (0, i), . . . , (1, i), (0, i), (1, i)

=⇒ 1 + log(i) bits

where i = min{j : n < H j(1)}≤ Ack−1(n)

Di

H i(1)

Compactness

How many bits to distributively encode the first n integers?

Code(n) : (0, i), (1, i), (0, i), . . . , (1, i), (0, i), (1, i)

=⇒ 1 + log(i) bits

where i = min{j : n < H j(1)}≤ Ack−1(n)

Di

H i(1)

Perfect Failure Detection
from

Distributed Encoding

Perfect failure detection from distributed encoding

Failure detector µP:

• Encode an upper bound on the number of alive processes

• Eventually converge to the (code of the) number of
non-faulty processes

µP

p1

p2

p3

p4

p5

x

x

epoch i epoch i + 1

•
w1

•
w2

•
w4

•
w5

• Constant fd output at each proc in each epoch

• w1w2w4w5 �∗ code(ai), where # alive(epoch i) ≤ ai

µP

epoch 1 epoch 2 epoch `
a1 a2 a`

time

• At most n epochs

• a1 ≥ a2 ≥ . . . ≥ a`

• a` = # alive(last epoch) = # correct procs

µP

epoch 1 epoch 2 epoch `
a1 a2 a`

time

• At most n epochs

• a1 ≥ a2 ≥ . . . ≥ a`

• a` = # alive(last epoch) = # correct procs

From µP to P

Let Q = {q1, . . . , q4} ⊆ {p1, . . . , pn}

q1

q2

q3

q4

epoch i
ai

•
w1

•
w2

•
w3

•
w4 w = w1w2w3w4

• Recall: w �∗ code(ai) and |Alive(epoch i)| ≤ ai

• Code def.: w ≺∗ code(ai) =⇒ f(w) = false
and f(code(ai)) = true

• Hence, if f(w) = true then {p1, . . . , pn} \ Q ⊆ Faulty

From µP to P

Let Q = {q1, . . . , q4} ⊆ {p1, . . . , pn}

q1

q2

q3

q4

epoch i
ai

•
w1

•
w2

•
w3

•
w4 w = w1w2w3w4

• Recall: w �∗ code(ai) and |Alive(epoch i)| ≤ ai

• Code def.: w ≺∗ code(ai) =⇒ f(w) = false
and f(code(ai)) = true

• Hence, if f(w) = true then {p1, . . . , pn} \ Q ⊆ Faulty

From µP to P

Let Q = {q1, . . . , q4} ⊆ {p1, . . . , pn}

q1

q2

q3

q4

epoch i
ai

•
w1

•
w2

•
w3

•
w4 w = w1w2w3w4

• Recall: w �∗ code(ai) and |Alive(epoch i)| ≤ ai

• Code def.: w ≺∗ code(ai) =⇒ f(w) = false
and f(code(ai)) = true

• Hence, if f(w) = true then {p1, . . . , pn} \ Q ⊆ Faulty

Dirty Collect

Let Q = {q1, . . . , q4} ⊆ {p1, . . . , pn}

q1

q2

q3

q4

epoch i
ai

•
w1

•
w2

•
w3

•
w4 w = w1w2w3w4

• w1,w2,w3,w4 sampled in 6= epochs

• f(w) = true ?? f(w) = false ??

Dirty Collect

Let Q = {q1, . . . , q4} ⊆ {p1, . . . , pn}

q1

q2

q3

q4

epoch i
ai

•
w1

•
w2

•
w3

•
w4 w = w1w2w3w4

• w1,w2,w3,w4 sampled in 6= epochs

• f(w) = true ?? f(w) = false ??

Clean Collect

epoch 1 epoch 2 epoch 3 epoch `
a1 a2 a3 a4

time

collect collect collect collectw1 w2 w3 w4

• At most n epochs

=⇒ In a sequence of n collects, at least one is clean

Clean Collect

epoch 1 epoch 2 epoch 3 epoch `
a1 a2 a3 a4

time

collect collect collect collectw1 w2 w3 w4

• At most n epochs

=⇒ In a sequence of n collects, at least one is clean

From µP to P

epoch 1 epoch 2 epoch 3 epoch `
a1 a2 a3 a4

time

collect collect collect collectw1 w2 w3 w4

• Collect i is successful if (1) terminates and (2)
f(wi) = true

• If for some set Q, there are n successful collects
P output = {p1, . . . , pn} \ Q

From µP to P

epoch 1 epoch 2 epoch 3 epoch `
a1 a2 a3 a4

time

collect collect collect collectw1 w2 w3 w4

• Collect i is successful if (1) terminates and (2)
f(wi) = true

• If for some set Q, there are n successful collects
P output = {p1, . . . , pn} \ Q

µP : Summary

Failure detector µP

• Outputs O(log Ack−1(n)) bits per processes

• Can emulate the perfect failure detector P

• (P can also emulate µP – see the paper)

µP : Summary

Failure detector µP

• Outputs O(log Ack−1(n)) bits per processes

• Can emulate the perfect failure detector P

• (P can also emulate µP – see the paper)

Lower Bound

Failure detector µP

• Outputs O(log Ack−1(n)) bits per processes

Is there a f.d. D that

1 can emulate P

2 outputs less than logAck−1(n) bits per process ?

Theorem
No failure detector with constant-size output can emulate P

Lower Bound

Failure detector µP

• Outputs O(log Ack−1(n)) bits per processes

Is there a f.d. D that

1 can emulate P

2 outputs less than logAck−1(n) bits per process ?

Theorem
No failure detector with constant-size output can emulate P

Lower Bound

Failure detector µP

• Outputs O(log Ack−1(n)) bits per processes

Is there a f.d. D that

1 can emulate P

2 outputs less than logAck−1(n) bits per process ?

Theorem
No failure detector with constant-size output can emulate P

Lower Bound Proof

Assume for contradiction D f.d. such that

• Constant range R , (independant of n)

• TD→P (can emulate P)

Ingredients

• Ramsey’s theorem

• Well quasi-order theory

Lower Bound Proof

Assume for contradiction D f.d. such that

• Constant range R , (independant of n)

• TD→P (can emulate P)

Ingredients

• Ramsey’s theorem

• Well quasi-order theory

Lower Bound Proof

Assume for contradiction D f.d. such that

• Constant range R , (independant of n)

• TD→P (can emulate P)

Ingredients

• Ramsey’s theorem

• Well quasi-order theory

Goal

Construct two executions e and e′ :

• indistinguishable for some non-faulty processes

• with Correct(e) (Correct(e ′)

=⇒
in e ′ TD→P erroneously outputs a non-faulty process

Goal

Construct two executions e and e′ :

• indistinguishable for some non-faulty processes

• with Correct(e) (Correct(e ′)

=⇒
in e ′ TD→P erroneously outputs a non-faulty process

From Executions to Words

Let e an (infinite) execution

q • • • • • • •d1 d2 d3 d4 d5 d6 d7

• As RD is finite, ∃d ∈ D output infinitely many times at q

Execution ẽ

q • • •d d d

• Constant failure detector output

From Executions to Words

Let e an (infinite) execution

q • • • • • • •d2 d3 d5 d7d d d

• As RD is finite, ∃d ∈ D output infinitely many times at q

Execution ẽ

q • • •d d d

• Constant failure detector output

From Executions to Words

Let e an (infinite) execution

q • • • • • • •d2 d3 d5 d7d d d

• As RD is finite, ∃d ∈ D output infinitely many times at q

Execution ẽ

q • • •d d d

• Constant failure detector output

From Executions to Words

Let e an (infinite) execution in which crashes are initial

q1

q2

q3

q4

q5

x

x

•d1 •d1 •d1 •d1

•d3 •d3 •d3 •d3 •d3

•d5 •d5 •d5 •d5

Constant f.d. output (di) at each non-faulty process qi

e −→ we = d1d3d5 ∈ R∗D

From Executions to Words

Let e an (infinite) execution in which crashes are initial

q1

q2

q3

q4

q5

x

x

•d1 •d1 •d1 •d1

•d3 •d3 •d3 •d3 •d3

•d5 •d5 •d5 •d5

Constant f.d. output (di) at each non-faulty process qi

e −→ we = d1d3d5 ∈ R∗D

From Executions to Words

Let e an (infinite) execution in which crashes are initial

q1

q2

q3

q4

q5

x

x

•d1 •d1 •d1 •d1

•d3 •d3 •d3 •d3 •d3

•d5 •d5 •d5 •d5

Constant f.d. output (di) at each non-faulty process qi

e −→ we = d1d3d5 ∈ R∗D

Towards Indistinguishable Executions

execution associated word ∈ R∗D
e1 w1

e2 w2

e3 w3

...
...

...
...

. . .

eL wL

|wi | = i

• (Higman’s Lemma) (R∗D �∗) is a wqo

=⇒ For large enough L,
∃ i , j : 1 ≤ i < j ≤ L and wi subword of wj

Towards Indistinguishable Executions

execution associated word ∈ R∗D
e1 w1

e2 w2

e3 w3

...
...

...
...

. . .

eL wL

|wi | = i

• (Higman’s Lemma) (R∗D �∗) is a wqo

=⇒ For large enough L,
∃ i , j : 1 ≤ i < j ≤ L and wi subword of wj

Towards Indistinguishable Executions

execution associated word ∈ R∗D
e1 w1

e2 w2

e3 w3

...
...

...
...

. . .

eL wL

|wi | = i

• (Higman’s Lemma) (R∗D �∗) is a wqo

=⇒ For large enough L,
∃ i , j : 1 ≤ i < j ≤ L and wi subword of wj

Towards Indistinguishable Executions

execution e
w = abc

q1

q2

q3

•a •a •a •a

•b •b •b •b

•c •c •c •c

execution e ′

w ′ = xabyc

q′1

q′2

q′3

q′4

q′5

•x •x •x •x

•a •a •a •a

•b •b •b •b

•y •y •y •y

•c •c •c •c

a (or b, c) may be output at processes with distinct ids
in e and e ′

.

Rely on Ramsey’s Theorem to get rid of ids

Towards Indistinguishable Executions

execution e
w = abc

q1

q2

q3

•a •a •a •a

•b •b •b •b

•c •c •c •c

execution e ′

w ′ = xabyc

q′1

q′2

q′3

q′4

q′5

•x •x •x •x

•a •a •a •a

•b •b •b •b

•y •y •y •y

•c •c •c •c

a (or b, c) may be output at processes with distinct ids
in e and e ′.

Rely on Ramsey’s Theorem to get rid of ids

Towards Indistinguishable Executions

execution e
w = abc

q1

q2

q3

•a •a •a •a

•b •b •b •b

•c •c •c •c

execution e ′

w ′ = xabyc

q′1

q′2

q′3

q′4

q′5

•x •x •x •x

•a •a •a •a

•b •b •b •b

•y •y •y •y

•c •c •c •c

a (or b, c) may be output at processes with distinct ids
in e and e ′. Rely on Ramsey’s Theorem to get rid of ids

Conclusion

Summary:

• Perfect failure detection with O(Ack−1(n)) bits per
process

• Perfect failure detection with constant output is
impossible

• Applications of wqo theory to distributed computing

Future work:

• Close the gap between lower and upper bounds

• Failure detector as (distributed) encoder: Relation
between output size and failure detector power

• Other application of the distributed encoding of the
integers

Conclusion

Summary:

• Perfect failure detection with O(Ack−1(n)) bits per
process

• Perfect failure detection with constant output is
impossible

• Applications of wqo theory to distributed computing

Future work:

• Close the gap between lower and upper bounds

• Failure detector as (distributed) encoder: Relation
between output size and failure detector power

• Other application of the distributed encoding of the
integers

Conclusion

Summary:

• Perfect failure detection with O(Ack−1(n)) bits per
process

• Perfect failure detection with constant output is
impossible

• Applications of wqo theory to distributed computing

Future work:

• Close the gap between lower and upper bounds

• Failure detector as (distributed) encoder: Relation
between output size and failure detector power

• Other application of the distributed encoding of the
integers

Conclusion

Summary:

• Perfect failure detection with O(Ack−1(n)) bits per
process

• Perfect failure detection with constant output is
impossible

• Applications of wqo theory to distributed computing

Future work:

• Close the gap between lower and upper bounds

• Failure detector as (distributed) encoder: Relation
between output size and failure detector power

• Other application of the distributed encoding of the
integers

Conclusion

Summary:

• Perfect failure detection with O(Ack−1(n)) bits per
process

• Perfect failure detection with constant output is
impossible

• Applications of wqo theory to distributed computing

Future work:

• Close the gap between lower and upper bounds

• Failure detector as (distributed) encoder: Relation
between output size and failure detector power

• Other application of the distributed encoding of the
integers

Conclusion

Summary:

• Perfect failure detection with O(Ack−1(n)) bits per
process

• Perfect failure detection with constant output is
impossible

• Applications of wqo theory to distributed computing

Future work:

• Close the gap between lower and upper bounds

• Failure detector as (distributed) encoder: Relation
between output size and failure detector power

• Other application of the distributed encoding of the
integers

Thanks!

Coloring Subsets of Processes

c assigns a color to each subset of processes
c(Q = {q1, . . . , qk}) ∈ Rk

D

q1

q2

q3

p 6= qi x

•d1 •d1 •d1 •d1

•d2 •d2 •d2 •d2 •d2

•d3 •d3 •d3 •d3

c({q1, . . . , q3}) = (d1,d2,d3)

Coloring Subsets of Processes

c assigns a color to each subset of processes
c(Q = {q1, . . . , qk}) ∈ Rk

D

q1

q2

q3

p 6= qi x

•d1 •d1 •d1 •d1

•d2 •d2 •d2 •d2 •d2

•d3 •d3 •d3 •d3

c({q1, . . . , q3}) = (d1,d2,d3)

Coloring Subsets of Processes

c assigns a color to each subset of processes
c(Q = {q1, . . . , qk}) ∈ Rk

D

q1

q2

q3

p 6= qi x

•d1 •d1 •d1 •d1

•d2 •d2 •d2 •d2 •d2

•d3 •d3 •d3 •d3

c({q1, . . . , q3}) = (d1,d2,d3)

Getting Rid of Ids

c : Q = {q1, . . . , qk} → Rk
D

Ramsey’s Theorem

• For any m, k

• There exists n = g(m, k) such that

• There exists a m-subset S of the n procs such that

• Every k-subset of S has the same color

Intuitively
For any q ∈ S,

• For failure pattern with k correct procs and initial crashes

• F.d output at q depends only on the rank of its id

Getting Rid of Ids

c : Q = {q1, . . . , qk} → Rk
D

Ramsey’s Theorem

• For any m, k

• There exists n = g(m, k) such that

• There exists a m-subset S of the n procs such that

• Every k-subset of S has the same color

Intuitively
For any q ∈ S,

• For failure pattern with k correct procs and initial crashes

• F.d output at q depends only on the rank of its id

Getting Rid of Ids

c : Q = {q1, . . . , qk} → Rk
D

Ramsey’s Theorem

• For any m, k

• There exists n = g(m, k) such that

• There exists a m-subset S of the n procs such that

• Every k-subset of S has the same color

Intuitively
For any q ∈ S,

• For failure pattern with k correct procs and initial crashes

• F.d output at q depends only on the rank of its id

Getting Rid of Ids

c : Q = {q1, . . . , qk} → Rk
D

Ramsey’s Theorem

• For any m, k

• There exists n = g(m, k) such that

• There exists a m-subset S of the n procs such that

• Every k-subset of S has the same color

Intuitively
For any q ∈ S,

• For failure pattern with k correct procs and initial crashes

• F.d output at q depends only on the rank of its id

Getting Rid of Ids

c : Q = {q1, . . . , qk} → Rk
D

Ramsey’s Theorem

• For any m, k

• There exists n = g(m, k) such that

• There exists a m-subset S of the n procs such that

• Every k-subset of S has the same color

Intuitively
For any q ∈ S,

• For failure pattern with k correct procs and initial crashes

• F.d output at q depends only on the rank of its id

Getting Rid of Ids

c : Q = {q1, . . . , qk} → Rk
D

Ramsey’s Theorem

• For any m, k

• There exists n = g(m, k) such that

• There exists a m-subset S of the n procs such that

• Every k-subset of S has the same color

Intuitively
For any q ∈ S,

• For failure pattern with k correct procs and initial crashes

• F.d output at q depends only on the rank of its id

Failure Detector Specification

A failure detector D

• Outputs symbols in some range RD

• Is defined with respect to failure patterns

Failure Pattern

p1

p2

p3

p4

x

x

x

F : N→ 2{p1,...,pn}

Failure Pattern

p1

p2

p3

p4

x

x

x

F : N→ 2{p1,...,pn}

Failure Detector Specification

For each failure pattern, D defines which outputs are valid

• History : H(p, t) is the output at process p at time t

• D(F) = valid histories for failure pattern F

Failure Detector Equivalence

Failure detectors D and D ′ are equivalent
⇐⇒

There exist two asynchronous, crash-resilient protocols

• TD→D′ that emulates D ′ using D

• TD′→D that emulates D using D ′

