Perfect Failure Detection
with Very Few Bits

Pierre Fraigniaud 1 Sergio Rajsbaum 2 C. Travers 3
Petr Kuznetsov 4 Thibault Rieutord 4

1IRIF, Paris 2UNAM, Mexico 3LaBRI, Bordeaux
4ParisTech, Paris

ANR Descartes, Chasseneuil, Octobre 2017
• Distributed device
• Give (unreliable) information on failures
Modular Distributed Computing

- Protocol
 - Failure Detector
 - Communication Primitives
- Network
Modular Distributed Computing

Protocol

Failure Detector Communication Primitives

Network

Asynchrony Failures
Failure detector D is \textit{the weakest for task }T

1. There is a protocol for T using D
2. Any f.d. D' that can be used to solve T can emulate D
Relative Hardness of Distributed Task

Failure detector D is \textit{the weakest for task T}

\begin{align*}
1. & \text{ There is a protocol for } T \text{ using } D \\
2. & \text{ Any f.d. } D' \text{ that can be used to solve } T \text{ can emulate } D
\end{align*}

Minimum information on failures required to solve T
• Local failure detection module at each proc.
Failure Detectors

- Local failure detection module at each proc.
- Provide information on other proc. failures
Perfect failure detector

\[\{p_1, p_4\} \]

- Provide each proc. with a list of proc ids.
- No false alarm
- Eventually outputs the set of non-faulty processes

Perfect failure detector \(P \)
Perfect Failure Detector

\{p_1, p_4\}

$\{p_1, p_4\}$

Perfect failure detector P

- Provide each proc. with a list of proc ids.

p_1 p_2 p_3 p_4 p_5
Perfect failure detector P

- Provide each proc. with a list of proc ids.
- No false alarm
Perfect Failure Detector

Perfect failure detector \(P \)

- Provide each proc. with a list of proc ids.
- No false alarm
- Eventually outputs the set of non-faulty processes
Failure Detector ϕ

- Provide each proc. with an integer
- Lower bound on the number of failures
- Eventually tight
Failure detector ϕ

- Provide each proc. with an *integer*
Failure detector ϕ

- Provide each proc. with an integer
- Lower bound on the number of failures
Failure detector ϕ

- Provide each proc. with an integer
- Lower bound on the number of failures
- Eventually tight
In a n-process system

\begin{itemize}
\item \textbf{P}
\item \textbf{φ}
\end{itemize}

And yet:

\textbf{Theorem (Mostefaoui, Raynal, T.)}

\textbf{P} and \textbf{φ} are equivalent: any task that can be solved using \textbf{P} (resp. \textbf{φ}) can also be solved using \textbf{φ} (resp. \textbf{P})
In a n-process system

\mathbf{P}
- **List** of proc ids.

$\mathbf{\phi}$
- **integer** f, $0 \leq f \leq n$

And yet:

Theorem (Mostefaoui, Raynal, T.) \mathbf{P} and $\mathbf{\phi}$ are equivalent: any task that can be solved using \mathbf{P} (resp. $\mathbf{\phi}$) can also be solved using $\mathbf{\phi}$ (resp. \mathbf{P}).
In a n-process system

\mathbf{P}

- **List** of proc ids.
- n bits per process

$\mathbf{\phi}$

- integer f, $0 \leq f \leq n$
- $\log n$ bits per process

And yet:

Theorem (Mostefaoui, Raynal, T.) \mathbf{P} and $\mathbf{\phi}$ are equivalent: any task that can be solved using \mathbf{P} (resp. $\mathbf{\phi}$) can also be solved using $\mathbf{\phi}$ (resp. \mathbf{P}).
In a n-process system

P
- List of proc ids.
- n bits per process

ϕ
- integer f, $0 \leq f \leq n$
- $\log n$ bits per process

And yet:

Theorem (Mostefaoui, Raynal, T.)

P and ϕ are equivalent: any task that can be solved using P (resp. ϕ) can also be solved using ϕ (resp. P)
How many bits per proc. are needed to achieve perfect failure detection?
How many bits per proc. are needed to achieve perfect failure detection?

Theorem (upper bound)
There exists a failure detector μP as powerful as P that outputs $O(Ack^{-1}(n))$ bits per proc.
How many bits per proc. are needed to achieve perfect failure detection?

Theorem (upper bound)

There exists a failure detector μP as powerful as P that outputs $O(Ack^{-1}(n))$ bits per proc.

Theorem (lower bound)

No failure detector outputting a constant number of bits per proc. can emulate P.
- Message passing
• Message passing
• Asynchronous
- Message passing
- Asynchronous
- \(n \) processes
- Message passing
- Asynchronous
- n processes
- Crash failures
- Message passing
- Asynchronous
- n processes
- Crash failures
- Unique ids
Distributed Encoding of the Integers

[Fraigniaud, Rajsbaum, T. LATIN’16]
Counting the Stars
Counting with Distributed Certificates

- id_1
- id_2
- id_3
- id_4
- id_5

Verify (id_1, 01 11 00 01 01) → YES

Verify (id_3, 11 00 01 01) → NO
Counting with Distributed Certificates

\textbullet{} \text{verify}(5, 01100010101) \rightarrow \text{YES}

\textbullet{} \text{verify}(3, 110001) \rightarrow \text{NO}
Counting with Distributed Certificates

• \(\text{verify}(5, \begin{array}{c} 01 \ 11 \ 00 \ 01 \ 01 \end{array}) \) \rightarrow \text{YES}
Counting with Distributed Certificates

- $\text{verify}(5, \begin{array}{cccc} 01 & 11 & 00 & 01 \end{array}) \rightarrow \text{YES}
- \text{verify}(3, \begin{array}{ccc} 11 & 00 & 01 \end{array}) \rightarrow \text{NO}$
Distributed Encoding of the Integers

- \mathcal{A} alphabet

$f : \mathcal{A} \rightarrow \{\text{YES}, \text{NO}\}$ such that for each $n \in \mathbb{N}$ there exists a code $c_n \in \mathcal{A}$:

1. $f(c_n) = \text{YES}$
2. For every sub-word c'_n of c_n, $f(c'_n) = \text{NO}$
• \(\mathcal{A} \) alphabet
• \(f : \mathcal{A}^* \rightarrow \{\text{YES, NO}\} \)
• \(A \) alphabet

• \(f : A^* \rightarrow \{\text{YES, NO}\} \)

such that for each \(n \in \mathbb{N} \)
there exists a \underline{code of} \(n \) \(c_n \in A^n : \)

\[f(c_n) = \text{YES} \quad \text{and} \quad \]
• A alphabet
• $f : A^* \rightarrow \{\text{YES, NO}\}$

such that for each $n \in \mathbb{N}$ there exists a code of n $c_n \in A^n$:

1. $f(c_n) = \text{YES}$ and
2. For every sub-word c' of c_n, $f(c') = \text{NO}$
Simple Distributed Encoding

distributed code of \(n \)

\[
C(n) = n, n, \ldots, n
\]

\[\text{n times}\]
Simple Distributed Encoding

distributed code of n

$$C(n) = \underbrace{n, n, \ldots, n}_{n \text{ times}}$$

$$f(x_1, \ldots, x_\ell) = \text{YES} \iff x_1 = x_2 = \ldots = x_\ell = \ell$$
distributed code of \(n \)

\[
C(n) = n, n, \ldots, n
\]

n times

\[
f(x_1, \ldots, x_\ell) = \text{YES} \iff x_1 = x_2 = \ldots = x_\ell = \ell
\]

Alphabet of \(N \) symbols to encode the first \(N \) integers
Simple Distributed Encoding

distributed code of \(n \)

\[C(n) = n, n, \ldots, n \]

\(n \) times

\[f(x_1, \ldots, x_\ell) = \text{YES} \iff x_1 = x_2 = \ldots = x_\ell = \ell \]

Alphabet of \(N \) symbols to encode the first \(N \) integers

Challenge: Compact encoding
0000 code of 4
0000 code of 4
00110 code of 5
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>code of 4</td>
</tr>
<tr>
<td>00110</td>
<td>code of 5</td>
</tr>
<tr>
<td>011010</td>
<td>code of 6</td>
</tr>
</tbody>
</table>
0000 code of 4
00110 code of 5
011010 code of 6
1101010
10101011
010101111
1111110010
11111001011
11100101111
111001011111
: :
: :
11111111111111111111111111111111
code of \(2^{257} - 2\)
Diagonal Sequence

0000 code of 4
00110 code of 5
011010 code of 6
1101010
10101011
010101111
1111110010
11111001011
11110010111
111001011111
::
111111111111 code of $2^{257} - 2$
Diagonal Sequence

0000 code of 4
00110 code of 5
011010 code of 6
1101010
10101011
010101111
111110010
11111001011
111100101111
111001011111

... ...

1111111111111111 1 code of $2^{257} - 2$

H(4)-1
Aside: Well Quasi-order

Let $w, w' \in \{0, 1\}^*$

$w \preceq \star w' \iff w$ is a sub-word of w'

$w \quad w' \quad \begin{array}{c} 1010 \\ 00111011110 \end{array}$
Aside: Well Quasi-order

Let \(w, w' \in \{0, 1\}^* \)

\[w \preceq_\ast w' \iff w \text{ is a sub-word of } w' \]

\[\begin{array}{c}
w & 1010 \\
w' & 001110111110 \\
\end{array} \]

Bad Sequence

A sequence \(w_1, w_2, \ldots, w_\ell \) of words of \(\{0, 1\}^* \) is \textcolor{red}{bad} iff for every \(i < j \), \(w_i \not\preceq_\ast w_j \).
Higman’s lemma

$\langle \{0, 1\}^*, \preceq \rangle$ is a well-quasi order
Higman’s lemma

\((\{0, 1\}^*, \leq_{\ast})\) is a well-quasi order

That is, every bad sequence over \(\{0, 1\}^*\) is finite
Higman’s lemma

$(\{0, 1\}^*, \preceq_*)$ is a well-quasi order

That is, every bad sequence over $\{0, 1\}^*$ is **finite**

Length Function Theorem [Schmitz et al., ICALP’11]

Bad sequences w_1, w_2, \ldots, w_ℓ over $\{0, 1\}^*$ with

- $|w_1| \leq d$
- $|w_i| \leq i$

have length bounded by $L(d)$ where L is a function of

Ackermannian growth
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Not a sub-word</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>00110</td>
<td></td>
</tr>
<tr>
<td>011010</td>
<td></td>
</tr>
<tr>
<td>110100</td>
<td></td>
</tr>
<tr>
<td>1010111</td>
<td></td>
</tr>
<tr>
<td>1010111</td>
<td></td>
</tr>
<tr>
<td>010101111</td>
<td></td>
</tr>
<tr>
<td>1111110010</td>
<td></td>
</tr>
<tr>
<td>111110010111</td>
<td></td>
</tr>
<tr>
<td>111100101111</td>
<td></td>
</tr>
<tr>
<td>111001011111</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>111111111111</td>
<td>1</td>
</tr>
</tbody>
</table>
Multi diagonal sequence

D_1

D_2

D_3
Multi diagonal sequence

$D_1^{H(1)}$

D_2

D_3

$H(H(1))$

$H(H(H(1)))$
Multi diagonal sequence

- \(D_1 H(1) \)
- \(D_2 \)
- \(H(H(1)) \)

Encode integers \(H(1) \ldots H(H(1)) - 1 \)
Multi diagonal sequence

d_1 \ H(1)

D_2

\ H(H(1))

D_3

\ H(H(H(1)))

encode integers \(H(1) \ldots H(H(1)) - 1 \)

encode integers \(H(H(1)) \ldots H(H(H(1))) - 1 \)
Encoding from Multi Diagonal Sequence

\[A = \{0, 1\} \times \mathbb{N} \]

\[\text{Code}(n) : \]

\[010\ldots0101 \]

\[D_i \]

\[n \]
Encoding from Multi Diagonal Sequence

\[A = \{0, 1\} \times \mathbb{N} \]

\[\text{Code}(n) : (0, i), (1, i), (0, i), \ldots, (1, i), (0, i), (1, i) \]
Encoding from Multi Diagonal Sequence

\[A = \{0, 1\} \times \mathbb{N} \]

\[\text{Code}(n) : (0, i), (1, i), (0, i), \ldots, (1, i), (0, i), (1, i) \]

\[
\begin{array}{c}
D_i \\
n \\
010\ldots0101
\end{array}
\]

\[f((b_1, d_1), (b_2, d_2), \ldots, (b_n, d_n)) = \text{YES} \iff \]

1. \[d_1 = d_2 = \ldots = d_n = i \]
2. \[b_1, \ldots, b_n \text{ is the sequence of length } n \text{ in } D_i \]
How many bits to distributively encode the first n integers?

$$Code(n) : (0, i), (1, i), (0, i), \ldots, (1, i), (0, i), (1, i)$$
How many bits to distributively encode the first n integers?

$Code(n) : (0, i), (1, i), (0, i), \ldots, (1, i), (0, i), (1, i)$

$\implies 1 + \log(i)$ bits
How many bits to distributively encode the first n integers?

$$Code(n) : (0, i), (1, i), (0, i), \ldots, (1, i), (0, i), (1, i)$$

$\implies 1 + \log(i)$ bits

where $i = \min\{j : n < H^j(1)\} \leq \text{Ack}^{-1}(n)$
Perfect Failure Detection from Distributed Encoding
Perfect failure detection from distributed encoding

Failure detector μP:
- Encode an upper bound on the number of alive processes
- Eventually converge to the (code of the) number of non-faulty processes
Due to space considerations, the diagram is not included here. However, the textual content is as follows:

- Constant fd output at each proc in each epoch
- $w_1 w_2 w_4 w_5 \leq \text{code}(a_i)$, where $\# \text{alive}(\text{epoch } i) \leq a_i$
At most n epochs

$a_1 \geq a_2 \geq \ldots \geq a_\ell$
• At most n epochs
• $a_1 \geq a_2 \geq \ldots \geq a_\ell$
• $a_\ell = \# \text{ alive(last epoch)} = \# \text{ correct procs}$
Let $Q = \{q_1, \ldots, q_4\} \subseteq \{p_1, \ldots, p_n\}$

Recall: $w \preceq^* \text{code}(a_i)$ and $|\text{Alive}(\text{epoch } i)| \leq a_i$
Let \(Q = \{q_1, \ldots, q_4\} \subseteq \{p_1, \ldots, p_n\} \)

- Recall: \(w \preceq_* \text{code}(a_i) \) and \(|\text{Alive}(\text{epoch } i)| \leq a_i \).
- Code def.: \(w \preceq_* \text{code}(a_i) \implies f(w) = false \) and \(f(\text{code}(a_i)) = true \).
Let $Q = \{q_1, \ldots, q_4\} \subseteq \{p_1, \ldots, p_n\}$

Recall: $w \preceq code(a_i)$ and $|Alive(\text{epoch } i)| \leq a_i$

Code def.: $w \prec code(a_i) \implies f(w) = false$ and $f(code(a_i)) = true$

Hence, if $f(w) = true$ then $\{p_1, \ldots, p_n\} \setminus Q \subseteq \text{Faulty}$
Let \(Q = \{q_1, \ldots, q_4\} \subseteq \{p_1, \ldots, p_n\} \)

- \(w_1, w_2, w_3, w_4 \) sampled in \(\neq \) epochs
Let $Q = \{q_1, \ldots, q_4\} \subseteq \{p_1, \ldots, p_n\}$

- w_1, w_2, w_3, w_4 sampled in \neq epochs
- $f(w) = true$?? $f(w) = false$??
At most \(n \) epochs
At most \(n \) epochs

\[\Rightarrow \]

In a sequence of \(n \) collects, at least one is **clean**
• Collect i is *successful* if (1) terminates and (2) $f(w_i) = true$
• Collect i is *successful* if (1) terminates and (2) $f(w_i) = true$

• If for some set Q, there are n *successful* collects

P output $= \{p_1, \ldots, p_n\} \setminus Q$
Failure detector μP

- Outputs $O(\log \text{Ack}^{-1}(n))$ bits per processes
- Can emulate the perfect failure detector P
Failure detector μP

- Outputs $O(\log \text{Ack}^{-1}(n))$ bits per processes
- Can **emulate** the perfect failure detector P
- (P can also emulate μP – see the paper)
Failure detector μP

- Outputs $O(\log \text{Ack}^{-1}(n))$ bits per processes
Failure detector μP

- Outputs $O(\log \text{Ack}^{-1}(n))$ bits per processes

Is there a f.d. D that

1. can emulate P
2. outputs less than $\log \text{Ack}^{-1}(n)$ bits per process?
Failure detector μP

- Outputs $O(\log \text{Ack}^{-1}(n))$ bits per processes

Is there a f.d. D that

1. can emulate P
2. outputs less than $\log \text{Ack}^{-1}(n)$ bits per process?

Theorem

No failure detector with constant-size output can emulate P
Assume for contradiction D f.d. such that
- Constant range R, (independant of n)
Assume for contradiction D f.d. such that

- Constant range R, (independant of n)
- $T_{D \rightarrow P}$ (can emulate P)
Assume for contradiction D f.d. such that
- Constant range R, (independant of n)
- $T_{D\rightarrow P}$ (can emulate P)

Ingredients
- Ramsey’s theorem
- Well quasi-order theory
Construct two executions e and e':

- *indistinguishable* for some non-faulty processes
- with $\text{Correct}(e) \subsetneq \text{Correct}(e')$
Construct two executions e and e':

- *indistinguishable* for some non-faulty processes
- with $\text{Correct}(e) \subsetneq \text{Correct}(e')$

\implies

in e' $T_{D \rightarrow P}$ erroneously outputs a non-faulty process
Let e an (infinite) execution

$q \quad d_1 \quad d_2 \quad d_3 \quad d_4 \quad d_5 \quad d_6 \quad d_7$

- As R_D is finite, $\exists d \in D$ output infinitely many times at q
Let e an (infinite) execution

$q \xrightarrow{d} d_2 \xrightarrow{d_3} d \xrightarrow{d_5} d \xrightarrow{d_7}$

- As R_D is finite, $\exists d \in D$ output infinitely many times at q
Let \(e \) an (infinite) execution

\[
\begin{array}{cccccccc}
q & d & d_2 & d_3 & d & d_5 & d & d_7 \\
\end{array}
\]

- As \(R_D \) is finite, \(\exists d \in D \) output infinitely many times at \(q \)

Execution \(\tilde{e} \)

\[
\begin{array}{cccc}
q & d & d & d \\
\end{array}
\]

- Constant failure detector output
Let e an (infinite) execution in which crashes are initial

$q_1 \rightarrow \cdots \rightarrow q_5 \in R^*$

Constant f.d. output (d_i) at each non-faulty process q_i
Let e an (infinite) execution in which crashes are initial.

Constant f.d. output (d_i) at each non-faulty process q_i.
Let e an (infinite) execution in which crashes are initial

\[q_1 \quad d_1 \quad d_1 \quad q_2 \quad \times \quad q_3 \quad d_3 \quad d_3 \quad q_4 \quad \times \quad q_5 \quad d_5 \quad d_5 \quad d_5 \]

Constant f.d. output (\(d_i \)) at each non-faulty process \(q_i \)

\[e \rightarrow w_e = d_1 d_3 d_5 \in R_D^* \]
Towards Indistinguishable Executions

<table>
<thead>
<tr>
<th>execution</th>
<th>associated word $\in R_D^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>w_1</td>
</tr>
<tr>
<td>e_2</td>
<td>w_2</td>
</tr>
<tr>
<td>e_3</td>
<td>w_3</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>e_L</td>
<td>w_L</td>
</tr>
</tbody>
</table>

$|w_i| = i$
Towards Indistinguishable Executions

<table>
<thead>
<tr>
<th>execution</th>
<th>associated word $\in R^*_D$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>W_1</td>
</tr>
<tr>
<td>e_2</td>
<td>W_2</td>
</tr>
<tr>
<td>e_3</td>
<td>W_3</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>e_L</td>
<td>W_L</td>
</tr>
</tbody>
</table>

$|w_i| = i$

- (Higman’s Lemma) $(R^*_D \preceq_*)$ is a wqo
Towards Indistinguishable Executions

<table>
<thead>
<tr>
<th>execution</th>
<th>associated word $\in R_D^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>w_1</td>
</tr>
<tr>
<td>e_2</td>
<td>w_2</td>
</tr>
<tr>
<td>e_3</td>
<td>w_3</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>e_L</td>
<td>w_L</td>
</tr>
</tbody>
</table>

| $|w_i| = i$ |

- (Higman’s Lemma) $(R_D^* \preceq_*)$ is a wqo

\implies For large enough L,

$\exists \ i, j : 1 \leq i < j \leq L$ and w_i subword of w_j
Towards Indistinguishable Executions

execution e

$w = abc$

q_1:

\begin{itemize}
 \item a
 \item a
 \item a
 \item a
\end{itemize}

q_2:

\begin{itemize}
 \item b
 \item b
 \item b
 \item b
\end{itemize}

q_3:

\begin{itemize}
 \item c
 \item c
 \item c
 \item c
\end{itemize}

execution e'

$w' = xaby\text{c}$

q'_1:

\begin{itemize}
 \item x
 \item x
 \item x
 \item x
\end{itemize}

q'_2:

\begin{itemize}
 \item a
 \item a
 \item a
 \item a
\end{itemize}

q'_3:

\begin{itemize}
 \item b
 \item b
 \item b
 \item b
\end{itemize}

q'_4:

\begin{itemize}
 \item y
 \item y
 \item y
 \item y
\end{itemize}

q'_5:

\begin{itemize}
 \item c
 \item c
 \item c
 \item c
\end{itemize}

a (or b, c) may be output at processes with distinct ids in e and e'. Rely on Ramsey's Theorem to get rid of ids.
Towards Indistinguishable Executions

Execution e

$w = abc$

q_1: a a a a a
q_2: b b b b b
q_3: c c c c c

Execution e'

$w' = xaby c$

q'_1: x x x x x
q'_2: a a a a a
q'_3: b b b b b
q'_4: y y y y y
q'_5: c c c c c

a (or b, c) may be output at processes with distinct ids in e and e'.

Rely on Ramsey's Theorem to get rid of ids.
Towards Indistinguishable Executions

Execution e

\[w = abc \]

Processes:

- q_1: a a a a a
- q_2: b b b b b
- q_3: c c c c c

Execution e'

\[w' = xabyc \]

Processes:

- q_1': x x x x x
- q_2': a a a a a
- q_3': b b b b b
- q_4': y y y y y
- q_5': c c c c c

A (or b, c) may be output at processes with distinct ids in e and e'. Rely on Ramsey’s Theorem to get rid of ids.
Summary:

- Perfect failure detection with $O(Ack^{-1}(n))$ bits per process
- Perfect failure detection with constant output is impossible
Summary:

- Perfect failure detection with $O(Ack^{-1}(n))$ bits per process
- Perfect failure detection with constant output is impossible
- Applications of wqo theory to distributed computing
Summary:

- Perfect failure detection with $O(Ack^{-1}(n))$ bits per process
- Perfect failure detection with constant output is impossible
- Applications of wqo theory to distributed computing

Future work:
Summary:

- Perfect failure detection with $O(Ack^{-1}(n))$ bits per process
- Perfect failure detection with constant output is impossible
- Applications of wqo theory to distributed computing

Future work:

- Close the gap between lower and upper bounds
Summary:

- Perfect failure detection with $O(Ack^{-1}(n))$ bits per process
- Perfect failure detection with constant output is impossible
- Applications of wqo theory to distributed computing

Future work:

- Close the gap between lower and upper bounds
- Failure detector as (distributed) encoder: Relation between output size and failure detector power
Summary:

- Perfect failure detection with $O(Ack^{-1}(n))$ bits per process
- Perfect failure detection with constant output is impossible
- Applications of wqo theory to distributed computing

Future work:

- Close the gap between lower and upper bounds
- Failure detector as (distributed) encoder: Relation between output size and failure detector power
- Other application of the distributed encoding of the integers
Thanks!
\(\mathbf{c} \) assigns a color to each subset of processes
\[
\mathbf{c}(Q = \{q_1, \ldots, q_k\}) \in R_D^k
\]

\(q_1 \)
\(q_2 \)
\(q_3 \)
\(p \neq q_i \)
c assigns a color to each subset of processes

$c(Q = \{ q_1, \ldots, q_k \}) \in R_D^k$
c assigns a color to each subset of processes

$c(Q = \{q_1, \ldots, q_k\}) \in R_D^k$

\[
c(\{q_1, \ldots, q_3\}) = (d_1, d_2, d_3)
\]
\[c : Q = \{ q_1, \ldots, q_k \} \rightarrow R_D^k \]
\(c : Q = \{q_1, \ldots, q_k\} \rightarrow R_D^k \)

Ramsey’s Theorem

- For any \(m, k \)
c : Q = \{ q_1, \ldots, q_k \} \rightarrow R_D^k

Ramsey’s Theorem

- For any \(m, k \)
- There exists \(n = g(m, k) \) such that
\begin{align*}
 \mathbf{c} : Q = \{ q_1, \ldots, q_k \} &\to R^k_D \\
\end{align*}

Ramsey’s Theorem

- For any \(m, k \)
- There exists \(n = g(m, k) \) such that
- There exists a \(m \)-subset \(S \) of the \(n \) procs such that
\[\mathbf{c} : Q = \{q_1, \ldots, q_k\} \rightarrow R_D^k \]

Ramsey’s Theorem

- For any \(m, k \)
- There exists \(n = g(m, k) \) such that
- There exists a \(m \)-subset \(S \) of the \(n \) procs such that
- Every \(k \)-subset of \(S \) has the same color
\[c : Q = \{ q_1, \ldots, q_k \} \to R^k_D \]

Ramsey’s Theorem

- For any \(m, k \)
- There exists \(n = g(m, k) \) such that
- There exists a \(m \)-subset \(S \) of the \(n \) procs such that
- Every \(k \)-subset of \(S \) has the same color

Intuitively

For any \(q \in S \),

- For failure pattern with \(k \) correct procs and initial crashes
- F.d output at \(q \) depends only on the rank of its id
A failure detector D

- Outputs symbols in some range R_D
- Is defined with respect to failure patterns
Failure Pattern

$p_1 \rightarrow \{p_1, \ldots, p_n\} \rightarrow p_2 \rightarrow \{p_2, \ldots, p_n\} \rightarrow p_3 \rightarrow \{p_3, \ldots, p_n\} \rightarrow p_4 \rightarrow \{p_4, \ldots, p_n\}$
$\mathcal{F} : \mathbb{N} \rightarrow 2^{\{p_1, \ldots, p_n\}}$
For each failure pattern, D defines which outputs are valid

- History: $H(p, t)$ is the output at process p at time t
- $D(\mathcal{F}) = \text{valid histories for failure pattern } \mathcal{F}$
Failure detectors D and D' are equivalent \iff

There exist two asynchronous, crash-resilient protocols

- $T_{D \rightarrow D'}$ that emulates D' using D
- $T_{D' \rightarrow D}$ that emulates D using D'