INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

Distributed and Non-Distributed Computational Models

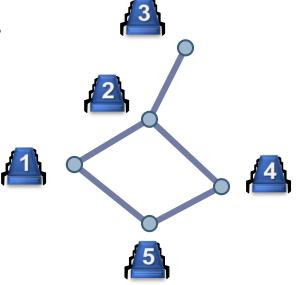
Ami Paz IRIF – CNRS and Paris Diderot University

Message Passing Models

- 1. LOCAL
- 2. CONGEST
- 3. CLIQUE

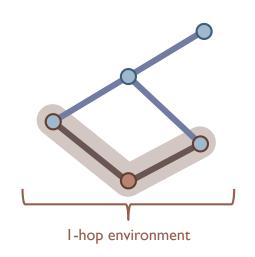
Message Passing Models

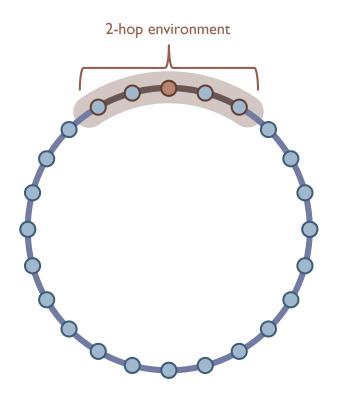
- A graph G = (V, E) representing the network's topology
- \blacktriangleright n unbounded processors, located on the nodes
- Communicating on the edges
- Synchronous network
- Compute / verify graph parameters



The LOCAL Model

- Unbounded messages
- Solving local tasks:
 - Coloring
 - MST
 - MIS
- Anything*solvable in O(D) rounds





Two Examples

Triangle detection

- Easy, in one round
- Send all your neighbors your list of neighbors

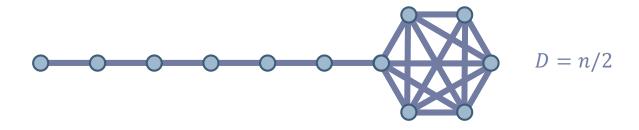
Computing the diameter D

• Takes $\Theta(D)$ rounds

Diameter Lower Bound

• Computing D takes $\Omega(D)$ rounds

Indistinguishability argument

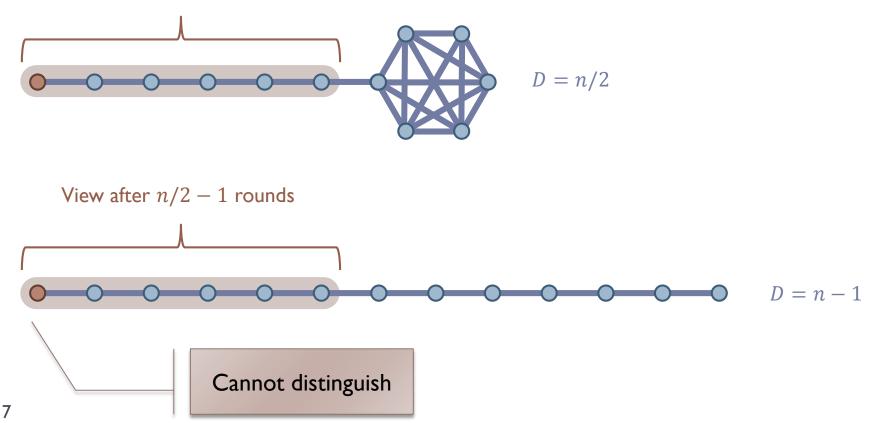


Diameter Lower Bound

• Computing D takes $\Omega(D)$ rounds

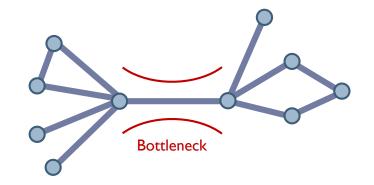
Indistinguishability argument

View after n/2 - 1 rounds



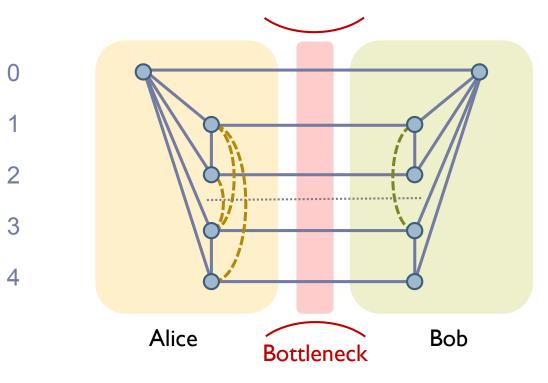
The **CONGEST** Model

- Bounded message size; typically $b = O(\log n)$
- All LOCAL lower bounds still hold
- Some LOCAL algorithms still work
 - But not all!



CONGEST – Typical Lower Bound [HW12]

- Communication complexity problem
- Inputs encoded by a graph
- Split the graph between Alice and Bob
- CC lower bounds imply message lower bounds



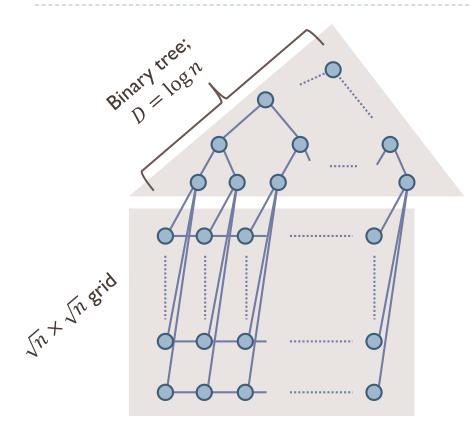
Disjointness on $\Theta(n^2)$ bits.

Diam 2 or 3?

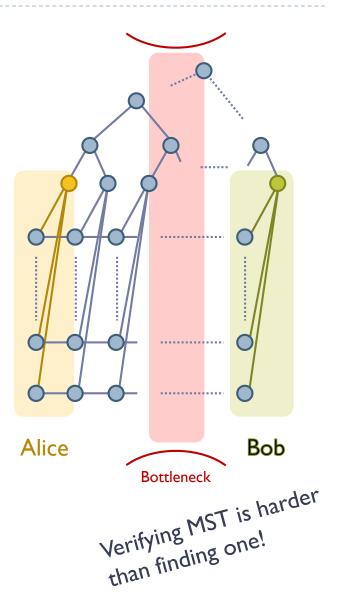
- Diam 2 disjoint
- Diam 3 not disjoint

 $\widetilde{\Omega}\left(n
ight)$ rounds are needed

CONGEST – Another Lower Bound

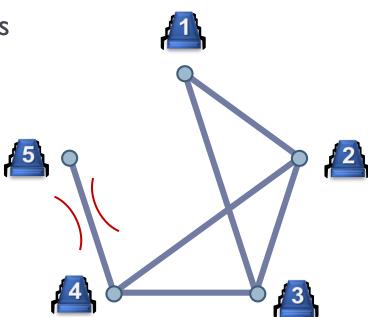


 $\Omega(\sqrt{n}/b)$ lower bound Verification: MST, bipartiteness, cycle, connectivity... Approximation: MST, min cut, shortest s-t path...



So Far:

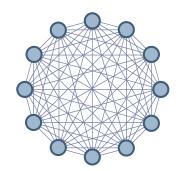
- LOCAL model:
 - Unbounded messages
 - Everything is solvable in O(D) rounds
- CONGEST model:
 - Message = $O(\log n)$ bits
 - Lower bounds of $\widetilde{\Omega}(\sqrt{n} + D)$
 - Tight for many problems



• Question: is $\Omega(\sqrt{n})$ due to congestion?

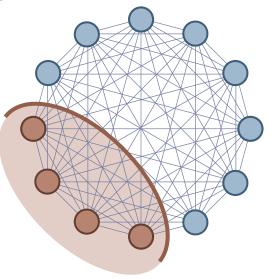
The **CLIQUE** Model

- All-to-all message passing a clique network
- Diameter of 1
- No distance only congestion
- MST in $O(\log^* n)$ rounds [GPI6]
 - ▶ Fast triangle detection, diameter, APSP, ...



CLIQUE – Lower Bound?

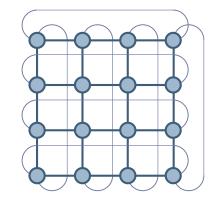
- Diam = 1
- Larger set more outgoing edges
- No nontrivial lower bound is known
- Simple counting argument [DKO14]
 - many functions need $n 5 \log n$ rounds

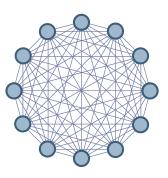


Parallel Systems

Parallel Systems

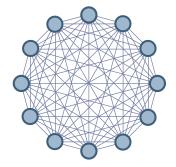
- n synchronous processors, k inputs to each
- Connected by a communication graph
- Typical graphs:
 - Clique
 - Cycle
 - Torus (Grid)
- Known topology, known identities
- Bounded message size
- Bounded memory
- Bounded computational power

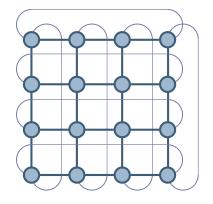




Parallel vs. Congest

- Parallel is more restrictive:
 - Bounded memory
 - Bounded computational power
- Different focus:
 - Specific communication graphs
 - Algebraic questions vs. graph parameters

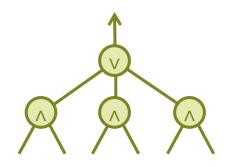


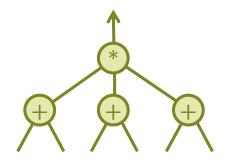


Circuits

Circuits

- Algebraic computation model
- A computation graph (circuit) composed of:
 - Inputs, output, and operation gates
- Represent many algorithms:
 - Matrix multiplication, determinant, permanent
- Complexity measures:
 - Depth, number of gates, fan-in, fan-out



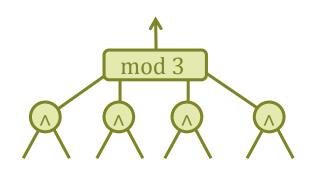


Circuits Families

- Arithmetic circuits
- Boolean circuits

Boolean circuits augmented with:

- mod m gates
- Threshold gates
- •



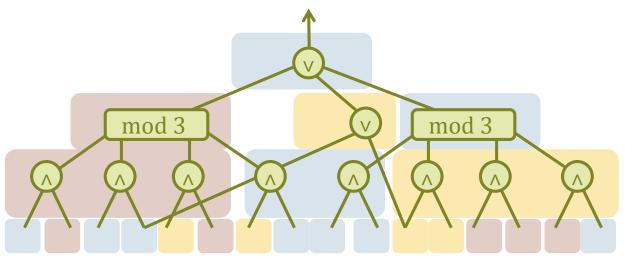
Circuits Lower Bounds

- What can be computed in constant depth?
- Counting argument:
 - Many functions cannot be computed using Boolean circuits
 - ... or even using augmented circuits
- But:
 - No explicit function is known

Circuits \Leftrightarrow **CLIQUE**

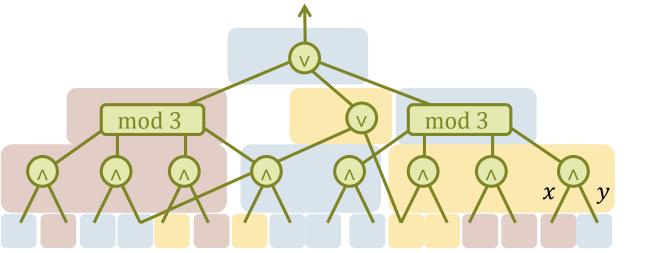
CLIQUE can simulate circuits [DKO14]

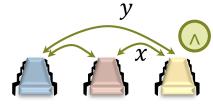
- Each node simulates a set of gates in a layer
- Circuit's depth = # of rounds



Main idea:

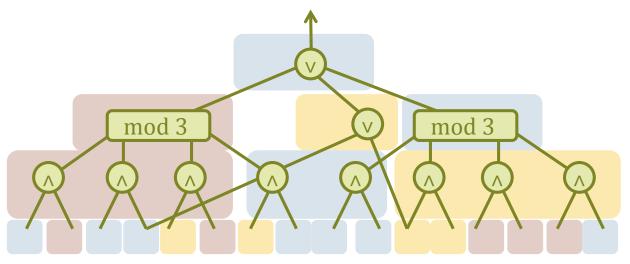
Simulate each layer of the circuit in O(1) rounds

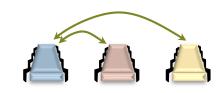




Main idea:

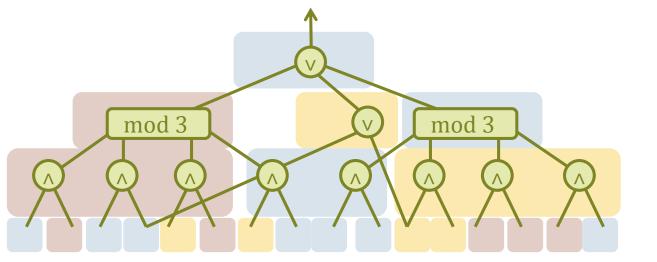
• Simulate each layer of the circuit in O(1) rounds

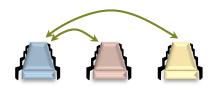




Main idea:

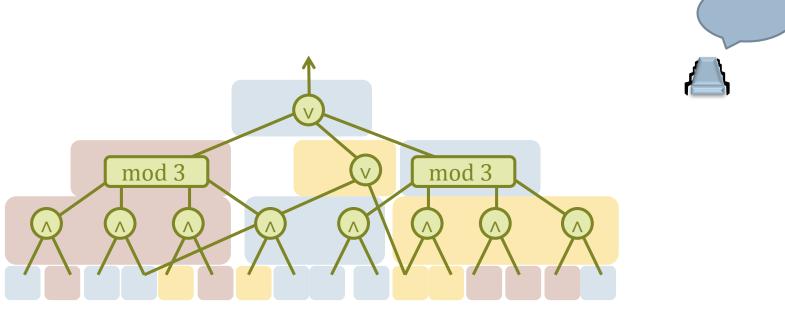
Simulate each layer of the circuit in O(1) rounds



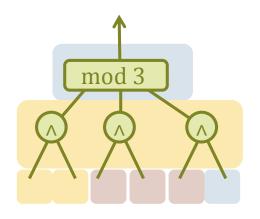


Main idea:

Simulate each layer of the circuit in O(1) rounds



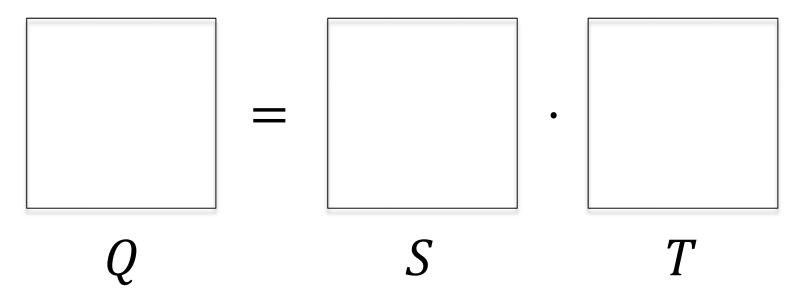
- CLIQUE can simulate circuits
 - Non-constant rounds lower bound for the CLIQUE ⇒
 Non-constant depth lower bound for circuits
- There is also a reduction in the other direction [DKO14]
 - A circuit can simulate the **CLIQUE**



Parallel \Leftrightarrow CLIQUE

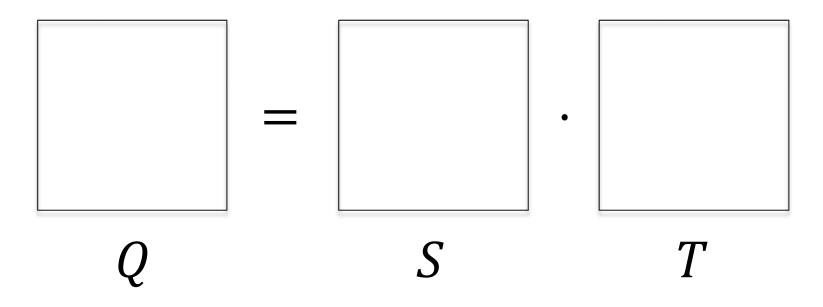
Matrix Multiplication

- Base for many algebraic problems
- Thoroughly studied in parallel computing
- Several algorithms:
 - b different topologies, input / output partitions



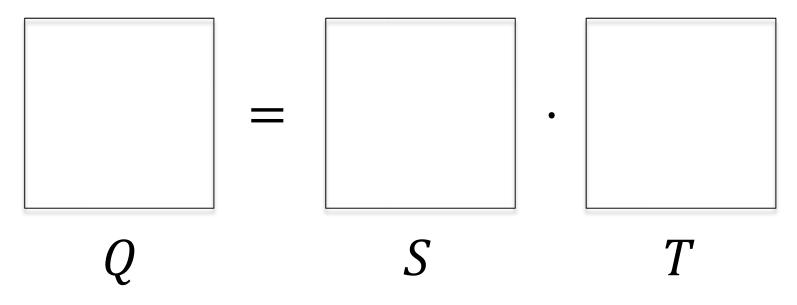
Matrix Multiplication

- This talk:
 - The 3D algorithm [ABG+95]
 - For $n \times n$ matrices and n processors
 - Adaptation of parallel algorithm to the CLIQUE [CHK+16]



Matrix Multiplication

- Parallel 3D algorithm \Rightarrow
- CLIQUE matrix multiplication in $O(n^{1/3})$ rounds
 - Implies triangle detection, D, APSP, ...
 - In similar time [CHK+16]



Fast Matrix Multiplication

- Standard matrix multiplication:
 - Compute n^2 entries, each need n multiplications
 - Total: $\Theta(n^3)$ time
- There exist faster algorithms:
 - Strassen $O(n^{2.807})$ [1969]
 - Coopersmith-Vinograd $O(n^{2.376})$ [1990]
 - •
 - Le Gall $O(n^{2.373})$ [2014]

Can be implemented in the CLIQUE

• Distributed matrix multiplication in $O(n^{0.158})$ rounds

Some Results & Conclusion

Triangle Detection in the **CLIQUE**

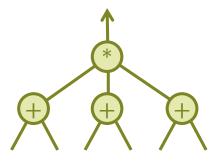
- I. Combinatorial algorithm:
 - $0(n^{1/3})$ rounds [DLPI2]
- 2. Reduction from circuits for matrix multiplication:
 - $(n^{\omega-2}) \approx O(n^{0.373})$ rounds, randomized [DKO14]
- 3. Using a technique from parallel matrix multiplication: • $0(n^{1-2/\omega}) \approx 0(n^{0.158})$ rounds [CHK+16]
- > 2,3 Imply similar complexities for:
 - > APSP, diameter, girth

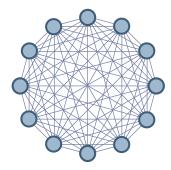
Sequential matrix multiplication: $O(n^{\omega})$ operations

Conclusion

Several models:

- Message passing
 - LOCAL, CONGEST and CLIQUE
- Parallel systems
- Circuits
 - Arithmetic, Boolean, augmented
- Many connections and similarities
- Approach different questions
- Using different techniques





Thank You!