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Introduction
Distributed protocol

(x1, ..., xn) Processor (y1, ..., yn)

x1 Processor 1 y1

xn Processor n yn

Centralised protocol

Distributed protocol

. . .

A distributed protocol may use :

- no randomness: P(y∗i |x∗i ) = 1, P(y∗i |xi) = 0 for all xi 6= x∗i .

- local randomness: P(y1, ..., yn|x1, ..., xn) =
∏n
i=1(yi, |xi, λi).

- shared randomness: P(y1, ..., yn|x1, ..., xn) =
∑
λ P(λ)

∏n
i=1 P(yi|xi, λ).

- quantum entanglement



Introduction
CHSH game

[Bell 64] : Existence of correlation arising from quantum mechanics that cannot be
modelled by a ”local hidden variable theory”, i.e.

”shared randomness < quantum entanglement”

xa Alice ya

xb Bob yb

CHSH game

Winning condition :
ya ⊕ yb = xa ∧ xb

Probability of winning :

- Using shared randomness : at most 0.75.

- Using a quantum ”Bell state” : cos2(π/8) ≈ 0.86.



Introduction
Non-Signaling condition

Correlations arising from the quantum solution are non-signaling, i.e. the output of Alice
doesn’t give any information on the input of Bob and vice-versa.
Mathematically : ∑

yb

P(ya, yb|xa, xb) =
∑
yb

P(ya, yb|xa, x′b) = P(ya|xa)

and ∑
ya

P(ya, yb|xa, xb) =
∑
ya

P(ya, yb|x′a, xb) = P(yb|xb)

We have

Classical ( Quantum ( Non-Signaling

⇒ Not Non-Signaling implies not Quantum

⇒ [Arfaoui 14] showed that for 2 players with binary input and ouput and output
condition 6= ya ⊕ yb the best non-signaling probability distribution is classical.



Introduction
LOCAL model

Suppose we have a graph G = (V,E) modelling a communication network.

LOCAL model

- Every node has a (unique) identifier.

- One round of communication: send & receive information to neighbours & do
computation.

- k rounds of communication ⇔ exchange with neighbours at distance ≤ k and do
computation

-”Infinite” local computing power and bandwith.



Introduction
Colouring Problem
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Distributed Colouring Problem in the LOCAL model

How many rounds of communication are necessary and sufficient for q-colouring a graph ?

E.g. q = ∆ + 1 and graph=cycle or path.

[Cole & Vishkin 86] : log∗(n) rounds of communcation are sufficient.

[Linial 92] : log∗(n) rounds of communication are necessary.



Physical Locality

[Gavoille, Kosowki & Markiewicz 09] : Non-Signaling + LOCAL = φ-local

Xk Non-Signaling Ressources 1, . . . , k Yk

Xn−k Non-Signaling Ressources k+1, . . . , n Yn−k
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Non-Signaling

φ-local

Choice of measurement

Choice of measurement

Measurement outcome

Measurement outcome

Input Output

φ-local : input = ”neighbourhood”. Output of node cannot give info on what lies beyond
its neighbourhood. Output of k nodes cannot give info on what lies beyond the union of
their neighbourhoods.



Physical Locality
An important property

[Barrett, Noah Linden, Massar, Pironio, Sandu, Popescu & Roberts 05] : if the
non-signaling property is satisfied for a coalition of n− 1 players, then it is satisfied for any
sub-coalition of k < n− 1 players.

∑
y2,y3

P(y1, y2, y3|x1, x2, x3) =
∑
y2

∑
y3

P(y1, y2, y3|x1, x2, x
′
3)

=
∑
y3

∑
y2

P(y1, y2, y3|x1, x
′
2, x
′
3)

=
∑

y2,y3

P(y1, y2, y3|x1, x
′
2, x
′
3)

If a coalition of m ≤ n− 1 players such that there is more than one global output
corresponding to their inputs satisfies φ-local, so does any sub-coalition of k < m players.

⇒ To check for non-signaling/φ-local, need only look at biggest coalitions.

⇒ To show non-signaling/φ-local isn’t satisfied, small coalitions are sufficient.



Physical Locality
An example

Example : 2-colouring in an undirected n-path is φ-local(bn3 c).
E.g. n = 9, bn3 c = 3

are compatible with

⇒

⇒



Physical Locality
A formal definition

We define the k-neighbourhood Nk(v) of a vertex v as the set of vertices at distance less
than or equal to k.
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Definition

Let G = (E, V ) be a directed or undirected graph and let (Xv)v∈V be a stochastic process.
(Xv)v∈V is said to be φ-local(k) if, for every m ≤ |V | and sets of vertices S = {s1, ..., sm}
and T = {t1, ..., tm} such that the graphs induced by S ∪Nk(S) and T ∪Nk(T ) are
isomorphic, we have

P(XS) = P(XT )



Physical Locality
Links to probability theory

Let (Xn)n∈Z be a stochastic process on Z.

(1) ”Radius” of the information necessary to compute the value of a Xn?

r-block factor

(Xn)n∈Z is r-block factor of an iid process (Yn)n∈Z if Xn = f(Yn, ..., Yn+r−1) for every n.

⇒ Distributed computability in LOCAL model.

(2) ”Radius” beyond which no information on the value of Xn escapes?

k-dependence

(Xn)n∈Z is k-dependent if the distributions (X≤n) and if (X≥m) are independent for every
n,m with |m− n| > k.

Question : is k-dependence the same as φ-local(`) for some ` ?



Physical Locality
Some results on k-dependence

It is easy to verify that: k-dependent ⇒ directed φ-local(k), undirected φ-local(bk/2c).
[Holroyd & Liggett 15], [Holroyd & Liggett 16] proved the following

k-dependent colouring of Z
There exists a 1-dependent q-colouring process for every q ≥ 4 and a 2-dependent
3-colouring process but no 1-dependent 3-colouring process.

Directed φ-local(1) 4-colouring and undirected φ-local(1) or directed φ-local(2) 3-colouring
of the infinite path is possible.

1-dependent colouring of other graphs

For the following graphs G, the least possible number q of colours such that G admits a
1-dependent colouring is:
- G = Z2 : 9
- G = Z3 : 12
- G = infinite ∆-regular tree, ∆ ≥ 2 : (∆−1)∆−1

∆∆



Physical Locality
k-dependence and φ-locality

Question

is k-dependence the same as φ-local(`) for some ` ?

We studied this question by looking at the colouring problem on the path graph.

Our results:

- In general, no.

- In the case of the colouring problem: not exactly, but beyond a certain value of n,
φ-local(1) 3-colouring of a directed n-path is not possible.



Our results

Idea : given a graph G = (E, V ) along with a q-colouring, choose a colour q∗ and replace
all its occurrences by 1 and put 0 everywhere else. This induces a binary process (Jv)v∈V
which is k-dependent if the original colouring is.
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p∗ = sup{p, ∃ 1-dependent binary process s.t. for every v ∈ V P(Jv = 1) = p}, then q ≥ 1
p∗ .

Theorem [Holroyd & Liggett 2016]

Let G = (V,E) be a graph, p∗ as above and p ∈ [0, 1]. We have p ≤ p∗ iff ZA(−p) ≥ 0 for
every finite A ⊂ V , where ZA is the independence polynomial of the induced subgraph of
A.

Thus on the n-path, p∗ < 1/3 as soon as n = 5 and lim
n→∞

p∗ = 1
4 .



Our results

Define p1 = P(1), p2 = P(1 ∗ 1), pi = P((1∗)i).
Catalan numbers : cn = 1

n+1

(
2n
n

)
, in particular cn

cn+1
= n+2

2(2n+1)

For the directed path graph of length n = 2` or n = 2`+ 1 in the φ-local(1) model

- p1 ≤ c`
c`+1

- p2 ≤ c`−1

c`
p1 ≤ c`−1

c`+1

- pi ≤ c`−i+1

c`−i
pi−1 ≤ c`−i+1

c`+1

Thus p1 <
1
3 as soon as ` = 5, i.e. n = 10.

Let p∗i = sup(pi), then lim
n→∞

p∗1 = 1
4 and lim

n→∞
p∗i = 1

4i = (p∗1)
i
.



Our results
Method

The probabilities of each pattern is a linear function of the pi.

Goal : maximise p1 such that every probability is between 0 and 1.

Maximise under the constraints

Minimise under the constraints

Duality theorem : objective function has same value for optimal solutions of dual and
primal problems.

We get p1 ≤ c`
c`+1

⇒ remove first line of A, rearrange and solve again for p2, etc.



Summary

- φ-local model useful for finding if there might be a quantum-classical difference in
number of rounds in distributed graph algorithms.

- k-dependence from probability theory is consistent with φ-local but stronger.

- log∗(n) classical rounds necessary and sufficient for solving the distributed graph
colouring problem.

- There is a 1-dependent q-colouring probability distribution for q ≥ 4 and a 2-dependent
3-colouring probability distribution on the path graph.

- Can barely do better in φ-local.

- Not easy to study for other families of graphs.
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