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Introduction
Distributed protocol
Centralised protocol
(X1 ey Tn)
Distributed protocol
1

(yla ayn)

RS

A distributed protocol may use :

1

iRs

- no randomness: P(yf|z}) =1, P(y}|z;) = 0 for all z; # z.

- local randomness: P(y1, ..., yn|T1, ..., Tn) = [[;_1 (vs, |23, Xi).
- shared randomness: P(y1, ..., yn|21,

- quantum entanglement

n) = 20 PO TTiy Plyilai, A).-
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CHSH game

Introduction
CHSH game
[Bell 64] : Existence of correlation arising from quantum mechanics that cannot be
modelled by a ”local hidden variable theory”, i.e.

”shared randomness < quantum entanglement”

Probability of winning :

Y

Winning condition :
- Using shared randomness : at most 0.75.

- Using a quantum " Bell state”

Ya DYp = Ta N Tp

cos?(m/8) ~ 0.86.
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Introduction

Non-Signaling condition

Correlations arising from the quantum solution are non-signaling, i.e. the output of Alice

doesn’t give any information on the input of Bob and vice-versa.
Mathematically :

Zp(ya’ yb|za7 xb) = Zp(ya:yb|xa’ x;;) = P(yalxa)

Yb Yb
and

D PWa vslza,xo) = D P(ya, yoley, 1) = Pyslzp)

Ya Ya

We have

Classical C Quantum C Non-Signaling

= Not Non-Signaling implies not Quantum

= [Arfaoui 14] showed that for 2 players with binary input and ouput and output
condition # y, @ y, the best non-signaling probability distribution is classical.

] = =
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LOCAL model
- Every node has a (unique) identifier.
computation.
computation

Introduction
LOCAL model
Suppose we have a graph G = (V, E) modelling a communication network.

- One round of communication: send & receive information to neighbours & do

- k rounds of communication < exchange with neighbours at distance < k and do
-"Infinite” local computing power and bandwith.
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Introduction

Colouring Problem

:?: ;

How many rounds of communication are necessary and sufficient for g-colouring a graph ?

E.g. ¢ = A+ 1 and graph=cycle or path.

[Cole & Vishkin 86] : log"(n) rounds of communcation are sufficient.
[Linial 92] : log"(n) rounds of communication are necessary.
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Physical Locality

Choice of measurement
X

Choice of measurement

Non-Signaling

[Gavoille, Kosowki & Markiewicz 09] : Non-Signaling + LOCAL = ¢-local
Xn—k

Input

Measurement outcome { ]
Measurement outcome

0.0
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Physical Locality

An important property

[Barrett, Noah Linden, Massar, Pironio, Sandu, Popescu & Roberts 05] : if the
non-signaling property is satisfied for a coalition of n — 1 players, then it is satisfied for any
sub-coalition of k < n — 1 players.

> P(yi, vz, ysler, @2, 23) = D > P(y1, y2, yslea, 22, 75)

Y2,Y3 Y2 Y3

= ZZP(yl,yg,yskl?hzlzﬁmg)

Y3 Y2

= > P(y1,v2,yslz1, 25, 75)
Y2,Y3

If a coalition of m < n — 1 players such that there is more than one global output
corresponding to their inputs satisfies ¢-local, so does any sub-coalition of k < m players.
= To check for non-signaling/¢-local, need only look at biggest coalitions.

= To show non-signaling/¢-local isn’t satisfied, small coalitions are sufficient.



(OOO00O)

O-O-Q ) are compatible with
OO0 OO0O0O00 = 60000060000
OO0 O0O0O000 = 000000000

Physical Locality
An example
Example : 2-colouring in an undirected n-path is ¢-local(| 5 ]).
Eg n=9 [5]=3
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Physical Locality

A formal definition

We define the k-neighbourhood Ny (v) of a vertex v as the set of vertices at distance less
than or equal to k.

oG o 00—
o oJo o O O O

No(2) Ni(2) N2 (2)

Let G = (E,V) be a directed or undirected graph and let (X,),cv be a stochastic process.
(Xy)vev is said to be ¢-local(k) if, for every m < |V| and sets of vertices S = {s1, ..., Sm }

and T = {t1, ..., tm} such that the graphs induced by S U N (S) and T'U Ny (T) are
isomorphic, we have

P(Xs) =P(X7)




Physical Locality
Links to probability theory
Let (X,,)nez be a stochastic process on Z.
(1) ”Radius” of the information necessary to compute the value of a X,,?

(X1n)nez is r-block factor of an iid process (Y )nez if X, = f(Yn, s Yoir—1) for every n
= Distributed computability in LOCAL model.

(2) ”"Radius” beyond which no information on the value of X, escapes?
n,m with |m —n| > k.

(Xn)nez is k-dependent if the distributions (X<,) and if (X>,,) are independent for every
Question : is k-dependence the same as ¢-local(¢) for some ¢ ?
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Physical Locality
Some results on k-dependence

It is easy to verify that: k-dependent = directed ¢-local(k), undirected ¢-local(|k/2]).
[Holroyd & Liggett 15], [Holroyd & Liggett 16] proved the following

There exists a 1-dependent g-colouring process for every g > 4 and a 2-dependent
3-colouring process but no 1-dependent 3-colouring process.
of the infinite path is possible.

Directed ¢-local(1) 4-colouring and undirected ¢-local(1) or directed ¢-local(2) 3-colouring

1-dependent colouring is:

-G=7%:9

For the following graphs G, the least possible number g of colours such that G admits a
-G=173:12

- G = infinite A-regular tree, A > 2 :

(A—1)A-1
AL

DA



Physical Locality

k-dependence and ¢-locality

is k-dependence the same as ¢-local(¥) for some £ ?
Our results:

We studied this question by looking at the colouring problem on the path graph.
- In general, no.

¢-local(1) 3-colouring of a directed n-path is not possible.

- In the case of the colouring problem: not exactly, but beyond a certain value of n,
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Our results

Idea : given a graph G = (E, V) along with a g-colouring, choose a colour ¢* and replace

all its occurrences by 1 and put 0 everywhere else. This induces a binary process (J,,)yev
which is k-dependent if the original colouring is.

=

p* = sup{p, 3 1-dependent binary process s.t. for every v € V P(J, = 1) = p}, then g > 1%

Let G = (V, E) be a graph, p* as above and p € [0,1]. We have p < p* iff Z4(—p) > 0 for
every finite A C V', where Z4 is the independence polynomial of the induced subgraph of
A.

Thus on the n-path, p* < 1/3 as soon as n =5 and lim p* = }1.

n—oo
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Our results

Define p; = P(1), py = P(1 % 1), p; = P((1%)).

Catalan numbers : ¢, = n+r1 (*™), in particular —=— cn 2(’2’7*_31)

For the directed path graph of length n = 2¢ or n = 2¢ 4+ 1 in the ¢-local(1) model
s Cecil

-p2 < ot

-pi < Ce 1+1pz—1 < ek

Co—i Co+1

Thus p1 < % as soon as £ =5, i.e. n = 10.
* . * 1 . * 1 _ %\
Let pf = sup(p;), then nlggopl = ;7 and nlgr;opi =5 = ().

o = = T 9Dae



Our results
Method

The probabilities of each pattern is a linear function of the p;
Goal :

maximise p1 such that every probability is between 0and 1

Maximise I:II under the constraints EI
Minimise I:I under the constraints nl

Duality theorem : objective function has same value for optimal solutions of dual and
primal problems.

We get p1 < 7;’&1 = remove first line of A, rearrange and solve again for po, etc
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Summary
- ¢-local model useful for finding if there might be a quantum-classical difference in
number of rounds in distributed graph algorithms.
colouring problem.

- k-dependence from probability theory is consistent with ¢-local but stronger.

- log™(n) classical rounds necessary and sufficient for solving the distributed graph
3-colouring probability distribution on the path graph.

- Can barely do better in ¢-local.

- There is a 1-dependent g-colouring probability distribution for ¢ > 4 and a 2-dependent
- Not easy to study for other families of graphs.
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