
Which Broadcast Abstraction
Captures k -Set Agreement?

Damien IMBS Achour MOSTÉFAOUI

Matthieu PERRIN Michel RAYNAL

Distributed computing

Distributed computing:

Interactions between computing entities

• These entities are called processes
• They can interact (communicate) in many different ways:

• By exchanging messages,
• Through a shared memory,
• By repeatedly solving tasks (iterated models)
• . . .

• In this talk, relations between:
• Shared objects (shared memory + others)
• Message-passing (various types)

Computability

With most communication models, in presence of asynchrony
and failures, not all problems can be solved.

Example: consensus
• Input: a proposed value
• All correct processes must output the same proposed

value

Processes must agree on a common value

With only shared registers, in an asynchronous system,
impossible when even a single crash failure is possible

Shared objects
Read/write memory model

• Shared memory:
Each process can read and write into shared registers.

write(5) read():5

processors

register

p2p1

• Operations are atomic:
they appear as if they happen instantaneously.
⇒ implies a total order on operations

• Equivalent to snapshot (atomic read of the whole memory)

Shared objects
Other objects

In addition to registers, processes may access other objects.

Example:
Consensus

• A single operation propose()
• Input to the operation: a proposed value
• All correct processes must output the same proposed

value

Processes must agree on a common value

Impossible to implement using only shared registers!
(asynchronous, t ≥ 1 crashes)

Shared objects
Other objects

In addition to registers, processes may access other objects.

Example:
k -Set Agreement (generalization of consensus)

• A single operation propose()
• Input to the operation: a proposed value
• Correct processes must output at most k different

proposed values

Impossible to implement using only shared registers!
(asynchronous, t ≥ k crashes)

Cannot implement (k − 1)-set agreement
(asynchronous, t ≥ k − 1 crashes)

Message-passing

• Complete communication graph
• No message loss
• Unbounded delay

Point-to-point communication:
• pi sends a message m to pj

• pj delivers (receives) m from pi

With t ≥ n/2 possible crashes,
impossible to implement shared registers

Note: can be implemented with lossy channels
(needed: m sent∞ times⇒ m received∞ times)

Message-passing
Broadcast

• Complete communication graph
• No message loss
• Unbounded delay

Broadcast:
• pi broadcasts a message m
• Without failures: each process pj delivers (receives) m

With crashes (Uniform Reliable Broadcast):
• pi is correct⇒ every correct process delivers m
• pj delivers m⇒ every correct process delivers m

Can be implemented wait-free
using point-to-point communication

Message-passing
Total-Order Broadcast

• Complete communication graph
• No message loss
• Unbounded delay

Total-Order Broadcast [Chandra-Toueg]:
• Uniform Reliable Broadcast
+
• Messages delivered in the same order at every process

Solves consensus

Impossible to implement using uniform reliable broadcast!
(asynchronous, t ≥ 1 crashes)

k -Bounded Order Broadcast
k -BO Broadcast

A new Broadcast abstraction
• 7→i : (total) order on local deliveries of messages by pi

• Partial order 7→ def
= ∩i 7→i

k -BO Broadcast:
• Uniform Reliable Broadcast
+
• width(7→) ≤ k (width of a PO: max size of an antichain)

Example:

width(7→) = 2

•
m1

•
m2

•
m3

•
m4

•
m5 •

m6

m1 7→1 m2
m2 7→2 m1

k -Bounded Order Broadcast
k -BO Broadcast

k -BO Broadcast:
• Uniform Reliable Broadcast
+
• width(7→) ≤ k (width of a PO: max size of an antichain)

Special cases:
• 1-BO = Total Order Broadcast

• No ordering conflict ⇒ Same order on msgs
• n-BO = Uniform Reliable Broadcast

• n processes ⇒ max(width(7→)) = n

k -Bounded Order Broadcast
k -BO Broadcast

• k -BO Broadcast solves k -Set Agreement
• k -BO Broadcast can be implemented using k -Set + R/W

When a shared memory is available:

k -BO Broadcast and k -Set Agreement are equivalent
(computability-wise)

k -BO

k -SA Snapshot

A first hierarchy

Asynchronous, wait-free:

R/W + Consensus (1-set) ∼= R/W + 1-BO-B. (∼= TO-B.)
� �
...

...

R/W + k -set ∼= R/W + k -BO-Broadcast
...

...
� �

R/W + (n − 1)-set ∼= R/W + (n − 1)-BO-Broadcast
� �

R/W ∼= R/W + n-BO-B. (∼= URB.)
�

Uniform Reliable Broadcast

Hierarchy
R/W vs Broadcast only

Asynchronous, wait-free:

R/W + Consensus (1-set) ∼= Total Order-Broadcast
� �
...

...

R/W + k -set

?...
�

R/W + (n − 1)-set
...

� �

R/W (+ n-set) � Uniform Reliable Broadcast

Set Constrained Delivery Broadcast
SCD-Broadcast [I.-Mostéfaoui-Perrin-Raynal]

• No message loss
• Unbounded delay
• Broadcast

• Processes deliver sets of messages:
{m1,m2,m3},{m4,m5},{m6,m7,m8,m9},. . .

⇒ At each proc, delivery defines a partial order on messages

• pi delivers first m in set S1i , then m′ in set S2i 6= S1i
⇒ @ pj that delivers first m′ in S1j , then m in S2i 6= S1j

⇒ Partial orders are compatible

Hierarchy

Asynchronous, wait-free:

R/W + Consensus (1-set) ∼= Total Order-Broadcast
� �
...

...

R/W + k -set

?...
�

R/W + (n − 1)-set
...

� �

R/W ∼= SCD-Broadcast
�

Uniform Reliable Broadcast

k -Set Constrained Delivery Broadcast
k -SCD-Broadcast

• SCD-Broadcast
+
• Size of message sets at most k

• k = 1: exactly Total Order Broadcast
• Sets of size 1⇒ total order at each process
• Compatible local total orders⇒ global total order

• k = n: equivalent to SCD-Broadcast
• Increasing the size of message sets to more than n

does not change calculability

k -Bounded Order Broadcast
k -BO Broadcast

To implement k -BO Broadcast using k -Set + R/W,
we use k -SCD Broadcast

k -SCD

k -BO

k -SA Snapshot

Hierarchy

Asynchronous, wait-free:

R/W + Consensus (1-set) ∼= Total Order-Broadcast
� �
...

...

R/W + k -set ∼= k -SCD-Broadcast
...

...
� �

R/W + (n − 1)-set ∼= (n − 1)-SCD-Broadcast
� �

R/W ∼= n-SCD-B. ∼= SCD-B.
�

Uniform Reliable Broadcast

k -Set Constrained Delivery Broadcast
k -SCD-Broadcast

• SCD-Broadcast
+
• Size of message sets at most k

From k -SCD-Broadcast to k -set agreement and memory:
• Memory: same as SCD-Broadcast
• k -set: for a given instance, pick 1st proposed value

From k -set agreement and memory to k -SCD-Broadcast:
More involved

k -Set Inclusion
Definition

An intermediary abstraction: k -Set Inclusion

Input: a proposed value
Output: set of sets of proposed values setsi = {viewi,1, . . .}
• Set size: 1 ≤ |setsi | ≤ k
• View size: ∀view ∈ setsi : 1 ≤ |view | ≤ k
• Interprocess inclusion: ∀pi ,pj : setsi ⊆ setsj ∨ setsj ⊆ setsi

• Intraprocess inclusion:
∀view1, view2 ∈ setsi : view1 ⊆ view2 ∨ view2 ⊆ view1

Example: outi =
{
{a, c}, {a,b, c,d ,e, f}

}
outj =

{
{a, c}, {a, c, f}, {a,b, c,d ,e, f}

}

k -Set Inclusion
Implementation

operation propose(v) is
(01) vali ← KSET .propose(v);
(02) SNAP1[i]← vali ; snap1i ← SNAP1.snapshot();
(03) viewi ← {snap1i [j] | snap1i [j] 6= ⊥};
(04) SNAP2[i]← viewi ; snap2i ← SNAP2.snapshot();
(05) setsi ← {snap2i [j] | snap2i [j] 6= ⊥};
(06) return(setsi).

1: reduce (globally) to k values
2-3: create ordered sets of values
4-5: create ordered sets of sets

k -SCD Broadcast
General idea

k -SCD-Broadcast operation:
• Write value to memory
• Wait until all values observed at write have been delivered

(help mechanism)
k -SCD-Deliver background loop:
• Sequence seqi of sets of pending messages

• Choose message from first set and propose it at next step
• If empty, look into memory for message to propose

• Round mechanism: r = nb of msgs delivered previously
(delivery of sets: procs can skip rounds)

• At round r: propose msg to K-Set Inclusion
• Deliver 1st set, store other sets in seqi

k -SCD Broadcast
Round r

Example: k = 3
• pi proposes mi

k -Set inclusion output of p1:
{
{m1,m3}, {m1}

}
of p2:

{
{m1,m3}, {m1}, {m1,m2,m3}

}
of p3:

{
{m1,m3}

}
p1 delivers {m1}, seq1 = {m3}
p2 delivers {m1}, seq2 = {m3}, {m2}
p3 delivers {m1,m3}, seq3 = ε

Hierarchy

Asynchronous, wait-free:

R/W + Consensus (1-set) ∼= Total Order-Broadcast
� �
...

...

R/W + k -set ∼= k -SCD-Broadcast
...

...
� �

R/W + (n − 1)-set ∼= (n − 1)-SCD-Broadcast
� �

R/W ∼= n-SCD-B. ∼= SCD-B.
�

Uniform Reliable Broadcast

Conclusion

Computability: Core issue in fault-tolerant distributed computing

• SCD-Broadcast equivalent to shared memory
• Restrict the size of delivered sets⇒ k -set solvable

• With R/W: k -BO equivalent to k -set
• Without R/W: k -SCD equivalent to R/W + k -set

⇒ Broadcast primitives that are equivalent to shared memory
models

