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Talk outline

• Sketch a lower bound proof technique for 
distributed graph algorithms 

• In general, simulation is a very powerful tool for 
lower bounds 

• We have the beginnings of a complexity theory: 
can use heavy hammers in lower bound proofs



LOCAL model
• input = the communication network 

• output = every computer produces local output 

• global output = the union of local outputs



LOCAL model

Nodes are running a synchronous loop: 

1. exchange messages 
2. update state 

No bounds on computation, messages, no failures: 
trying to abstract away all challenges except locality



LOCAL model
• complexity = the number of synchronous 

communication rounds until all nodes have 
stopped and announced output



The model

• each node has a unique name in poly(n) 

• graph has bounded maximum degree Δ = O(1) 

• for lower bounds, assume graph size n is known



Information-limited
• In t rounds, information can propagate at most t 

hops in the network 

• After t rounds, output cannot depend on input that 
is more than t hops away 

• Gathering the t-hop neighborhood is all an 
algorithm can do! 

time ≈ distance



Information-limited
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Assume: t = 2



Information-limited

algorithm  
=  

function on t-hop neighbourhoods



The lower bound



Based on*
A lower bound for the distributed Lovász local lemma, 
Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, 

Suomela, and Uitto, STOC 2016 

An exponential separation between randomized and 
deterministic complexity in the LOCAL model 

Chang, Kopelowitz, and Pettie, FOCS 2016 

The Complexity of Distributed Edge Coloring with Small 
Palettes, Chang, He, Li, Pettie, and Uitto, 2017



Sinkless orientation

All edges are oriented with no sinks



The lower bound

Sinkless orientation requires Ω(log∆ n) deterministic 
time 

Sinkless orientation requires Ω(log∆ log n) 
randomized time



Why do we care?
• First example of a problem with intermediate 

complexity 

• In edge-coloured graphs Δ-colouring is at least as 
hard as sinkless orientation 

• In 2-vertex-coloured and d-edge-coloured graphs 
(2∆-2)-edge coloring is at least as hard as sinkless 
orientation 

• Sinkless orientation is a useful primitive for finding 
balanced edge splits (which are at least as hard)



A (simple) deterministic  
lower bound

We will start by proving a simple lower bound for a 
simple deterministic model: 

Finding a sinkless orientation requires Ω(log∆ n) 
communication rounds



Lower bound:  
sinkless orientation

(simple) model: 
d-regular graphs, 

2-vertex col. 
c-edge col. 
(for c > d) 

graphs have large 
(logarithmic) girth



Lower bound:  
sinkless orientation

For algorithm A, define running time profile  
t = (t1,t2,…,tc) 

= 

Edges of color i must halt after ti rounds*



Lower bound:  
sinkless orientation

Assume algorithm has running time profile  
t = (t,t,…,t) 

= 

Edges of all colors halt in t communication rounds



Lower bound:  
sinkless orientation
For example, assume d=3 and c=5

t = (t,t,t,t,t)

t(1) = (t,t,t,t,t-1)

t(2) = (t,t,t,t-1,t-1)

 speed up color 5 by simulation

 speed up color 4 by simulation



Lower bound:  
sinkless orientation
For example, assume d=3 and c=5

t = (t,t,t,t,t)

t-1 = (t-1,t-1,t-1,t-1,t-1)

0 = (0,0,0,0,0)

 speed up each color

repeat t times



Lower bound:  
sinkless orientation
For example, assume d=3 and c=5

algorithm with running time profile 
0 = (0,0,0,0,0) 

easy to show that this is impossible!

We can apply argument if initial t = o(log∆ n)



Simulation
3-neighbourhood of orange edge

edge e

(3,3,3,3,3) 

(3,3,3,3,2)



Simulation
possible outputs given  2-neighbourhood?

(here t = 3)



Simulation
possible outputs given 2-neighbourhood?

inputs independent



 3-neighbourhood of violet edge
Outputs of incident edges



Outputs of incident edges
3-neighbourhood of red edge

(here t = 3)



Outputs of incident edges
intersection of 3-neighbourhoods = 2-neighbourhood of 

orange

(here t = 3)



Outputs of incident edges
outputs on the two sides are independent given orange

inputs independent



Outputs of incident edges
is it possible for endpoint to be a sink for the other edges?

∃ input s.t. other edges pointed towards node?



Outputs of incident edges
is it possible for endpoint to be a sink for the other edges?

if not, we can safely orient towards node



Other endpoint a sink
now assume the first endpoint is a potential sink

∃ input s.t. other edges pointed towards node?



Other endpoint a sink
now assume both endpoints potential sinks

if yes, can engineer input such that this happens 
(independence)



Other endpoint a sink
now assume both endpoints potential sinks

no feasible output left for middle edge



Lower bound:  
sinkless orientation
For example, assume d=3 and c=5

t = (t,t,t,t,t)

t-1 = (t-1,t-1,t-1,t-1,t-1)

0 = (0,0,0,0,0)

 speed up each color

repeat t times



Problem with standard model

• Unique identifiers induce dependencies between 
possible inputs 

• Argument that we can force a sink unless one 
endpoint is safe is no longer true



Roundabout solution:  
randomize

• Now consider the randomized setting 

• In addition to the colouring, nodes have access to 
u.a.r. real number

Theorem: sinkless orientation requires 
Ω(∆-1log∆ log n) rounds



Lower bound:  
updated strategy

For example, assume d=3 and c=5

t = (t,t,t,t,t)

t(1) = (t,t,t,t,t-1)

t(2) = (t,t,t,t-1,t-1)

 speed up color 5 by simulation

 speed up color 4 by simulation

error with prob. < p

error with prob. < 3p1/3

A

A’

A’’

:

:

:



Lower bound:  
updated strategy

For example, assume d=3 and c=5

t = (t,t,t,t,t)

t-1 = (t-1,t-1,t-1,t-1,t-1)

0 = (0,0,0,0,0)

 speed up each color

repeat t times

error with prob. < p

error with  
prob. < O(p-3^(t(2d-1)))

error with  
prob. < O(p-3^(2d-1))

At

At-1

A0

:

:

:



Lower bound:  
updated strategy

algorithm A’ with running time 0, error prob. < O(p-3^(t(2d-1))) 

t = Ω(Δ-1 log log n)

start with alg. A, running time t, error prob. p0

0 rounds: must have error probability p > 1/8d



Lower bound:  
updated strategy

For example, assume d=3 and c=5

t = (t,t,t,t,t)

t(1) = (t,t,t,t,t-1)

t(2) = (t,t,t,t-1,t-1)

 speed up a color by simulation

error with prob. < p

error with prob. < 3p1/3

A

A’

:

:



Outputs of incident edges
event E1: black endpoint potential sink

random input s.t. other edges pointed toward 
black endpoint

v2 v1



Outputs of incident edges
event E2: white endpoint potential sink

v1v2



Simulation

If v1 likely potential sink, orient e from v1 to v2 and  
otherwise from v2 to v1 

(Remember other incident edges work  
as in original algorithm) 

Compute probabilities for alg. A:



Simulation

If v1 likely potential sink, orient e from v1 to v2 and  
otherwise from v2 to v1 

Due to independence, both endpoints are usually not 
potential sinks

Compute probabilities for alg. A:



Lower bound

t = (t,t,t,t,t)

t(1) = (t,t,t,t,t-1)

t(2) = (t,t,t,t-1,t-1)

 speed up a color by simulation

error with prob. < p

error with prob. < 3p1/3

A

A’

:

:



Back to deterministic
Theorem (Chang et al., FOCS 2016): Assume that for 

LCL L there exists an algorithm with running time  
t = o(log∆ n), then there exists an algorithm with 

running time t’ = O(log* n)

Corollary: sinkless orientation requires Ω(log∆ n) 
deterministic time



Automatic speed-up

• Another black box simulation 

• A given algorithm A is ”fooled” to run faster: 
compute locally unique ”identifiers” (a colouring) 
and run A on those 

• Efficient solving of LCLs reduces to coloring + 
constant time



Back to randomized
Theorem (Chang et al., FOCS 2016): randomized 

complexity of an LCL on instances of size n is at least 
the deterministic complexity on  

instances of size (log n)1/2

Corollary: sinkless orientation requires Ω(log∆ log n) 
randomized time 



What just happened?

IDs → randomness 
randomized:  

Ω(Δ-1 log log n)

deterministic: Ω(log∆ n) 
Proof technique doesn’t 

work for identifiers

automatic speed-up 
deterministic:  

Ω(log n)

automatic connection 
randomized:  
Ω(log log n)



Open questions



Trouble with IDs

deterministic: Ω(log∆ n) 
with a coloring

?
deterministic: Ω(log∆ n) 

with IDs



Other applications?

• Identify other intermediate problems 

• Lower bounds as function of ∆ (maximum 
degree)? 

• Best algorithms for maximal matching and 
maximal independent set linear in ∆ 

• Weaker lower bounds exist

A hammer but no nails?


