Proving lower bounds in the LOCAL model

Juho Hirvonen,
IRIF, CNRS, and Université Paris Diderot

2 October, 2017
Talk outline

• Sketch a lower bound proof technique for distributed graph algorithms

• In general, simulation is a very powerful tool for lower bounds

• We have the beginnings of a complexity theory: can use heavy hammers in lower bound proofs
LOCAL model

- **input** = the communication network
- **output** = every computer produces local output
- **global output** = the union of local outputs
LOCAL model

Nodes are running a **synchronous loop:**

1. **exchange** messages
2. **update** state

No bounds on computation, messages, no failures: trying to abstract away all challenges **except locality**
LOCAL model

- **complexity** = the number of synchronous communication rounds until all nodes have stopped and announced output
The model

- each node has a unique name in $\text{poly}(n)$
- graph has bounded maximum degree $\Delta = O(1)$
- for lower bounds, assume graph size n is known
Information-limited

- In **t rounds**, information can propagate at most **t hops** in the network.

- After **t rounds**, output cannot depend on input that is more than **t hops** away.

- Gathering the **t-hop neighborhood** is all an algorithm can do!

\[\text{time} \approx \text{distance} \]
Information-limited

Assume: $t = 2$
Information-limited

algorithm = function on t-hop neighbourhoods
The lower bound
Based on

A lower bound for the distributed Lovász local lemma, Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, and Uitto, STOC 2016

An exponential separation between randomized and deterministic complexity in the LOCAL model
Chang, Kopelowitz, and Pettie, FOCS 2016

The Complexity of Distributed Edge Coloring with Small Palettes, Chang, He, Li, Pettie, and Uitto, 2017
Sinkless orientation

All edges are oriented with no sinks
Sinkless orientation requires $\Omega(\log_\Delta n)$ deterministic time.

Sinkless orientation requires $\Omega(\log_\Delta \log n)$ randomized time.
Why do we care?

• First example of a problem with intermediate complexity

• In edge-coloured graphs Δ-colouring is at least as hard as sinkless orientation

• In 2-vertex-coloured and d-edge-coloured graphs $(2\Delta-2)$-edge coloring is at least as hard as sinkless orientation

• Sinkless orientation is a useful primitive for finding balanced edge splits (which are at least as hard)
A (simple) deterministic lower bound

We will start by proving a simple lower bound for a simple deterministic model:

Finding a \textbf{sinkless orientation} requires $\Omega(\log_{\Delta} n)$ communication rounds
Lower bound: sinkless orientation

(simple) model: d-regular graphs, 2-vertex col. c-edge col. (for c > d)

graphs have large (logarithmic) girth
Lower bound: sinkless orientation

For algorithm A, define running time profile
\[t = (t_1, t_2, \ldots, t_c) \]

Edges of color \(i \) must halt after \(t_i \) rounds*
Lower bound: sinkless orientation

Assume algorithm has running time profile
\[t = (t, t, \ldots, t) \]

Edges of \textit{all colors} halt in \(t \) communication rounds
Lower bound: sinkless orientation

For example, assume $d=3$ and $c=5$

$$t = (t, t, t, t, t)$$

- speed up color 5 by simulation

$$t^{(1)} = (t, t, t, t, t-1)$$

- speed up color 4 by simulation

$$t^{(2)} = (t, t, t, t-1, t-1)$$
Lower bound:
sinkless orientation

For example, assume \(d=3 \) and \(c=5 \)

\[
\begin{align*}
t &= (t,t,t,t,t) \\
\text{speed up each color} \\
t-1 &= (t-1,t-1,t-1,t-1,t-1) \\
\text{repeat } t \text{ times} \\
0 &= (0,0,0,0,0)
\end{align*}
\]
Lower bound: sinkless orientation

For example, assume $d=3$ and $c=5$

algorithm with running time profile

$0 = (0,0,0,0,0)$

easy to show that this is impossible!

We can apply argument if initial $t = o(\log_\Delta n)$
Simulation

3-neighbourhood of orange edge

(edge e)

(3,3,3,3,3)

(3,3,3,3,2)
Simulation

possible outputs given 2-neighbourhood?

(Here $t = 3$)
Simulation
possible outputs given 2-neighbourhood?
inputs independent
Outputs of incident edges

3-neighbourhood of violet edge
Outputs of incident edges

3-neighbourhood of red edge

(here $t = 3$)
Outputs of incident edges

intersection of 3-neighbourhoods = 2-neighbourhood of orange

(here $t = 3$)
Outputs of incident edges
outputs on the two sides are independent given orange

inputs independent
Outputs of incident edges

is it possible for endpoint to be a \textbf{sink} for the other edges?

\exists input s.t. other edges pointed towards node?
Outputs of incident edges

is it possible for endpoint to be a sink for the other edges?

if not, we can safely orient towards node
Other endpoint a sink

now assume the first endpoint is a potential sink

∃ input s.t. other edges pointed towards node?
Other endpoint a sink

now assume both endpoints potential sinks

if yes, can engineer input such that this happens (independence)
Other endpoint a sink

now assume both endpoints potential sinks

no feasible output left for middle edge
Lower bound: sinkless orientation

For example, assume $d=3$ and $c=5$

\[t = (t,t,t,t,t) \]

\[t-1 = (t-1,t-1,t-1,t-1,t-1) \]

speed up each color

\[0 = (0,0,0,0,0) \]

repeat t times
Problem with standard model

• Unique identifiers induce dependencies between possible inputs

• Argument that we can force a sink unless one endpoint is safe is no longer true
Roundabout solution: randomize

- Now consider the randomized setting
- In addition to the colouring, nodes have access to u.a.r. real number

Theorem: sinkless orientation requires $\Omega(\Delta^{-1} \log \Delta \log n)$ rounds
Lower bound: updated strategy

For example, assume $d=3$ and $c=5$

\[A : \quad t = (t,t,t,t,t) \quad \text{error with prob. < } p \]

\[\quad \Downarrow \quad \text{speed up color 5 by simulation} \]

\[A' : \quad t^{(1)} = (t,t,t,t,t-1) \quad \text{error with prob. < } 3p^{1/3} \]

\[\quad \Downarrow \quad \text{speed up color 4 by simulation} \]

\[A'' : \quad t^{(2)} = (t,t,t-1,t-1) \]
Lower bound: updated strategy
For example, assume $d=3$ and $c=5$

$A_t : \ t = (t,t,t,t,t)$

speed up each color

$A_{t-1} : \ t-1 = (t-1,t-1,t-1,t-1,t-1)$

repeat t times

$A_0 : \ 0 = (0,0,0,0,0)$

error with prob. $< p$

error with prob. $< O(p^{-3^{(2d-1)}})$

error with prob. $< O(p^{-3^{(t(2d-1))}})$
Lower bound: updated strategy

start with alg. A, running time t, error prob. p_0

algorithm A' with running time 0, error prob. $< O(p^{-3^{(t(2d-1))}})$

0 rounds: must have error probability $p > 1/8^d$

$t = \Omega(\Delta^{-1} \log \log n)$
Lower bound: updated strategy

For example, assume $d=3$ and $c=5$

\[A : \quad t = (t, t, t, t, t) \quad \text{error with prob. } < p \]

\[A' : \quad t^{(1)} = (t, t, t, t-1) \quad \text{error with prob. } < 3p^{1/3} \]

\[t^{(2)} = (t, t, t-1, t-1) \]

speed up a color by simulation
Outputs of incident edges

event E_1: black endpoint potential sink

random input s.t. other edges pointed toward black endpoint
Outputs of incident edges

event E_2: white endpoint potential sink
Simulation

Compute probabilities for alg. A:

If v_1 likely potential sink, orient e from v_1 to v_2 and otherwise from v_2 to v_1

(Remember other incident edges work as in original algorithm)
Simulation

Compute probabilities for alg. A:

If \mathbf{v}_1 likely potential sink, orient \mathbf{e} from \mathbf{v}_1 to \mathbf{v}_2 and otherwise from \mathbf{v}_2 to \mathbf{v}_1

Due to independence, both endpoints are usually not potential sinks
Lower bound

\[A : \quad t = (t, t, t, t, t) \quad \text{error with prob. } < p \]

\[A' : \quad t^{(1)} = (t, t, t, t-1) \quad \text{error with prob. } < 3p^{1/3} \]

\[t^{(2)} = (t, t, t-1, t-1) \]
Back to deterministic

Theorem (Chang et al., FOCS 2016): Assume that for LCL L there exists an algorithm with running time $t = o(\log_\Delta n)$, then there exists an algorithm with running time $t' = O(\log^* n)$

Corollary: sinkless orientation requires $\Omega(\log_\Delta n)$ deterministic time
Automatic speed-up

- Another **black box simulation**
- A given **algorithm A** is “fooled” to run faster: compute locally unique “identifiers” (a colouring) and run **A** on those
- Efficient solving of LCLs reduces to **coloring + constant time**
Back to randomized

Theorem (Chang et al., FOCS 2016): randomized complexity of an LCL on instances of size n is at least the deterministic complexity on instances of size $(\log n)^{1/2}$

Corollary: sinkless orientation requires $\Omega(\log_{\Delta} \log n)$ randomized time
What just happened?

deterministic: $\Omega(\log_\Delta n)$
Proof technique doesn’t work for identifiers

IDs \rightarrow randomness
randomized: $\Omega(\Delta^{-1} \log \log n)$

automatic connection
randomized: $\Omega(\log \log \log n)$

automatic speed-up
deterministic: $\Omega(\log n)$
Open questions
Trouble with IDs

deterministic: $\Omega(\log_\Delta n)$ with a coloring

?

deterministic: $\Omega(\log_\Delta n)$ with IDs
Other applications?

A hammer but no nails?

- Identify other intermediate problems
- Lower bounds as function of Δ (maximum degree)?
 - Best algorithms for maximal matching and maximal independent set linear in Δ
 - Weaker lower bounds exist