
Proving lower bounds
in the LOCAL model

Juho Hirvonen,
IRIF, CNRS, and Université Paris Diderot

2 October, 2017

Talk outline

• Sketch a lower bound proof technique for
distributed graph algorithms

• In general, simulation is a very powerful tool for
lower bounds

• We have the beginnings of a complexity theory:
can use heavy hammers in lower bound proofs

LOCAL model
• input = the communication network

• output = every computer produces local output

• global output = the union of local outputs

LOCAL model

Nodes are running a synchronous loop:

1. exchange messages
2. update state

No bounds on computation, messages, no failures:
trying to abstract away all challenges except locality

LOCAL model
• complexity = the number of synchronous

communication rounds until all nodes have
stopped and announced output

The model

• each node has a unique name in poly(n)

• graph has bounded maximum degree Δ = O(1)

• for lower bounds, assume graph size n is known

Information-limited
• In t rounds, information can propagate at most t

hops in the network

• After t rounds, output cannot depend on input that
is more than t hops away

• Gathering the t-hop neighborhood is all an
algorithm can do!

time ≈ distance

Information-limited

1

5

16

22

23

15

2

18

10

15

3
20

9

24

19

7

12

11

6

17

8

25

21

134

1

5

16

22

99

15

2

18

10

15

3
20

9

24

19

7

12

11

6

17

8

25

21

134
31

77

91

37

80
30

35

86

45

65

51

66

67

43

73

3

Assume: t = 2

Information-limited

algorithm
=

function on t-hop neighbourhoods

The lower bound

Based on*
A lower bound for the distributed Lovász local lemma,
Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki,

Suomela, and Uitto, STOC 2016

An exponential separation between randomized and
deterministic complexity in the LOCAL model

Chang, Kopelowitz, and Pettie, FOCS 2016

The Complexity of Distributed Edge Coloring with Small
Palettes, Chang, He, Li, Pettie, and Uitto, 2017

Sinkless orientation

All edges are oriented with no sinks

The lower bound

Sinkless orientation requires Ω(log∆ n) deterministic
time

Sinkless orientation requires Ω(log∆ log n)
randomized time

Why do we care?
• First example of a problem with intermediate

complexity

• In edge-coloured graphs Δ-colouring is at least as
hard as sinkless orientation

• In 2-vertex-coloured and d-edge-coloured graphs
(2∆-2)-edge coloring is at least as hard as sinkless
orientation

• Sinkless orientation is a useful primitive for finding
balanced edge splits (which are at least as hard)

A (simple) deterministic
lower bound

We will start by proving a simple lower bound for a
simple deterministic model:

Finding a sinkless orientation requires Ω(log∆ n)
communication rounds

Lower bound:
sinkless orientation

(simple) model:
d-regular graphs,

2-vertex col.
c-edge col.
(for c > d)

graphs have large
(logarithmic) girth

Lower bound:
sinkless orientation

For algorithm A, define running time profile
t = (t1,t2,…,tc)

=

Edges of color i must halt after ti rounds*

Lower bound:
sinkless orientation

Assume algorithm has running time profile
t = (t,t,…,t)

=

Edges of all colors halt in t communication rounds

Lower bound:
sinkless orientation
For example, assume d=3 and c=5

t = (t,t,t,t,t)

t(1) = (t,t,t,t,t-1)

t(2) = (t,t,t,t-1,t-1)

 speed up color 5 by simulation

 speed up color 4 by simulation

Lower bound:
sinkless orientation
For example, assume d=3 and c=5

t = (t,t,t,t,t)

t-1 = (t-1,t-1,t-1,t-1,t-1)

0 = (0,0,0,0,0)

 speed up each color

repeat t times

Lower bound:
sinkless orientation
For example, assume d=3 and c=5

algorithm with running time profile
0 = (0,0,0,0,0)

easy to show that this is impossible!

We can apply argument if initial t = o(log∆ n)

Simulation
3-neighbourhood of orange edge

edge e

(3,3,3,3,3)

(3,3,3,3,2)

Simulation
possible outputs given 2-neighbourhood?

(here t = 3)

Simulation
possible outputs given 2-neighbourhood?

inputs independent

 3-neighbourhood of violet edge
Outputs of incident edges

Outputs of incident edges
3-neighbourhood of red edge

(here t = 3)

Outputs of incident edges
intersection of 3-neighbourhoods = 2-neighbourhood of

orange

(here t = 3)

Outputs of incident edges
outputs on the two sides are independent given orange

inputs independent

Outputs of incident edges
is it possible for endpoint to be a sink for the other edges?

∃ input s.t. other edges pointed towards node?

Outputs of incident edges
is it possible for endpoint to be a sink for the other edges?

if not, we can safely orient towards node

Other endpoint a sink
now assume the first endpoint is a potential sink

∃ input s.t. other edges pointed towards node?

Other endpoint a sink
now assume both endpoints potential sinks

if yes, can engineer input such that this happens
(independence)

Other endpoint a sink
now assume both endpoints potential sinks

no feasible output left for middle edge

Lower bound:
sinkless orientation
For example, assume d=3 and c=5

t = (t,t,t,t,t)

t-1 = (t-1,t-1,t-1,t-1,t-1)

0 = (0,0,0,0,0)

 speed up each color

repeat t times

Problem with standard model

• Unique identifiers induce dependencies between
possible inputs

• Argument that we can force a sink unless one
endpoint is safe is no longer true

Roundabout solution:
randomize

• Now consider the randomized setting

• In addition to the colouring, nodes have access to
u.a.r. real number

Theorem: sinkless orientation requires
Ω(∆-1log∆ log n) rounds

Lower bound:
updated strategy

For example, assume d=3 and c=5

t = (t,t,t,t,t)

t(1) = (t,t,t,t,t-1)

t(2) = (t,t,t,t-1,t-1)

 speed up color 5 by simulation

 speed up color 4 by simulation

error with prob. < p

error with prob. < 3p1/3

A

A’

A’’

:

:

:

Lower bound:
updated strategy

For example, assume d=3 and c=5

t = (t,t,t,t,t)

t-1 = (t-1,t-1,t-1,t-1,t-1)

0 = (0,0,0,0,0)

 speed up each color

repeat t times

error with prob. < p

error with
prob. < O(p-3^(t(2d-1)))

error with
prob. < O(p-3^(2d-1))

At

At-1

A0

:

:

:

Lower bound:
updated strategy

algorithm A’ with running time 0, error prob. < O(p-3^(t(2d-1)))

t = Ω(Δ-1 log log n)

start with alg. A, running time t, error prob. p0

0 rounds: must have error probability p > 1/8d

Lower bound:
updated strategy

For example, assume d=3 and c=5

t = (t,t,t,t,t)

t(1) = (t,t,t,t,t-1)

t(2) = (t,t,t,t-1,t-1)

 speed up a color by simulation

error with prob. < p

error with prob. < 3p1/3

A

A’

:

:

Outputs of incident edges
event E1: black endpoint potential sink

random input s.t. other edges pointed toward
black endpoint

v2 v1

Outputs of incident edges
event E2: white endpoint potential sink

v1v2

Simulation

If v1 likely potential sink, orient e from v1 to v2 and
otherwise from v2 to v1

(Remember other incident edges work
as in original algorithm)

Compute probabilities for alg. A:

Simulation

If v1 likely potential sink, orient e from v1 to v2 and
otherwise from v2 to v1

Due to independence, both endpoints are usually not
potential sinks

Compute probabilities for alg. A:

Lower bound

t = (t,t,t,t,t)

t(1) = (t,t,t,t,t-1)

t(2) = (t,t,t,t-1,t-1)

 speed up a color by simulation

error with prob. < p

error with prob. < 3p1/3

A

A’

:

:

Back to deterministic
Theorem (Chang et al., FOCS 2016): Assume that for

LCL L there exists an algorithm with running time
t = o(log∆ n), then there exists an algorithm with

running time t’ = O(log* n)

Corollary: sinkless orientation requires Ω(log∆ n)
deterministic time

Automatic speed-up

• Another black box simulation

• A given algorithm A is ”fooled” to run faster:
compute locally unique ”identifiers” (a colouring)
and run A on those

• Efficient solving of LCLs reduces to coloring +
constant time

Back to randomized
Theorem (Chang et al., FOCS 2016): randomized

complexity of an LCL on instances of size n is at least
the deterministic complexity on

instances of size (log n)1/2

Corollary: sinkless orientation requires Ω(log∆ log n)
randomized time

What just happened?

IDs → randomness
randomized:

Ω(Δ-1 log log n)

deterministic: Ω(log∆ n)
Proof technique doesn’t

work for identifiers

automatic speed-up
deterministic:

Ω(log n)

automatic connection
randomized:
Ω(log log n)

Open questions

Trouble with IDs

deterministic: Ω(log∆ n)
with a coloring

?
deterministic: Ω(log∆ n)

with IDs

Other applications?

• Identify other intermediate problems

• Lower bounds as function of ∆ (maximum
degree)?

• Best algorithms for maximal matching and
maximal independent set linear in ∆

• Weaker lower bounds exist

A hammer but no nails?

