k-set agreement in communication networks with omission faults

Emmanuel Godard Eloi Perdereau

Laboratoire d'Informatique Fondamentale

02/10/2017

DESCARTES 2-4 octobre 2017 - Chasseneuil-du-Poitou

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

The distributed model :

- Synchronous;
- Message passing;
- Underlying *connected* communication graph *G* = (*V*, *E*) fixed;
- Dynamic network;
- f omission faults,
 - *i.e.* at each round : f messages can be lost.

< ロ > < 同 > < 回 > < 回 >

The distributed model :

Synchronous;

- Message passing;
- Underlying *connected* communication graph G = (V, E) fixed;
- Dynamic network;
- f omission faults,

i.e. at each round : f messages can be lost.

(4 何) トイヨト イヨト

The distributed model :

- Synchronous;
- Message passing;
- Underlying *connected* communication graph G = (V, E) fixed;
- Dynamic network;
- f omission faults,

i.e. at each round : f messages can be lost.

・ 同 ト ・ ヨ ト ・ ヨ ト

The distributed model :

- Synchronous;
- Message passing;
- Underlying *connected* communication graph G = (V, E) fixed;
- Dynamic network;
- f omission faults,

i.e. at each round : f messages can be lost.

The distributed model :

- Synchronous;
- Message passing;
- Underlying *connected* communication graph G = (V, E) fixed;
- Dynamic network;
- f omission faults,

i.e. at each round : *t* messages can be lost.

The distributed model :

- Synchronous;
- Message passing;
- Underlying *connected* communication graph G = (V, E) fixed;
- Dynamic network;
- f omission faults,

i.e. at each round : f messages can be lost.

The k-set agreement problem

The k-set agreement problem :

- *k*-Agreement The set of output values contains at most *k* elements.
- Validity The decided values are ones of the initial values.
- Termination All processes must decide.

Message adversaries

First introduced by Afek & Gafni (2013)

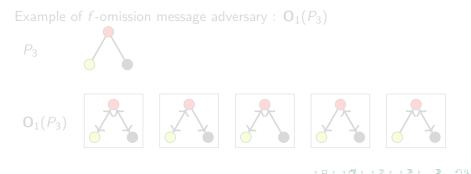
- Message adversary : set of infinite sequences of digraphs (*instant* graphs) defining the messages received in each round.
- *Oblivious* message adversary : the set of potential graphs in each round remains constant all along the execution.
 - \Rightarrow Set of instant digraphs.

The *f*-omission message adversary : $O_f(G)$

For example, the message adversary that allows at most f faults :

Definition (*f*-omissions message adversary)

$$\mathbf{O}_f(G) = \{G' = (V, A') \mid A' \subseteq A \land |A| - |A'| \le f\}$$

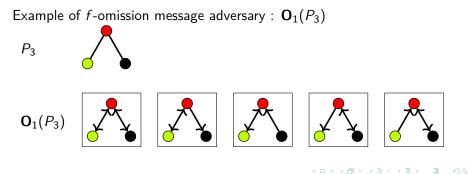


The *f*-omission message adversary : $O_f(G)$

For example, the message adversary that allows at most f faults :

Definition (*f*-omissions message adversary)

$$\mathbf{O}_f(G) = \{G' = (V, A') \mid A' \subseteq A \land |A| - |A'| \le f\}$$



Our contribution : computability of k-set agreement

How many lost messages (omissions) the k-set agreement is tolerant to ?

Theorem

Let $k \in \mathbb{N}$ and G = (V, E) be any communication network. The k-set agreement problem is solvable despite f omission faults if and only if $f \leq c_k(G)$.

 $c_k(G)$ is the maximum number of (*undirected*) edges that can be removed without disconnecting G in k + 1 components.

i.e. removing *c_k(G)* edges from *G* keeps at most *k* connected components on *G*.

 \Rightarrow the standard connectivity is $c_1(G) + 1$.

イロト 不得 トイラト イラト 二日

Our contribution : computability of k-set agreement

How many lost messages (omissions) the k-set agreement is tolerant to ?

Theorem

Let $k \in \mathbb{N}$ and G = (V, E) be any communication network. The k-set agreement problem is solvable despite f omission faults if and only if $f \leq c_k(G)$.

 $c_k(G)$ is the maximum number of (*undirected*) edges that can be removed without disconnecting G in k + 1 components.

i.e. removing *c_k(G)* edges from *G* keeps at most *k* connected components on *G*.

 \Rightarrow the standard connectivity is $c_1(G) + 1$.

イロト 不得 トイラト イラト 二日

Our contribution : computability of k-set agreement

How many lost messages (omissions) the k-set agreement is tolerant to ?

Theorem

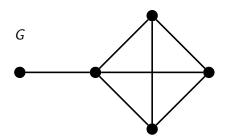
Let $k \in \mathbb{N}$ and G = (V, E) be any communication network. The k-set agreement problem is solvable despite f omission faults if and only if $f \leq c_k(G)$.

 $c_k(G)$ is the maximum number of (*undirected*) edges that can be removed without disconnecting G in k + 1 components.

i.e. removing $c_k(G)$ edges from G keeps at most k connected components on G.

 \Rightarrow the standard connectivity is $c_1(G) + 1$.

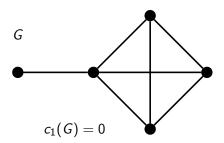
ヘロト 不得 ト イヨト イヨト 二日



E. Godard (L.I.F)

02/10/2017 7 / 24

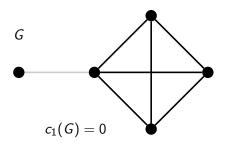
Ξ



E. Godard (L.I.F)

02/10/2017 7 / 24

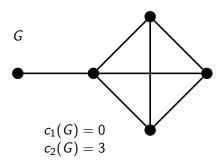
3



E. Godard (L.I.F)

02/10/2017 7 / 24

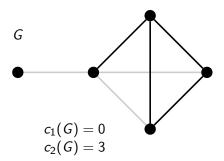
3



E. Godard (L.I.F)

02/10/2017 7 / 24

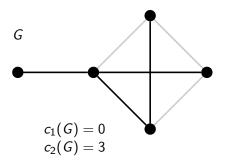
3



E. Godard (L.I.F)

02/10/2017 7 / 24

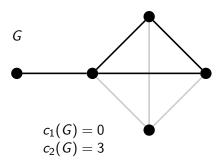
3



E. Godard (L.I.F)

02/10/2017 7 / 24

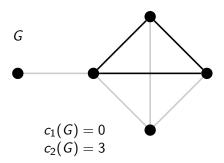
3



E. Godard (L.I.F)

02/10/2017 7 / 24

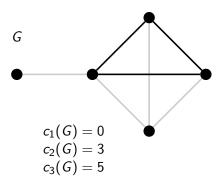
3



E. Godard (L.I.F)

02/10/2017 7 / 24

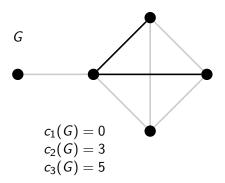
3



E. Godard (L.I.F)

02/10/2017 7 / 24

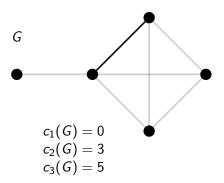
<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>



E. Godard (L.I.F)

02/10/2017 7 / 24

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>



E. Godard (L.I.F)

02/10/2017 7 / 24

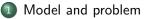
<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

Model and problem

Impossibility proofs

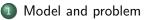
- Impossibility of 2-set in K_3 and P_3 (|G| = k + 1 = 3)
- Reduction from the case |G| > k + 1
- Impossibility of set-agreement for generalized tournaments

< ロ > < 同 > < 回 > < 回 >



Impossibility proofs

- Impossibility of 2-set in K_3 and P_3 (|G| = k + 1 = 3)
- Reduction from the case |G| > k + 1
- Impossibility of set-agreement for generalized tournaments



Impossibility proofs

- Impossibility of 2-set in K_3 and P_3 (|G| = k + 1 = 3)
- Reduction from the case |G| > k + 1
- Impossibility of set-agreement for generalized tournaments

Possibility : a priority-based algorithm

Model and problem

Impossibility proofs

- Impossibility of 2-set in K_3 and P_3 (|G| = k + 1 = 3)
- Reduction from the case |G| > k + 1
- Impossibility of set-agreement for generalized tournaments

3) Possibility : a priority-based algorithm

Results for K_3 and P_3

k f	1	2	3	k f	1	2	3
1	yes	yes	yes	1	no	yes	yes
2	no	yes	yes	2	no	no	yes
3	no	no	yes	3	no	no	yes

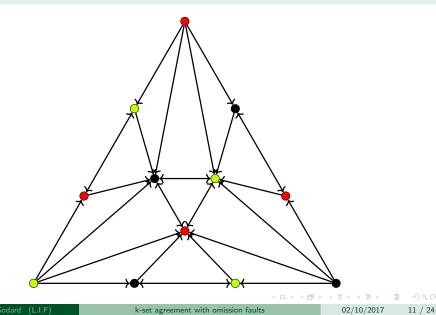
02/10/2017

<ロト <回ト < 回ト < 回ト

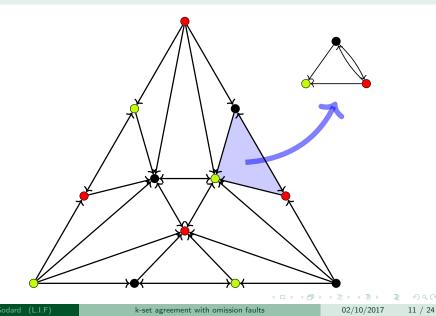
10 / 24

3

Classical impossibility proof in $O_3(K_3)$



Classical impossibility proof in $O_3(K_3)$



Half-duplex message adversary

Remark : only "half-duplex" graphs are depicted, *i.e.* we allow only one arc to be removed between two nodes, **not both**.

Definition (Half-Duplex graphs)

$$\begin{aligned} \mathsf{HD}_f(G) &= \{ G' = (V, A') \mid G' \in \mathbf{O}_f(G) \land \\ \forall p, q \in V \quad \{p, q\} \in E \land (p, q) \notin A' \Rightarrow (q, p) \in A' \} \end{aligned}$$

 $\Rightarrow \quad \mathsf{HD}_f(G) \subseteq \mathsf{O}_f(G)$

Proposition

The 2-set agreement problem is impossible in $HD_2(P_3)$.

Half-duplex message adversary

Remark : only "half-duplex" graphs are depicted, *i.e.* we allow only one arc to be removed between two nodes, **not both**.

Definition (Half-Duplex graphs)

$$\begin{aligned} \mathsf{HD}_f(G) &= \{ G' = (V, A') \mid G' \in \mathbf{O}_f(G) \land \\ \forall p, q \in V \quad \{p, q\} \in E \land (p, q) \notin A' \Rightarrow (q, p) \in A' \} \end{aligned}$$

$$\Rightarrow \quad \mathsf{HD}_f(G) \subseteq \mathbf{O}_f(G)$$

Proposition

The 2-set agreement problem is impossible in $HD_2(P_3)$.

Half-duplex message adversary

Remark : only "half-duplex" graphs are depicted, *i.e.* we allow only one arc to be removed between two nodes, **not both**.

Definition (Half-Duplex graphs)

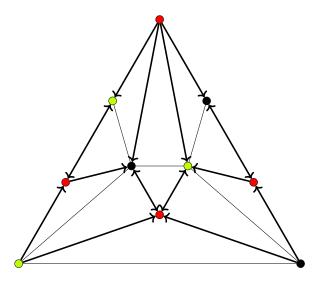
$$\begin{aligned} \mathsf{HD}_f(G) &= \{ G' = (V, A') \mid G' \in \mathbf{O}_f(G) \land \\ \forall p, q \in V \quad \{p, q\} \in E \land (p, q) \notin A' \Rightarrow (q, p) \in A' \} \end{aligned}$$

$$\Rightarrow \quad \mathsf{HD}_f(G) \subseteq \mathbf{O}_f(G)$$

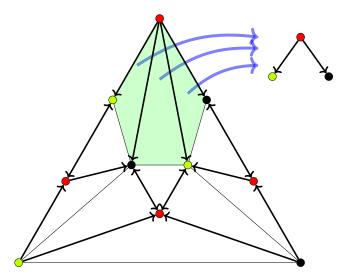
Proposition

The 2-set agreement problem is impossible in $HD_2(P_3)$.

Impossibility of (2-)set agreement in P_3



Impossibility of (2-)set agreement in P_3

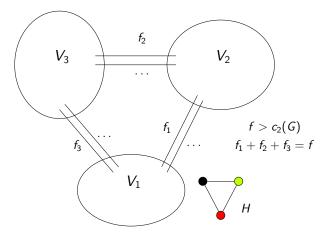


- < ⊒ →

For arbitrary G = (V, E):

- Suppose *f* > *c*₂(*G*);
- Partition V in 3 sets V_1 , V_2 and V_3 ;
- An algorithm \mathcal{A} for G would solve the 2-set agreement for all $\mathbf{M} \subseteq \mathbf{O}_f(G)$;
- In particular in S ⊆ HD_f(G) where omissions are synchronized between V_is;
- Reduce to $HD_3(K_3)$ or $HD_2(P_3)$ by syncing omissions.

(人間) トイヨト イヨト

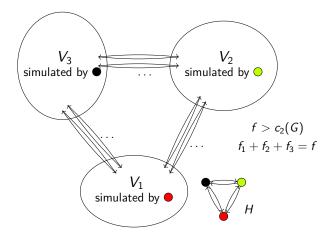


⇒ Generalizable for all k: k-set reduced to set agreement in H (|H| = k + 1).

E. Godard (L.I.F)

02/10/2017 15 / 24

< □ > < □ > < □ > < □ >

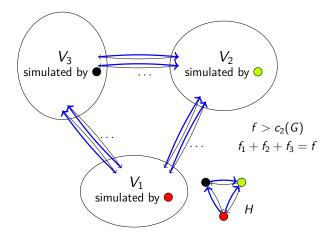


⇒ Generalizable for all k: k-set reduced to set agreement in H (|H| = k + 1).

E. Godard (L.I.F)

02/10/2017 15 / 24

< ロ > < 同 > < 回 > < 回 >

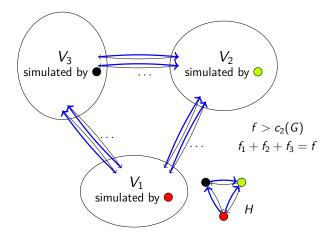


⇒ Generalizable for all k: k-set reduced to set agreement in H (|H| = k + 1).

E. Godard (L.I.F)

02/10/2017 15 / 24

< ロ > < 同 > < 回 > < 回 >



 \Rightarrow Generalizable for all k: k-set reduced to set agreement in H (|H| = k + 1).

E. Godard (L.I.F)

• • = • • = •

How to generalize

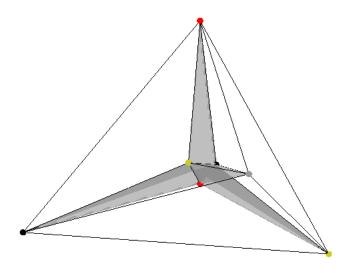
- we had to consider both $HD(K_3, 3)$ and $HD(P_3, 2)$
- we need a way to handle all **HD**(*G*, *f*) we are reducing to (generalized tournaments)
- => subdivision diagram

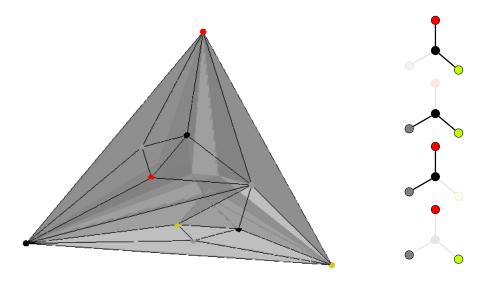
E. Godard (L.I.F)

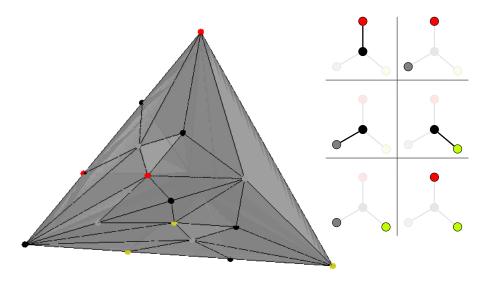
k-set agreement with omission faults

02/10/2017

17 / 24







Outline

1 Model and problem

2 Impossibility proofs

- Impossibility of 2-set in K_3 and P_3 (|G| = k + 1 = 3)
- Reduction from the case |G| > k + 1
- Impossibility of set-agreement for generalized tournaments

Possibility : a priority-based algorithm

・ 何 ト ・ ヨ ト ・ ヨ ト

An algorithm for the k-set when $f \leq c_k(G)$

```
Priority order \pi on \{p_1, p_2, \ldots, p_n\} : \pi(p_i) = i
```

```
Algorithm: Algorithm for the k-set agreement in G for process p_i

known \leftarrow i;

for T rounds do

send known to all neighbors;

known \leftarrow known \cup received ids;

end

decide max(known);
```

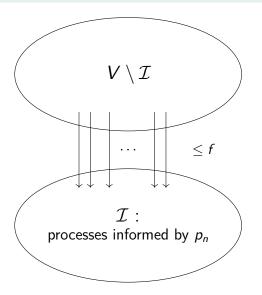
Proof of possibility when $f = c_2(G)$ (1)

 p_n is the process with the highest priority.

- Let \mathcal{I} : the set of process informed by p_n ;
- Consider the processes eventually in \mathcal{I} ;
- If $\mathcal{I} = V$, the consensus is solved;
- Otherwise, $\overline{\mathcal{I}} = V \setminus \mathcal{I}$ form a strongly connected component because $f = c_2(G)$;
- After enough rounds, processes in $\overline{\mathcal{I}}$ have the same information.

Possibility : a priority-based algorithm

Proof of possibility when $f = c_2(G)$ (2)



E. Godard (L.I.F)

02/10/2017

21 / 24

イロト イポト イヨト イヨト

Conclusion and perspectives

Complete characterization of k-set agreement in oblivious message adversaries with f omission faults : solvable iff $f \leq c_k(G)$. \Rightarrow New proof technique for impossibility with subdivision diagrams.

Perspectives of generalization :

- Managing *partioning* vs *uncertainty*,
- Find a generic method to construct a subdivision diagram for arbitrary oblivious message adversaries;

- 4 回 ト - 4 回 ト - 4

Conclusion and perspectives

Complete characterization of k-set agreement in oblivious message adversaries with f omission faults : solvable iff $f \le c_k(G)$. \Rightarrow New proof technique for impossibility with subdivision diagrams.

Perspectives of generalization :

- Managing *partioning* vs *uncertainty*,
- Find a generic method to construct a subdivision diagram for arbitrary oblivious message adversaries;

Contribution to DESCARTES

HD(G, f) can be simulated by $HD(K_{\kappa}, \kappa(\kappa - 1)/2)$ which is equivalent to the wait-free RW model for κ processes where κ is the smallest integer such that $c_{\kappa}(G) \geq f$.

Colorless Computability

 $RW_{waitfree}(\kappa) \subseteq HD(G, f) \subsetneq RW_{waitfree}(\kappa - 1)$

E. Godard (L.I.F)

k-set agreement with omission faults

02/10/2017 23 / 24

· · · · · · · · ·

Thank you

E

<ロト <回ト < 回ト < 回ト