Distributed Property Testing

Pierre Fraigniaud
CNRS and University Paris Diderot

ANR DESCARTES
Poitiers, France — October 2-4, 2017
Objective: distinguish between graphs satisfying a given property P from graphs that are far from satisfying P.

\(\varepsilon \)-farness:

- Dense model: add/remove \(\geq \varepsilon n^2 \) edges to satisfy P
- Bounded-degree model: add/remove \(\geq \varepsilon dn \) edges to satisfy P
- **Sparse model**: add/remove \(\geq \varepsilon m \) edges to satisfy P
Sequential Tester

Performs queries to nodes (labeled from 1 to n)

- what is the degree of node \(v \)?
- what is the ID of the \(i^{th} \) neighbor of node \(v \)?

Objective: After \(o(n) \) queries, decide whether \(G \) satisfies \(P \) or not, in poly(n) time.
Typical Decision Rule

- If G satisfies P then $\Pr[\text{accept}] \geq \frac{2}{3}$

- If G is ε-far from satisfying P then $\Pr[\text{reject}] \geq \frac{2}{3}$
Distributed Property Testing

Introduced by: Brakerski & Patt-Shamir (2011)
Specified by: Censor-Hillel, Fischer, Schwartzman & Vasudev (2016)
Distributed Decision Rule

- If G satisfies P then
 \[\Pr[\text{all nodes accept}] \geq \frac{2}{3} \]

- If G is ε-far from satisfying P then
 \[\Pr[\text{at least one node rejects}] \geq \frac{2}{3} \]
CONGEST Model

- Nodes have IDs in a range \([1,n^c]\)
- All nodes start simultaneously
- They perform is synchronous rounds
- Each round consists, for every node:
 - **sending** a message to each neighbor
 - **receiving** the message from each neighbor
 - **computing**, i.e., performing individual computation
 - messages of \(O(\log n)\) bits
Objective

Test whether G satisfies P in the least number of rounds, ideally $O(1)$ rounds.

Example:

H-freeness: does G contain H as a subgraph?
Distributed Decision
(Lower Bound)
Why ε-farness?
Why randomization?

Theorem [Drucker, Kuhn, Oshman (2014)]
Deciding C_4-freeness requires $\Omega(\sqrt{n})$ rounds, even using randomization.

Proof Reduction from *set-disjointness* in the context of *communication complexity*.
Communication complexity

\[f : \{0,1\}^N \times \{0,1\}^N \rightarrow \{0,1\} \]

\[a \in \{0,1\}^N \quad \text{\&} \quad b \in \{0,1\}^N \]

Alice & Bob must compute \(f(a,b) \)

How many bits need to be exchanged between them?
Set-disjointness

- Ground set S of size N
- Alice gets $A \subseteq S$, and Bob gets $B \subseteq S$

$$f(A,B) = 1 \iff A \cap B = \emptyset$$

Theorem [Håstad & Wigderson (2007)]

$\text{CC}(f) = \Omega(N)$, even using randomization.
Reduction from Set-Disjointness

Lemma There are C_4-free graphs G_n with n nodes and $m = \Omega(n^{3/2})$ edges.

Let A and B as in set-disjointness ($N = m$)

- Alice keeps $e \in E(G_n)$ iff $e \in A$
- Bob keeps $e \in E(G_n)$ iff $e \in B$

$\Omega(n^{3/2})/n = \Omega(\sqrt{n})$
The bound is tight

Algorithm 3 C_4-detection executed by node u.

1: send $ID(u)$ to all neighbors, and receive $ID(v)$ from every neighbor v
2: send $deg(u)$ to all neighbors, and receive $deg(v)$ from every neighbor v
3: $S(u) \leftarrow \{IDs$ of the $\min\{\sqrt{2n}, deg(u)\}$ neighbors with largest degrees$\}$
4: send $S(u)$ to all neighbors, and receive $S(v)$ from every neighbor v
5: if $\sum_{v \in N(u)} deg(v) \geq 2n + 1$ then
6: output reject
7: else
8: if $\exists v_1, v_2 \in N(u), \exists w \in S(v_1) \cap S(v_2): w \neq u$ and $v_1 \neq v_2$ then
9: output reject
10: else
11: output accept
12: end if
13: end if

Case 1: there exists a ‘large’ node w in C
Case 2: all nodes of C are ‘small’
Distributed Decision
(Upper Bound)
Deciding Tree-Freeness

Theorem [F., Montealegre, Olivetti, Rapaport, Todinca (2017)]

Let T be a tree. There is a **deterministic** algorithm deciding T-freeness in $O(1)$ rounds.

Remarks

- ✓ no need of the ε-farness assumption.
- ✓ no need of randomization
- ✓ the big-O depends on $k = |T| \Rightarrow k^k$ rounds
A Simple Randomized Algorithm (color-coding technique)

Algorithm

pick \(\text{col}(v) \in \{1, 2, \ldots, k\} \) u.a.r.
active \(\leftarrow \) false
for \(k=1 \) to \(|T| \) do
 if \(\text{col}(v)=k \) and exist well colored set of active neighbors then
 active \(\leftarrow \) true
 if \(\text{col}(v)=k \) and active then reject
 else accept

Pr[tree T is detected] \(\geq 1/k^k \)
Deterministic Algorithm

Example: path (1)

![Diagram showing a tree structure with labeled nodes and arrows indicating the current node and candidate paths. The nodes are labeled with numbers: 1, 2, 3, 5, 7, 8, 9, and the current node is highlighted. The candidate paths are also highlighted.]
Deterministic Algorithm
Example: path (2)

- collected paths
- candidate paths
- current node
Pruning technique

Definition Let $n > k > t$. Let V be a set of size n, and F a collection of subsets of V with cardinality $\leq t$. A witness of F is a set $F' \subseteq F$ such that, for any $X \subseteq V$ with $|X| \leq k-t$, the following holds:

$$\exists Y \in F : X \cap Y = \emptyset \Rightarrow \exists Y' \in F' : X \cap Y' = \emptyset$$

Lemma [Erdős, Hajnal, Moon] There exists a compact witness of F, i.e., a witness of F with cardinality independent of n.
The Deterministic “Pruning Algorithm”

- Same type of pruning as for paths
- Must take into account the shapes of the subtrees

Remark: individual time-complexity exponential in $|T|$.
Application to distributed property testing
Testing H-freeness for a large class of graphs H

Sparse model: add/remove $\geq \varepsilon m$ edges to satisfy P

Theorem [F., Montealegre, Olivetti, Rapaport, Todinca (2017)]
Let H be a tree-plus-one-edge. There is a distributed tester for H-freeness running in $O(1)$ rounds.

Remark the big-O depends on $k=|H|$ and ε
$\Rightarrow k^k/\varepsilon$ rounds
Tree-plus-one-Edge

Generalizes to Forest-plus-one-edge
Algorithm

- Each edge picks a rank in $[1, m^2]$ u.a.r.
- The edge with minimum rank is used as an ‘anchor’ for the search for T
- Discard competing searches from high rank edges
Corollaries

• C_k is a tree-plus-one-edge, for any $k \geq 3$.
 ➡ C_3 [Censor-Hillel, Fischer, Schwartzman & Vasudev (2016)]
 ➡ C_4 [F., Rapaport, Salo & Tadinca (2016)]
 ➡ C_k [F. & Olivetti (2017)]

• K_k is a tree-plus-one-edge, for any $k \leq 4$.
 ➡ K_4 [F., Rapaport, Salo & Tadinca (2016)]
Orr Fischer, Tzlil Gonen and Rotem Oshman. Distributed Property Testing for Subgraph-Freeness Revisited

Pierre Fraigniaud, Pedro Montealegre, Dennis Olivetti, Ivan Rapaport and Ioan Todinca. Distributed Subgraph Detection

Guy Even, Reut Levi and Moti Medina. Faster and Simpler Distributed Algorithms for Testing and Correcting Graph Properties in the CONGEST Model
Conclusion
Open problems

(1) Is there a distributed tester for K_5-freeness running in $O(1)$ rounds in the CONGEST model?

(2) Characterization of graph patterns H for which H-freeness can be tested in $O(1)$ rounds?

Thank you!