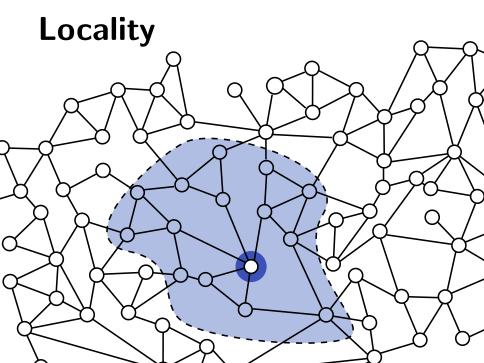
Error-sensitive proof-labeling schemes

Laurent Feuilloley Pierre Fraigniaud Université Paris Diderot

ANR Descartes · October 2017



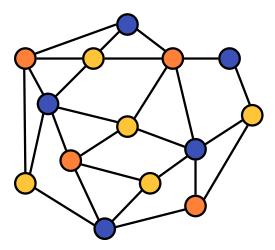
Decision problems

Decision problems

Context :

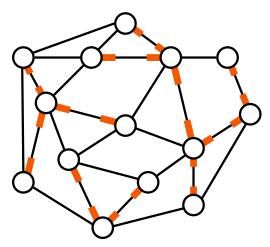
- Communication graph G
- Node inputs : $x : v \mapsto x(v)$

A language is a set of configurations (G, x)s.t. $\forall G, \exists x, (G, x) \in \mathcal{L}$



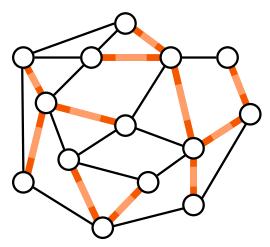
 $\mathcal{L} = \{(G, x) \text{ s.t. } x \text{ is a proper coloring of } G\}$

Acyclic subgraphs



 $\mathcal{L} = \{(G, x) \text{ s.t. } x \text{ describes an acyclic subgraph of } G\}$

Acyclic subgraphs

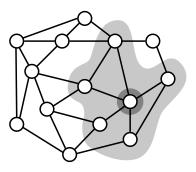


 $\mathcal{L} = \{(G, x) \text{ s.t. } x \text{ describes an acyclic subgraph of } G\}$

Decision mechanism

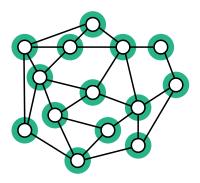
Every node :

- gathers its
 1-neighbourhood
- outputs a local decision accept or reject.



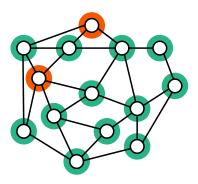
Decision mechanism

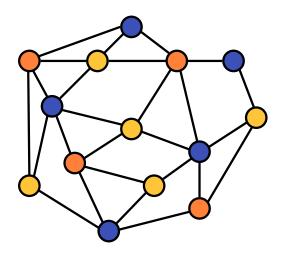
(G, x) is accepted if all node accept.

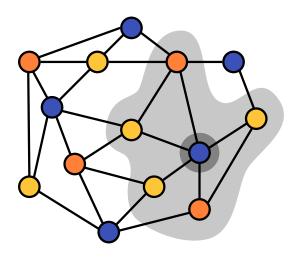


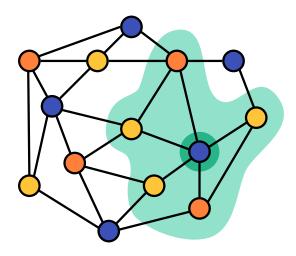
Decision mechanism

(G, x) is rejected if at least one node rejects.

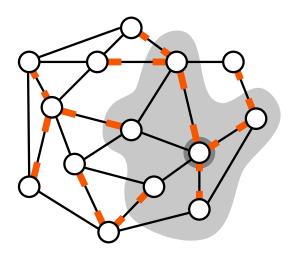




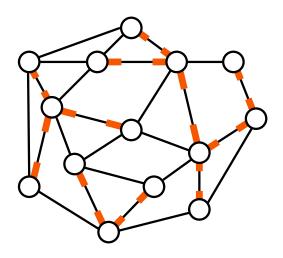


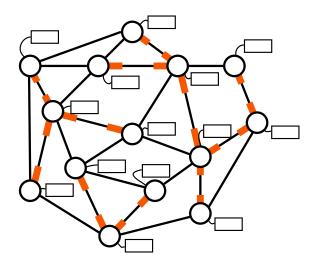


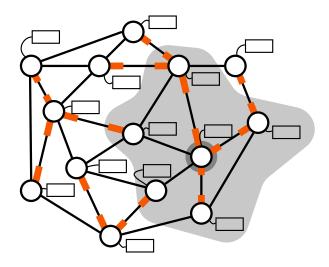
Acyclic subgraphs



Distributed non-determinism



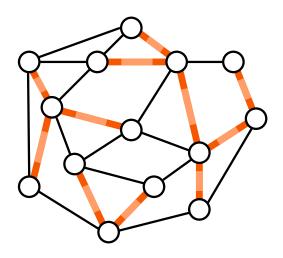


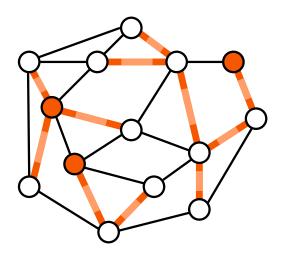


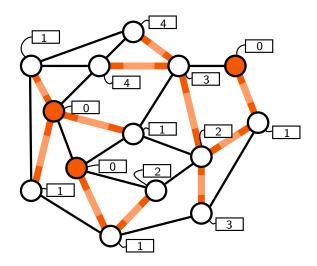
Given a proof-labeling scheme for $\boldsymbol{\mathcal{L}}$:

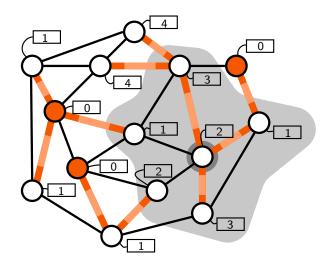
 $\forall (G, x) :$

- If (G, x) ∈ L, there exist certificates c, (G, x, c) is accepted.
- If (G,x) ∉ L, for all certificates c,
 (G,x,c) is rejected.



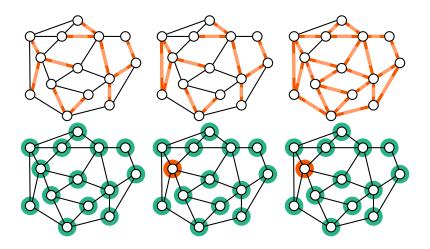




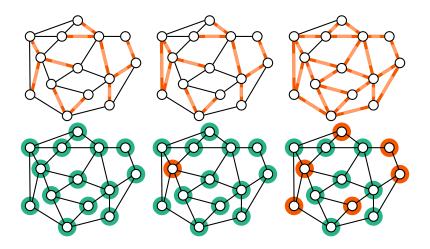


Error-sensitivity of proof-labeling schemes

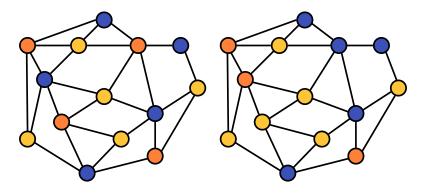
One node to reject



More nodes to reject

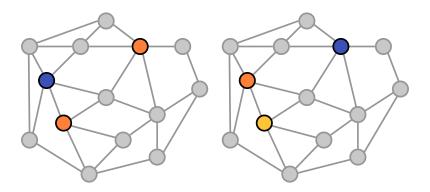


Distance



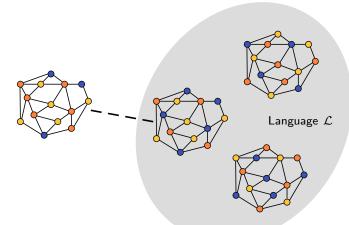
 $d((G, x_1), (G, x_2)) = \#\{v : x_1(v) \neq x_2(v)\}$

Distance



 $d((G, x_1), (G, x_2)) = \#\{v : x_1(v) \neq x_2(v)\}$

Distance



 $d((G,x),\mathcal{L}) = \min_{(G',x')\in\mathcal{L}} d((G,x),(G',x'))$

Error-sensitivity with words

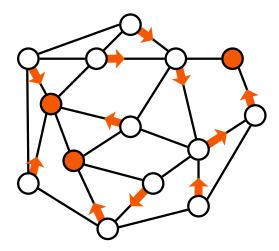
A PLS is error-sensitive if, the number of rejecting nodes grows linearly with the distance.

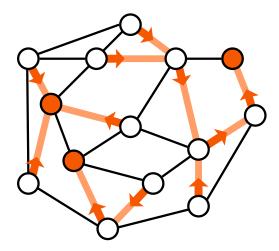
Error-sensitivity with a formula

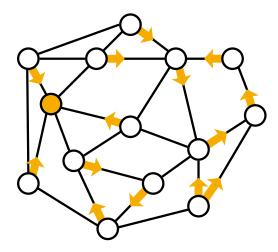
A PLS is error-sensitive if, there exists $\alpha > 0$ s.t., for all (G, x), for all certificate :

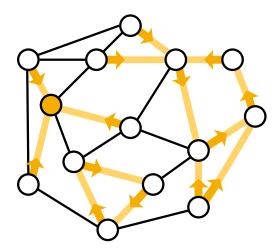
#{Rejecting nodes} $\geq \alpha.d((G, x), \mathcal{L})$

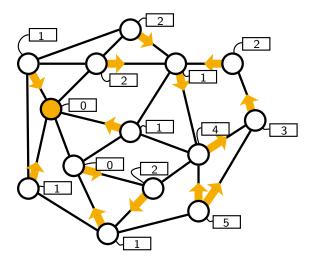
Basic examples

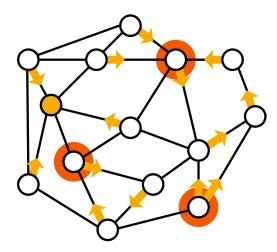


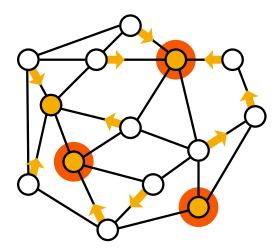


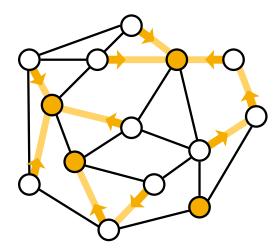




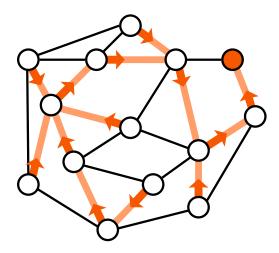


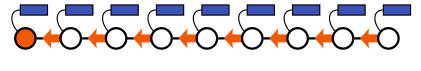


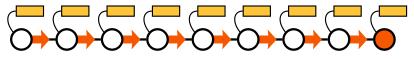


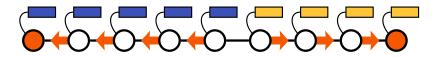


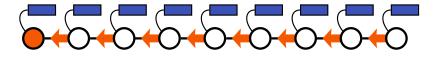
Acyclic subgraph with pointers has an error-sensitive PLS, (with $O(\log n)$ -size certificates)

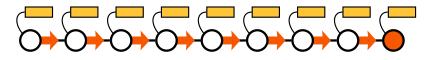












Spanning tree with pointers has no error-sensitive PLS, (for any certificates size)

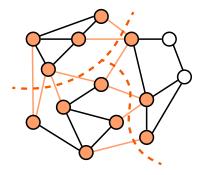
Structural characterization

Theorem

$\mathcal{L} \text{ admits an error-sensitive PLS} \\ \Leftrightarrow \\ \mathcal{L} \text{ is locally stable}$

Local stability **Hybridization**

Local stability Border nodes



Local stability

$\exists \beta, \forall G, \forall \text{ hybridization,} \\ d(\textcircled{G}, \mathcal{L}) \leq \beta. \# \{ \textcircled{G} \}$

$d(\text{hybrid}, \mathcal{L}) \leq \beta. \# \{\text{Border nodes}\}$

Spanning tree with pointers is not locally stable

But with adjacency lists...

Thm : Spanning tree and MST, with adjacency lists, are locally stable.⇒ they have error-sensitive PLS.

Compact schemes

Compact PLS

(Old) Theorem : ► ST has a O(log n)-PLS; ► MST has a O(log² n)-PLS.

Compact PLS

New Theorem : ST has a O(log n)-ESPLS; MST has a O(log² n)-ESPLS.