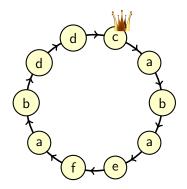
Leader Election in Asymmetric Labeled Unidirectional Rings

Karine Altisen¹ Ajoy K. Datta² Stéphane Devismes¹ Anaïs Durand¹ Lawrence L. Larmore²

 1 Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France 2 University of Nevada Las Vegas, USA

Meeting DESCARTES, October 2-4 2017, Poitiers



- Leader election
- Unidirectional rings
- Homonym processes
- Deterministic algorithm
- Asynchronous message-passing

State of the Art - Leader Election

(+	
	7

Deterministic

solution

Probabilistic solution

Anonymous processes

processes

Impossible [Angluin, 80] [Lynch, 96] Possible [Afek and Matias, 94] [Kutten *et al.*, 13]

Possible [LeLann, 77] [Chang and Roberts, 79] [Peterson, 82]

Leader Election in Asymmetric Labeled Unidirectional Rings

State of the Art - Leader Election

ŧ	Deterministic solution	Probabilistic solution
Anonymous processes	Impossible [Angluin, 80] [Lynch, 96]	Possible [Afek and Matias, 94] [Kutten <i>et al.</i> , 13]
	Homonym proces	ses [Yamashita and Kameda, 89]
Identified	1 0001010	
processes	[LeLann, 77] [Chang and Roberts, 79] [Peterson, 82]	

- **Message-terminating:** Processes do not explicitly terminate but only a finite number of messages are exchanged.
- **2 Process-terminating:** Every process eventually halts.

An algorithm A solves the leader election for the class of ring network \mathcal{R} if A solves the leader election for every network $R \in \mathcal{R}$.

An algorithm A solves the leader election for the class of ring network \mathcal{R} if A solves the leader election for every network $R \in \mathcal{R}$.

A cannot be given any specific information about the network unless that information holds for all members of \mathcal{R} .

An algorithm A solves the leader election for the class of ring network \mathcal{R} if A solves the leader election for every network $R \in \mathcal{R}$.

A cannot be given any specific information about the network unless that information holds for all members of \mathcal{R} .

We consider three important classes of ring networks.

- *K_k* is the class of all ring networks such that no label occurs more than k times.
- A is the class of all asymmetric ring networks: rings with no non-trivial rotational symmetry.
- \mathcal{U}^* is the class of all rings in which at least one label is unique.

Symmetric vs. Asymmetric

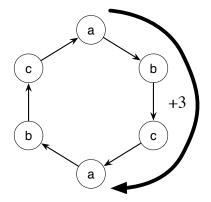


Figure : Symmetric Ring

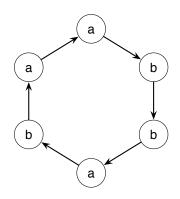


Figure : Asymmetric Ring

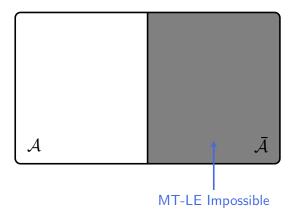
- \$\mathcal{K}_1 \subset \mathcal{K}_2 \subset \mathcal{K}_3 \dots\$
 \$U^* \cap \mathcal{K}_1 \subset U^* \cap \mathcal{K}_2 \subset U^* \cap \mathcal{K}_3 \dots\$
 \$\mathcal{L}_1 \subset U^*\$
- $\Lambda_1 \subset \mathcal{U}$
- $\blacksquare \ \mathcal{U}^* \subset \mathcal{A}$

State of the Art vs. Contribution

Leader Election in Rings of Homonym Processes

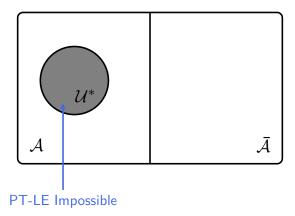
	PT/MT	Asynch.	Uni./Bi.	Known	Ring Class	# Msg	Time	
[Delporte	MT	~	Bi.	Bi		# labels > greatest	?	?
et al., 14]	PT	~		n	proper divisor of <i>n</i>	$O(n \log n)$?	
[Dobrev, PT Pelc, 04]	PT	×	Bi. + Uni.	$m \le n$	Decide if inputs are unambiguous	$O(n \log n)$	<i>O</i> (<i>M</i>)	
	FI	~	Bi.	$M \ge n$		O(nM)	?	
[SSS 2016]	РТ	~	Uni.	k	\exists unique label and # proc with same label \leq k	O(kn)	O(kn)	
[IPDPS 2017] PT	PT	РТ 🕑	Uni.	k	Asymmetric la- belling and # proc	$O(n^2 + kn)$	O(kn)	
				with same label $\leq k$	$O(k^2n^2)$	$O(k^2n^2)$		

- Uni : Unidirectional / Bi : Bidirectional
- MT = Message-terminating
- PT = Process-terminating



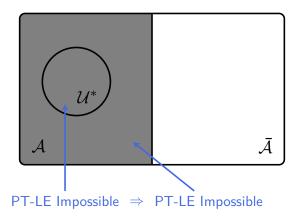
- MT-LE: Message-Terminating Leader Election
- PT-LE: Process-Terminating Leader Election

- A: Rings with asymmetric labelling
- **\overline{\mathcal{A}}**: Rings with symmetric labelling
 - \mathcal{U}^* : Rings with at least one unique label
- *K_k*: Rings with no more than *k* processes with the same label



- MT-LE: Message-Terminating Leader Election
- PT-LE: Process-Terminating Leader Election

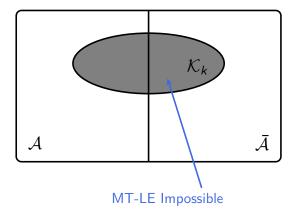
- A: Rings with asymmetric labelling
- **\overline{\mathcal{A}}**: Rings with symmetric labelling
 - \mathcal{U}^* : Rings with at least one unique label
- *K_k*: Rings with no more than *k* processes with the same label



- MT-LE: Message-Terminating Leader Election
- PT-LE: Process-Terminating Leader Election

- A: Rings with asymmetric labelling
- **\overline{\mathcal{A}}**: Rings with symmetric labelling
 - \mathcal{U}^* : Rings with at least one unique label
- *K_k*: Rings with no more than *k* processes with the same label

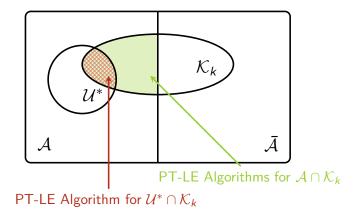
Contributions



- MT-LE: Message-Terminating Leader Election
- PT-LE: Process-Terminating Leader Election

- A: Rings with asymmetric labelling
- **\overline{\mathcal{A}}**: Rings with symmetric labelling
 - \mathcal{U}^* : Rings with at least one unique label
- *K_k*: Rings with no more than *k* processes with the same label

Contributions



- MT-LE: Message-Terminating Leader Election
- PT-LE: Process-Terminating Leader Election

- A: Rings with asymmetric labelling
- $\overline{\mathcal{A}}$: Rings with symmetric labelling
- \mathcal{U}^* : Rings with at least one unique label
- *K_k*: Rings with no more than *k* processes with the same label

Lower bound for $\mathcal{U}^* \cap \mathcal{K}_k$

Lemma

Let $k \geq 2$.

Let A be an algorithm that solves the PT-LE for $\mathcal{U}^* \cap \mathcal{K}_k$.

 $\forall R_n \in \mathcal{K}_1 \text{ of } n \text{ processes, the synchronous execution of } A \text{ in } R_n \text{ lasts at least } 1 + (k - 2) n \text{ time units.}$

Proof Outline (1/3)

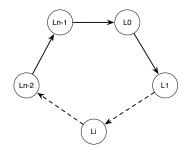
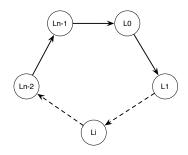
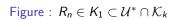


Figure : $R_n \in K_1 \subset U^* \cap \mathcal{K}_k$

Proof Outline (1/3)





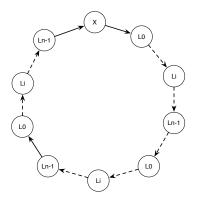


Figure : $R_{n,k} \in \mathcal{U}^* \cap \mathcal{K}_k$

Proof Outline (1/3)

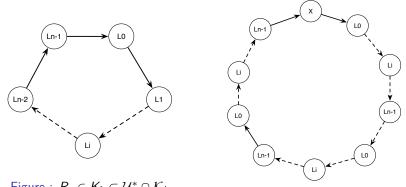


Figure : $R_n \in K_1 \subset \mathcal{U}^* \cap \mathcal{K}_k$

Figure : $R_{n,k} \in \mathcal{U}^* \cap \mathcal{K}_k$

By the contradiction, assume that the synchronous execution of A on R_n terminates before time 1 + (k - 2) n.

¹²/₃₂

Proof Outline (2/3)



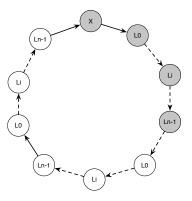


Figure : $R_n \in K_1 \subset \mathcal{U}^* \cap \mathcal{K}_k$

Figure : $R_{n,k} \in \mathcal{U}^* \cap \mathcal{K}_k$

Synchronous execution after up to T < 1 + (k - 2) n time units.

Proof Outline (3/3)

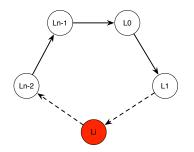


Figure : $R_n \in K_1 \subset \mathcal{U}^* \cap \mathcal{K}_k$

At time T, one node is elected in R_n .

Proof Outline (3/3)

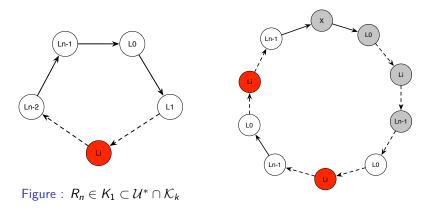


Figure : $R_{n,k} \in \mathcal{U}^* \cap \mathcal{K}_k$

At time T, one node is elected in R_n .

But, two nodes are elected in $R_{n,k}$, contradiction.

Altisen et al

Corollary

Let $k \geq 2$. The time complexity of any algorithm that solves the process-terminating leader election for $\mathcal{U}^* \cap \mathcal{K}_k$ (resp. $\mathcal{A} \cap \mathcal{K}_k$) is $\Omega(k n)$ time units, where n is the number of processes.

Consequences (2/2)

Theorem

There is no algorithm that solves the process-terminating leader election for \mathcal{U}^* (resp. \mathcal{A}).

Consequences (2/2)

Theorem

There is no algorithm that solves the process-terminating leader election for \mathcal{U}^* (resp. \mathcal{A}).

By the contradiction, let A be a PT-LE algorithm for \mathcal{U}^* .

Consequences (2/2)

Theorem

There is no algorithm that solves the process-terminating leader election for \mathcal{U}^* (resp. \mathcal{A}).

By the contradiction, let A be a PT-LE algorithm for \mathcal{U}^* . By definition, A solves PT-LE in $\mathcal{U}^* \cap \mathcal{K}_3$, $\mathcal{U}^* \cap \mathcal{K}_4$, ...

Let R_n be a ring network of \mathcal{K}_1 with n processes.

Theorem

There is no algorithm that solves the process-terminating leader election for \mathcal{U}^* (resp. \mathcal{A}).

By the contradiction, let A be a PT-LE algorithm for \mathcal{U}^* .

By definition, A solves PT-LE in $\mathcal{U}^* \cap \mathcal{K}_3$, $\mathcal{U}^* \cap \mathcal{K}_4$, ...

Let R_n be a ring network of \mathcal{K}_1 with *n* processes.

Since $R_n \in U^* \cap K_3$, the synchronous execution of A in R_n lasts at least 1 + n time units, by Lemma 1.

Theorem

There is no algorithm that solves the process-terminating leader election for \mathcal{U}^* (resp. \mathcal{A}).

By the contradiction, let A be a PT-LE algorithm for \mathcal{U}^* .

By definition, A solves PT-LE in $\mathcal{U}^* \cap \mathcal{K}_3$, $\mathcal{U}^* \cap \mathcal{K}_4$, ...

Let R_n be a ring network of \mathcal{K}_1 with *n* processes.

Since $R_n \in U^* \cap \mathcal{K}_3$, the synchronous execution of A in R_n lasts at least 1 + n time units, by Lemma 1.

Since $R_n \in U^* \cap K_4$, the synchronous execution of A in R_n lasts at least 1 + 2n time units, by Lemma 1.

Theorem

There is no algorithm that solves the process-terminating leader election for \mathcal{U}^* (resp. \mathcal{A}).

By the contradiction, let A be a PT-LE algorithm for \mathcal{U}^* .

By definition, A solves PT-LE in $\mathcal{U}^* \cap \mathcal{K}_3$, $\mathcal{U}^* \cap \mathcal{K}_4$, ...

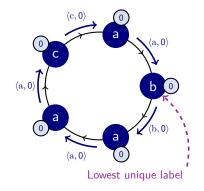
Let R_n be a ring network of \mathcal{K}_1 with *n* processes.

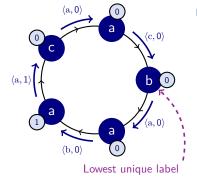
Since $R_n \in U^* \cap \mathcal{K}_3$, the synchronous execution of A in R_n lasts at least 1 + n time units, by Lemma 1.

Since $R_n \in U^* \cap K_4$, the synchronous execution of A in R_n lasts at least 1 + 2n time units, by Lemma 1.

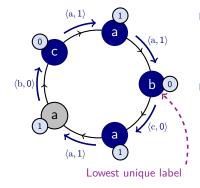
. . .

Counter = rough estimation of the predominance





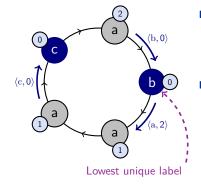
- Counter = rough estimation of the predominance
- Process elimination:
 - \blacktriangleright Lower counter, \neq label \rightarrow not unique



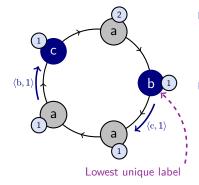
- Counter = rough estimation of the predominance
- Process elimination:
 - Lower counter, \neq label \rightarrow not unique
- Message elimination:
 - Passive, same ID \rightarrow not relevant

(b,0) (a,2) (a,2) (a,2) (a,2) (a,1) (c,0)Lowest unique label

- Counter = rough estimation of the predominance
- Process elimination:
 - Lower counter, \neq label \rightarrow not unique
- Message elimination:
 - Passive, same ID \rightarrow not relevant



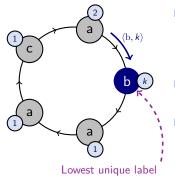
- Counter = rough estimation of the predominance
- Process elimination:
 - Lower counter, \neq label \rightarrow not unique
- Message elimination:
 - Passive, same ID \rightarrow not relevant



- Counter = rough estimation of the predominance
- Process elimination:
 - \blacktriangleright Lower counter, \neq label \rightarrow not unique
 - Same counter ≠ 0, lower label → not lowest unique
- Message elimination:
 - Passive, same ID \rightarrow not relevant

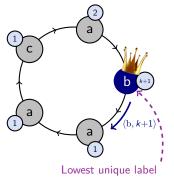
(b,1) (c,1)Lowest unique label

- Counter = rough estimation of the predominance
- Process elimination:
 - \blacktriangleright Lower counter, \neq label \rightarrow not unique
 - Same counter ≠ 0, lower label → not lowest unique
 - Message elimination:
 - Passive, same ID \rightarrow not relevant



- Counter = rough estimation of the predominance
- Process elimination:
 - \blacktriangleright Lower counter, \neq label \rightarrow not unique
 - Same counter ≠ 0, lower label → not lowest unique
- Message elimination:
 - Passive, same ID \rightarrow not relevant
- Phases:
 - 1st traversal: no more active non-unique labels
 - 2nd traversal: no more active non-lowest unique labels
 - Election detection: receiving $\langle id, k \rangle$

Altisen et al



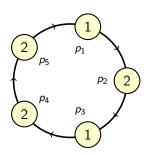
- Counter = rough estimation of the predominance
- Process elimination:
 - \blacktriangleright Lower counter, \neq label \rightarrow not unique
 - ► Same counter \neq 0, lower label \rightarrow not lowest unique
- Message elimination:
 - Passive, same ID \rightarrow not relevant
- Phases:
 - 1st traversal: no more active non-unique labels
 - 2nd traversal: no more active non-lowest unique labels
 - Election detection: receiving $\langle id, k \rangle$

- Time complexity: at most n(k + 2) Asymptotically optimal (work under submission)
- **#** messages: $O(n^2 + kn)$
- Memory requirement: $\lceil \log(k+1) \rceil + \log(n) + 4$

Algorithms for $\mathcal{A} \cap \mathcal{K}_k$

Chosen Leader:

process whose LabelSequence = LyndonWord(LabelSequence) Lyndon Word = smallest rotation in lexicographic order

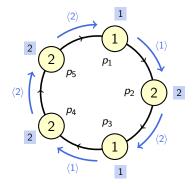


■ Label Sequence at *p*₁:

 $LS_{p_1} = 12212$ Rotations: 12212 (= LS_{p_1}) 21221 (= LS_{p_2}) **12122** (= LS_{p_3}) $LW \neq LS_{p_1}$ 21212 (= LS_{p_4}) 22121 (= LS_{p_5})

Chosen Leader:

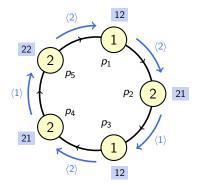
process whose LabelSequence = LyndonWord(LabelSequence) Lyndon Word = smallest rotation in lexicographic order



Local label aggregation

Chosen Leader:

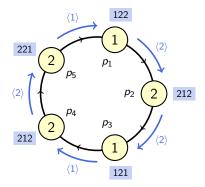
process whose LabelSequence = LyndonWord(LabelSequence) Lyndon Word = smallest rotation in lexicographic order



Local label aggregation

Chosen Leader:

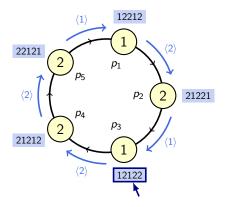
process whose LabelSequence = LyndonWord(LabelSequence) Lyndon Word = smallest rotation in lexicographic order



Local label aggregation

Chosen Leader:

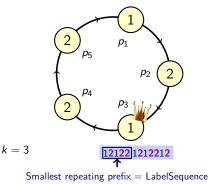
process whose LabelSequence = LyndonWord(LabelSequence) Lyndon Word = smallest rotation in lexicographic order



- Local label aggregation
- ● Do not know n ⇒ Leader cannot detect its election

Chosen Leader:

process whose LabelSequence = LyndonWord(LabelSequence) Lyndon Word = smallest rotation in lexicographic order



= LyndonWord(Smallest repeating prefix)

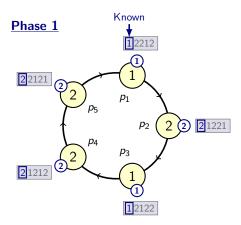
- Local label aggregation
- ● Do not know n ⇒ Leader cannot detect its election
- Termination detection = (2k + 1) × the same label ⇒ at least 2 times the sequence of labels

\mathcal{A}_k , first PT-LE Algorithm for $\mathcal{A}\cap\mathcal{K}_k$

- **Time complexity:** at most (2k+2)n time units
- Message complexity: at most $n^2(2k+1)$ messages
- Memory: (2k + 1)nb + 2b + 3 bits, where b = number of bits to store an ID

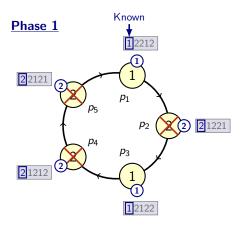
Asymptotically optimal time complexity but Large memory requirement

■ **Decrease memory usage** ⇒ Peterson principle with radix sort



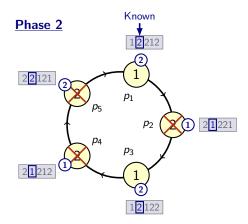
During a phase, Known values of active processes circulate clockwise
 End of phase: each still active process received its Known value k + 1 times

■ **Decrease memory usage** ⇒ Peterson principle with radix sort



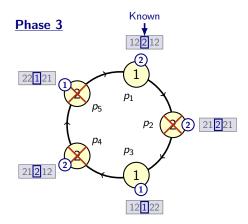
During a phase, Known values of active processes circulate clockwise
 End of phase: each still active process received its Known value k + 1 times

■ **Decrease memory usage** ⇒ Peterson principle with radix sort



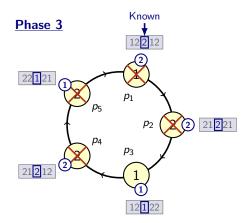
During a phase, Known values of active processes circulate clockwise
 End of phase: each still active process received its Known value k + 1 times

■ **Decrease memory usage** ⇒ Peterson principle with radix sort



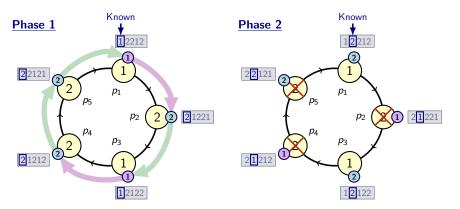
During a phase, Known values of active processes circulate clockwise
 End of phase: each still active process received its Known value k + 1 times

■ **Decrease memory usage** ⇒ Peterson principle with radix sort

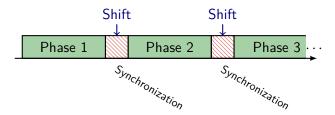


During a phase, Known values of active processes circulate clockwise
 End of phase: each still active process received its Known value k + 1 times

Phase Shift



Execution



Termination Detection: count = k+1 count = # phases where Known = Label

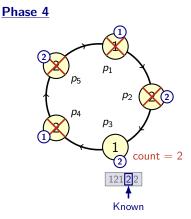
Phase 1 p_1 p_5 **p**₂ 2 (2) p_4 *p*₃ $\operatorname{count} = 1$ **1**2122 Known

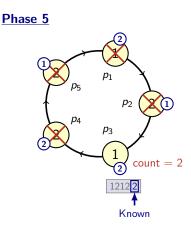
Termination Detection: count = k+1 count = # phases where Known = Label

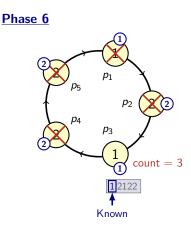
Phase 2 p_1 p_5 **p**₂ p_4 *p*₃ $\operatorname{count} = 1$ 12122 Known

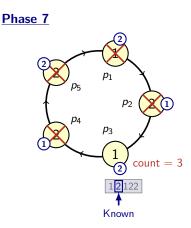
Termination Detection: count = k+1 count = # phases where Known = Label

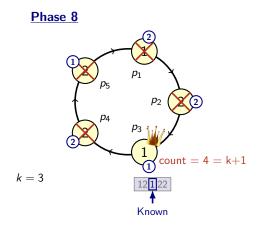
Phase 3 p_1 p_5 **p**₂ p_4 *p*₃ count = 212122 Known











- Memory: $2 \lceil \log k \rceil + 3b + 5$ bits, where b = number of bits to store an ID
- **Time complexity:** $O(k^2n^2)$ time units
- Message complexity: $O(k^2n^2)$ messages

Asymptotically optimal memory requirement but Large time complexity

Conclusion

Contributions Summary

Impossibility results: $\bar{\mathcal{A}}$, \mathcal{A} , \mathcal{U}^* , and \mathcal{K}_k

Lower bounds:

- on the time in $\mathcal{U}^* \cap \mathcal{K}_k$ and $\mathcal{A} \cap \mathcal{K}_k$: $\Omega(kn)$
- ▶ on the # bits exchanged in $U^* \cap K_k$ and $A \cap K_k$: $\Omega(n^2 + kn)$

Algorithms:

	U_k	A_k	B_k
Rings	$\mathcal{U}^*\cap\mathcal{K}_k$	$\mathcal{A}\cap\mathcal{K}_k$	
Time	O(kn)	O(kn)	$O(k^2n^2)$
# Messages	O(kn)	$O(n^2 + kn)$	$O(k^2n^2)$
Bits/process	$O(\log k + b)$	O(knb)	$O(\log k + b)$
Key: asymptotically optimal			

Perspectives

■ Leader election possible in A ∩ K_k A, but impossible in A: where is the boundary ?

- Leader election possible in $\mathcal{A} \cap \mathcal{K}_k \mathcal{A}$, but impossible in \mathcal{A} : where is the boundary ?
- Find a best trade-off leader election algorithm for $\mathcal{A} \cap \mathcal{K}_k$

- Leader election possible in $\mathcal{A} \cap \mathcal{K}_k \mathcal{A}$, but impossible in \mathcal{A} : where is the boundary ?
- Find a best trade-off leader election algorithm for $\mathcal{A} \cap \mathcal{K}_k$
- In A, the knowledge of k and n is computationaly equivalent. Is-it still true in bidirectional rings? What about time complexity?

- Leader election possible in $\mathcal{A} \cap \mathcal{K}_k \mathcal{A}$, but impossible in \mathcal{A} : where is the boundary ?
- Find a best trade-off leader election algorithm for $\mathcal{A} \cap \mathcal{K}_k$
- In A, the knowledge of k and n is computationaly equivalent. Is-it still true in bidirectional rings? What about time complexity?
- Self-stabilizing leader election in U^{*} ∩ K_k and A ∩ K_k. (research line: adapting self-stabilizing census algorithms?)

- Leader election possible in $\mathcal{A} \cap \mathcal{K}_k \mathcal{A}$, but impossible in \mathcal{A} : where is the boundary ?
- Find a best trade-off leader election algorithm for $\mathcal{A} \cap \mathcal{K}_k$
- In A, the knowledge of k and n is computationaly equivalent. Is-it still true in bidirectional rings? What about time complexity?
- Self-stabilizing leader election in U^{*} ∩ K_k and A ∩ K_k. (research line: adapting self-stabilizing census algorithms?)
- Other topologies: regular graphs, grids, torii, arbitrary connected

- Leader election possible in $\mathcal{A} \cap \mathcal{K}_k \mathcal{A}$, but impossible in \mathcal{A} : where is the boundary ?
- Find a best trade-off leader election algorithm for $\mathcal{A} \cap \mathcal{K}_k$
- In A, the knowledge of k and n is computationaly equivalent. Is-it still true in bidirectional rings? What about time complexity?
- Self-stabilizing leader election in U^{*} ∩ K_k and A ∩ K_k. (research line: adapting self-stabilizing census algorithms?)
- Other topologies: regular graphs, grids, torii, arbitrary connected
- Other problems (solutions exist for the consensus problem with permanent failures)

- K. Altisen, A. K. Datta, S. Devismes, A. Durand, and L. L. Larmore. Leader Election in Rings with Bounded Multiplicity (Short Paper). SSS 2016, pp. 1-6, Lyon, France, Nov. 7-10, 2016.
- K. Altisen, A. K. Datta, S. Devismes, A. Durand, and L. L. Larmore. Leader Election in Asymmetric Labeled Unidirectional Rings. *IPDPS* 2017, pp. 182-191, Orlando, Florida, USA, May 29 - June 2, 2017.