
Anonymous Read/Write Systems

a Short Introduction

Michel RAYNAL

⋆Institut Universitaire de France

⋄IRISA, Université de Rennes, France

†Polytechnic University, Hong Kong

c© Anonymity in read/write systems 1

AIM:

Understand Anonymity

and its implication on algorithms

c© Anonymity in read/write systems 2

Summary

• Concurrent objects and their progress conditions

• Two types of anonymity

• Anonymity and any number of crash failures

• Examples: snapshot, consensus, mutex

• Conclusion

c© Anonymity in read/write systems 3

Main bibliography

• Bouzid Z., Raynal M., and Sutra P.,
Anonymous obstruction-free (n, k)-set agreement with (n−k+1) atomic read/write
registers. Distributed Computing, 31:99-117 (2018)

• Guerraoui R. and Ruppert E.,
Anonymous and fault-tolerant shared-memory computations. Distributed Com-
puting, 20:165-177 (2007)

• Rabin M.,
The choice coordination problem. Acta Informatica, 17(2):121-134 (1982)

• Taubenfeld G.,
Coordination without prior agreement. Proc. 36th ACM Symposium on Princi-
ples of Distributed Computing (PODC’17), pp. 325-334 (2017)

c© Anonymity in read/write systems 4

Concurrent objects

and their progress conditions

c© Anonymity in read/write systems 5

Once upon a time ...

• Sequential programming:

⋆ C.A.R. Hoare: the notion of a Record class (1965)

⋆ O.-J., Dahl, K. Nygaard: SIMULA 67 introduced

∗ The notion of an object (encapsulation, prefix/heritage)
∗ The notion of a co-routine (thread)

• Concurrent programming: E.W. Dijkstra (1965)

⋆ Notion of a semaphore, notion of a process

• O.-J. Dahl, E.W.D. Dijkstra et C.A.R. Hoare,
Structured Programming
Academic Press, 1972 (ISBN 0-12-200550-3)

c© Anonymity in read/write systems 6

Concurrent object

• Object: operations + specification

• Objects were introduced in prog. languages in 1967!

• concurrent object:

object that can be accessed by several processes

• Specification

⋆ Sequential (considered here)

⋆ Not sequential (e.g., rendezvous, NBAC)

the specification involves physical time or the behav-
ior of the environment

c© Anonymity in read/write systems 7

Not-sequential specification: NBAC example

• One-shot operation nbac propose(v), where v ∈ {yes, no}

• properties:

• NBAC-validity. nbac propose() returns only commit or abort

⋆ NBAC-justification. If a process returns commit, all
processes voted yes

⋆ NBAC-obligation. If all processes vote yes and no
process crashes, abort cannot be decided

• NBAC-agreement. No two processes decide differently

• NBAC-termination. Every correct process decides

c© Anonymity in read/write systems 8

Progress conditions in failure-free systems

• Deadlock-freedom (server-oriented)

• Starvation-freedom (client-oriented)

c© Anonymity in read/write systems 9

Progress conditions in crash prone systems (1)

were introduced in the following articles

• Herlihy M.P., Luchangco V., and Moir M.,
Obstruction-free synchronization: double-ended queues as an example.
23th Int’l IEEE Conf. on Distributed Computing Systems (ICDCS’03), IEEE
Press, pp. 522-529 (2003)

• Herlihy M.P. and Wing J.M.,
Linearizability: a correctness condition for concurrent objects.
ACM Transactions on Progr. Languages and Systems,12(3):463-492, (1990)

• Herlihy M.,
Wait-free synchronization.
ACM Transactions on Progr. Languages and Systems, 13 (1):124-149 (1991)

Which invariant characterizes these three articles?

c© Anonymity in read/write systems 10

Progress conditions in crash prone systems (2)

• Obstruction-freedom
requires that, if a process p invokes an operation on
an object O, and all other processes that have pend-
ing operations on O pause during a long enough period,
then process p terminates its operation

• Non-blocking
requires that, if several processes have concurrent in-
vocations on an object O, and one of them does not
crash, then one of these invocations terminates

• Wait-freedom
requires that, if a process invokes an operation on an
object O and does not crash, it terminates its operation
(i.e., no other process can prevent it from terminating)

c© Anonymity in read/write systems 11

Progress conditions in crash prone systems (3)

• The definition of

⋆ obstruction-freedom and non-blocking

depends on the concurrency pattern

⋆ wait-freedom

does not depend on the concurrency pattern

• Obstruction-freedom:

meaningfull in a failure-free system!

• In all cases, the internal representation of the object
(which is built) can be concurrently accessed/modified
by several processes (mutex-freedom)

c© Anonymity in read/write systems 12

What is anonymity?

Process anonymity vs Memory anomymity

c© Anonymity in read/write systems 13

Computing model

• n sequential asynchronous processes: p1, .., pn

• Cooperation: atomic read/write registers only

c© Anonymity in read/write systems 14

Process anonymity

• Motivations: privacy, tiny devices (sensors), etc.

• Processes: no name, cannot be distinguished

• i: index of pi, known only by an external observer

• Main question: what can be deterministically imple-
mented in the process-anonymous crash-prone model?

Elements for an answer in:
Guerraoui R. and Ruppert E., Anonymous and fault-tolerant shared-memory
computations. Distributed Computing, 20:165-177 (2007)

c© Anonymity in read/write systems 15

Memory anonymity: definition

• Definition:

There is no a priori agreement between processes on
the names of shared memory locations

• Implicitly used in the early eighties:
Rabin M., The choice coordination problem. Acta Informatica, 17(2):121-134
(1982)

• Defined and considered as a concept in:
Taubenfeld G., Coordination without prior agreement. Proc. 36th ACM Sympo-
sium on Principles of Distributed Computing (PODC’17), pp. 325-334 (2017)

(Epistemology: from mechanisms to concepts)

c© Anonymity in read/write systems 16

Memory anonymity: example

Shared memory: 3 atomic read/write registers SM [1..3]

names for the names names
global observer for process pi for process pj

SM [1] SM [2] SM [3]

SM [2] SM [3] SM [1]

SM [3] SM [1] SM [2]

The permutations are defined by the adversary

No process knows these permutations!

c© Anonymity in read/write systems 17

Spirit of the talk/article

• Algorithmic thinking in the presence of anonymity

⋆ Process anonymity

⋆ Memory anonymity

⋆ Not both!

• Like “selected pieces” in literature, musics, etc.

c© Anonymity in read/write systems 18

Selected piece 1

Process-Anonymity and

Any Number of Process Crashes

Snapshot object

c© Anonymity in read/write systems 19

Snapshot object (1)

• Introduced independently in

- Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and Shavit N.,
Atomic snapshots of shared memory.
Journal of the ACM, 40(4):873-890 (1993)

- Anderson J.,
Multi-writer composite registers.
Distributed Computing, 7(4):175-195 (1994)

• Made up of m components (atomic read/write reg.)

• Higher abstraction level than read/write operations

• Two operations

⋆ write(x, v) where 1 ≤ x ≤ m (x component nb)

⋆ snapshot() is on all the components

c© Anonymity in read/write systems 20

Snapshot object (2)

SM [x] SM [m]

write(x, v) by any process pi snapshot() by any pj

SM [1]

c© Anonymity in read/write systems 21

Snapshot object (3)

• write(x, v) and snapshot() are atomic (linearizable)

• This means:

⋆ appear as if they have been executed sequentially

⋆ this sequence

∗ is such that, if an operation op1() terminated be-
fore an operation op2() started, op1() appears before
op2() in this sequence

∗ belongs to sequential specification of the snapshot
object

c© Anonymity in read/write systems 22

Internal representation of a snapshot object

A snapshot object is represented by

• In the shared memory

⋆ an array SM [1..m] of MWMR atomic read/write reg.

⋆ each SM [x] is a pair SM [x] = 〈SM [x].ts, SM [x].value〉

initialized to the pair 〈−,⊥〉

• At every process pi: a counter tsi initialized to −1

c© Anonymity in read/write systems 23

Principles and operation write()

Basic strategy:
Associate a sequence number with each written value

operation write(x, v) is
tsi ← tsi +1;
SM [x]← 〈tsi, v〉;
return().

operation snapshot() is
classical double asynchronous collect strategy
see next slide.

meaning of “for each x ∈ {1, . . . ,m} do · · · end for”:
there is no constraint on the order in which x takes its
successive values

c© Anonymity in read/write systems 24

How and why it works (1)

From where the difficulty is coming?

• As processes do not have names, it is not possible to
identify a written value with pair (proc. id, seq. num-
ber)

• Nevertheless counters can be used to tag values

• But ...

the same pair 〈ts, v〉 can be produced by several proc.

c© Anonymity in read/write systems 25

How and why it works (2)

When a process pi executes snapshot()

• a given pair 〈ts, v〉 can be written at most (n− 1) times
(once by each other process)

• and this can occur for each of the m atomic registers

• from which follows that if pi sees m(n− 1) + 2 collects
returning the same array, at least two consecutive of
them are not separated by an operation write()

c© Anonymity in read/write systems 26

Operation snapshot()

Double asynchronous collect

operation snapshot() is
counti← 1;
for each x ∈ {1, . . . ,m} do sm1i[x]← SM [x] end for;
repeat forever

for each y ∈ {1, . . . ,m} do sm2i[y]← SM [y] end for;
if (∀ x ∈ {1, · · · ,m} : sm1i[x] = sm2i[x])

then counti← counti +1;

if counti = m(n− 1) + 2

then return(sm1i[1..m].value) end if
else counti← 1

end if;
sm1i[1..m]← sm2i[1..m]

end repeat.

c© Anonymity in read/write systems 27

On the termination side

• write(x, v): always terminates

• snapshot():

⋆ is trivially obstruction-free

⋆ Satisfies also non-blocking

• It is possible to implement a snapshot object satisfy-
ing the wait-freedom progress condition despite process-
anonymity and any number of process crashes

• It follows that, when considering the implementation
of a snapshot object, the “process anonymity” adver-
sary does not create a computability threshold in the
progress condition hierarchy

c© Anonymity in read/write systems 28

Selected piece 2

Process-Anonymity

Obstruction-freedom

and any Number of Process Crashes

Binary consensus object

c© Anonymity in read/write systems 29

Consensus object

• One of the most fundamental objects of fault-tolerant
distributed computing

• One-shot concurrent object that has a single operation,
denoted propose()

• Defined by the following safety properties:

⋆ Validity.
If a value is decided by a process, it was proposed

⋆ Agreement.
No two processes decide different values.

• Binary vs multivalued consensus

c© Anonymity in read/write systems 30

A fundamental impossibility result

• It is impossible to design a deterministic algorithm that
implements a wait-free consensus object in asynchronous
systems where even only one process may crash, pro-
cesses have identities, and communicate by read/write
registers or message-passing.

• Intuitively: asynchrony ⇒ no process can know if an-
otherprocess is slow ot crashed

• - Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed con-
sensus with one faulty process. Journal of the ACM, 32(2):374-382 (1985)

- Loui M.C., and Abu-Amara H.H., Memory requirements for agreement among
unreliable asynchronous processes. Parallel and Distributed Computing: Vol. 4
of Advances in Computing Research, JAI Press, 4:163-183 (1987)

c© Anonymity in read/write systems 31

What is possible

• Consensus experiences a computability threshold sepa-
rating the obstruction-freedom and wait-freedom progress
conditions in read/write asynchronous systems.

• In the following is presented a simple obstruction-free
process-anonymous binary consensus algorithm.

c© Anonymity in read/write systems 32

Obstruction-free process anonymous binary consensus

• This algorithm is from
- Guerraoui R. and Ruppert E., Anonymous and fault-tolerant shared-memory
computations. Distributed Computing, 20:165-177 (2007)

• It is a deramdomized version of a randomized algorithm
- Chandra T.D., Polylog randomized wait-free consensus. Proc. 15nd ACM
Symposium on Principles of Distributed Computing(PODC’96), ACM Press,
pp. 166-175 (1996)

• The algorithm rules a competition between two teams

⋆ the team of the processes that champion 0, and

⋆ the team of the processes that champion 1,

In the competition a process can change its mind (going
from a team to the other team) according to its current
view of the computation

c© Anonymity in read/write systems 33

Internal representation of a consensus object

A consensus object is represented by

• In the shared memory:

⋆ a two-dimensional array SM [0..1,1..] of MWMR atomic
read/write registers

⋆ each SM [x, y] is a flag initialized to the value down,
and may later take the value up

⋆ SM [0,−] measures the progress of value 0

⋆ SM [1,−] measures the progress of value 1

• At every process pi:

⋆ a round counter ki

⋆ current local estimate of the decision esti ∈ {0,1}

c© Anonymity in read/write systems 34

Algorithm

operation propose(vi) is
esti ← v; ki← 0;
repeat forever
ki← ki +1;

if SM [1− esti, ki] = down % value (1− esti) is “late”

then SM [esti, ki]← up; % pi marks its advance
if (ki > 1) ∧ (SM [1− esti, ki − 1] = down)

% value (1− esti) is 2 rounds “late”
then return(esti) end if

else esti ← (1− esti) % pi changes its mind
end if

end repeat.

c© Anonymity in read/write systems 35

Selected piece 3

Memory-Anonymity and

Failure-free system

Mutex object

c© Anonymity in read/write systems 36

Reminder

names for the names names
global observer for process pi for process pj

SM [1] SM [2] SM [3]

SM [2] SM [3] SM [1]

SM [3] SM [1] SM [2]

No process knows these permutations!

c© Anonymity in read/write systems 37

Mutex object (Lock)

• The oldest (1965) and most important synchro object

• Two operations acquire() and release()

• Imposed “bracket structure” pattern:

acquire(); critical section; release() ∗

• Safety property:

no two processes simultaneously in their critical section

• Progress condition: Deadlock-freedom

c© Anonymity in read/write systems 38

Notion of a symmetric algorithm

• Aim: obtain algorithms “as general as possible”, i.e.,
which rely on “as weak as possible” assumptions

• On the process side:

⋆ Processes have distinct ids, but the same code

⋆ Process identities can only be compared (= or 6=)

⋆ Process identities are not ordered
⋆ No process crashes

• Consider (for the moment) n = 2 processes

• Let m be an odd integer, greater than n = 2

c© Anonymity in read/write systems 39

Internal representation of the mutex object

The mutex object is represented by

• An array SM [1..m] intialized to [0, · · · ,0]

⋆ known as SM i[1..m] by pi

⋆ known as SM j[1..m] by pj

• Ech process pi manages

⋆ a local index ki

⋆ a local array smi[1..m]

c© Anonymity in read/write systems 40

Algorithm: operation release()

operation release() is
for each ki ∈ {1, · · · ,m} do SM i[ki]← 0 end for;
return().

c© Anonymity in read/write systems 41

Algorithm: operation acquire()

operation acquire() is
repeat
for ki ∈ {1, · · · ,m} do if (SM i[ki] = 0) then SM i[ki]← i end if
for ki ∈ {1, · · · ,m} do smi[ki]← SM i[ki] end for;

if |{x such that smi[x] = i}| < ⌈m2 ⌉

then for ki ∈ {1, · · · ,m} do
if (SM i[ki] = i) then SM i[ki]← 0 end if

end for;
repeat

for ki ∈ {1, · · · ,m} do smi[ki]← SM i[ki] end for
until smi[1..m] = [0, . . . ,0] end repeat

end if

until smi[1..m] = [i, . . . , i] end repeat;

return().

c© Anonymity in read/write systems 42

On the computability side

• There is a memory-anonymous symmetric deadlock-free
mutex algorithm for n = 2 processes, which uses m ≥ 2
atomic registers, if and only if m is odd

• For n ≥ 3 processes, the existence of a deadlock-free
memory-anonymous symmetric mutex algorithm, was
an open problem

• Recent solution
Optimal Memory-Anonymous Symmetric Deadlock-Free
Mutual Exclusion
Z. Aghazaded, D. Imbs, M Raynal, G. Taubenfeld, Ph. Woelfel

• Optimality (NS condition) wrt the size m of the anony-
mous memory:

m ∈M(n) = {m : ∀ ℓ : 1 < ℓ ≤ n : gcd(ℓ,m) = 1}

c© Anonymity in read/write systems 43

Selected piece 4

Memory-Anonymity

Obstruction-freedom

any number of process crashes

Multivalued consensus object

c© Anonymity in read/write systems 44

Internal representation of the consensus object

The consensus object is represented by

• An array SM [1..2n− 1] of atomic read/write registers

• SM [x] is pair 〈SM [x].id, SM [x].val〉, initialized to 〈−,⊥〉

⋆ known as SM i[1..2n− 1] by pi

⋆ known as SM j[1..2n− 1] by pj

• Ech process pi manages

⋆ a local estimate of the decision value esti

⋆ a local index ki

⋆ a local rray smi[1..2n− 1]

c© Anonymity in read/write systems 45

Algorithm

operation propose(v) is
esti ← v;
repeat
for each ki ∈ {1, · · · ,2n− 1} do smi[ki]← SM i[ki] end for;

if ∃v 6= ⊥ : |{k such that smi[k].val = v}| ≥ n

then esti ← v

end if;
if (∃ x ∈ {1, · · · ,2n− 1} such that smi[x] 6= 〈i, esti〉)

then SM i[x]← 〈i, esti〉
end if

until smi[1..2n− 1] = [〈i, esti〉, · · · , 〈i, esti〉] end repeat;

return(esti).

c© Anonymity in read/write systems 46

Selected piece 5

Process-Anonymity,
Obstruction-freedom

Universal construction

Bouzid Z., Raynal M., and Sutra P.,

Anonymous obstruction-free (n, k)-set agreement with (n− k+1) atomic read/write
registers.

Distributed Computing, 31:99-117 (2018)

c© Anonymity in read/write systems 47

k-Set agreement (k-SA)

• Safety properties:

⋆ Validity: If a process decides a value, this value was
proposed by a process

⋆ Agreement: At most k different values are decided

• Liveness property: obstruction-freedom

1-SA is consensus

k-SA is strictly stronger than (k +1)-set agreement

c© Anonymity in read/write systems 48

A result

• (n − k + 1) atomic registers are sufficient to build an
obstruction-free k-SA object in an n-process-anomymous
system

• Optimal fo repeated k-set agreement (a single k-SA
object)

• Case k = 1: 1-SA is consensus:

⋆ At least (n − 1) atomic read/write regsiters are nec-
essary in non-anonulous systems 1-SA is consensus

- Zhu L.,A tight space bound for consensus. Proc.
48th STOC, pp. 345-350 (2016)

⋆ Conjecture: n regsiters are necesary and sufficient

c© Anonymity in read/write systems 49

Power of repeated anomymous OB-free k-SA (1)

On the object side

• Let O be object that can be obstruction-free imple-
mented by n anonymous processes and any number of
MWMR atomic read/write registers

• O can be obstruction-free implemented by n anonymous
processes and n MWMR atomic read/write registers

c© Anonymity in read/write systems 50

Distributed task

T ()

ini outi
pi

Output O ∈ T (I)

[out1, · · · , outn]Input I

[in1, · · · , inn]

T () is a relation

c© Anonymity in read/write systems 51

Power of repeated anomymous OB-free k-SA (2)

On the distributed task side T = (∆, I,O)

• If a (colored/colorless) task is obstruction-free solvable
by n anonymous processes and any number of MWMR
atomic read/write registers, then it is obstruction-free
solvable by n anonymous processes with no more than
n MWMR atomic read/write registers

• If a colorless task T is obstruction-free solvable in a
non-anonymous n-process system using any number of
SWMR atomic registers, it is also obstruction-free solv-
able in an anonymous n-process system with n MWMR
atomic registers

c© Anonymity in read/write systems 52

Conclusion

c© Anonymity in read/write systems 53

A summary table

Object Anonymity Failure Prog. Reference

snapshot processes crash WF Guerraoui-Rupert 07
Binary cons. processes crash OB Chandra 96, Guerraoui-Rupert 07
k-Set Agr. processes crash OB Bouzid-Raynal-Sutra 18

Mutex (n = 2) memory no failure DF Taubenfeld 17
Mutex (n ≥ 2) memory no failure DF AIRTW 2018
Consensus memory crash OB Taubenfeld 17

c© Anonymity in read/write systems 54

• A gentle introduction to

⋆ process-anonymity

⋆ memory-anonymity

• Computability issues

• Promising research domain

we are far from knowing everything!

• Many open problems

c© Anonymity in read/write systems 55

More important: He told me

“Algorithms are at the core of Informatics”

c© Anonymity in read/write systems 56

And, maybe more important, SHE told me

“Synchronization and non-determinism are among their
most fundamental concepts”

c© Anonymity in read/write systems 57

