

	Once upon a time
	Sequential programming:
	 * C.A.R. Hoare: the notion of a Record class (1965) * OJ., Dahl, K. Nygaard: SIMULA 67 introduced
Concurrent objects	 The notion of an object (encapsulation, prefix/heritage The notion of a co-routine (thread)
and their progress conditions	• Concurrent programming: E.W. Dijkstra (1965)
	* Notion of a semaphore, notion of a process
	 OJ. Dahl, E.W.D. Dijkstra et C.A.R. Hoare, Structured Programming Academic Press, 1972 (ISBN 0-12-200550-3)
C Anonymity in read/write systems 5	C Anonymity in read/write systems 6
Concurrent object	Not-sequential specification: NBAC example
• Object: operations + specification	• One-shot operation nbac propose(v), where $v \in \{ves, no\}$
• Objects were introduced in prog. languages in 1967!	 properties:
 concurrent object: object that can be accessed by several processes 	 NBAC-validity. nbac_propose() returns only commit or abort * NBAC-justification. If a process returns commit, all
	processes voted yes NBAC-obligation. If all processes vote yes and no
Specification	
 Specification * Sequential (considered here) 	process crashes, abort cannot be decided
 Specification * Sequential (considered here) * Not sequential (e.g., rendezvous, NBAC) 	 process crashes, abort cannot be decided NBAC-agreement. No two processes decide differently

O Anonymity in read/write systems

8

	were introduced in the following articles
	• Herlihy M.P., Luchangco V., and Moir M., Obstruction-free synchronization: double-ended queues as an example. 23th Int'l IEEE Conf. on Distributed Computing Systems (ICDCS'03), IEEE Press, pp. 522-529 (2003)
Deadlock-freedom (server-oriented)Starvation-freedom (client-oriented)	• Herlihy M.P. and Wing J.M., Linearizability: a correctness condition for concurrent objects. ACM Transactions on Progr. Languages and Systems,12(3):463-492, (1990)
	 Herlihy M., Wait-free synchronization. ACM Transactions on Progr. Languages and Systems, 13 (1):124-149 (1991)
	Which invariant characterizes these three articles?
C Anonymity in read/write systems 9	C Anonymity in read/write systems 10
 Progress conditions in crash prone systems (2) Obstruction-freedom requires that, if a process p invokes an operation on an object O, and all other processes that have pend- ing operations on O pause during a long enough period, then process p terminates its operation Non-blocking requires that, if several processes have concurrent in- vocations on an object O, and one of them does not crash, then one of these invocations terminates Wait-freedom requires that, if a process invokes an operation on an object O and does not crash, it terminates its operation 	 Progress conditions in crash prone systems (3) The definition of obstruction-freedom and non-blocking depends on the concurrency pattern wait-freedom does not depend on the concurrency pattern Obstruction-freedom: meaningfull in a failure-free system! In all cases, the internal representation of the object (which is built) can be concurrently accessed/modified by sourceal processes (mutay freedom)

© Anonymity in read/write systems

12

 $\ensuremath{\mathbb{C}}$ Anonymity in read/write systems

Shared memory: 3 atomic read/write registers SM[1..3]

names for the	names	names
global observer	for process p_i	for process p_j
SM[1]	SM[2]	SM[3]
SM[2]	SM[3]	SM[1]
SM[3]	SM[1]	SM[2]

The permutations are defined by the adversary No process knows these permutations!

© Anonymity in read/write systems

Spirit of the talk/article

- Algorithmic thinking in the presence of anonymity
 - * Process anonymity
 - * Memory anonymity
 - * Not both!
- Like "selected pieces" in literature, musics, etc.

17

© Anonymity in read/write systems

18

Snapshot object (1)

• Introduced independently in

- Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and Shavit N., Atomic snapshots of shared memory. *Journal of the ACM*, 40(4):873-890 (1993)

- Anderson J., Multi-writer composite registers. *Distributed Computing*, 7(4):175-195 (1994)

- Made up of *m* components (atomic read/write reg.)
- Higher abstraction level than read/write operations
- Two operations

IRISA

- * write(x, v) where $1 \le x \le m$ (x component nb)
- * snapshot() is on all the components

Selected piece 1 Process-Anonymity and Any Number of Process Crashes

Snapshot object

🗲 I R I S A

19

How and why it works (1)	How and why it works (2)
From where the difficulty is coming?	When a process p_i executes snapshot()
 As processes do not have names, it is not possible to identify a written value with pair (proc. id, seq. num- ber) 	• a given pair $\langle ts, v \rangle$ can be written at most $(n-1)$ times (once by each other process)
 Nevertheless counters can be used to tag values 	ullet and this can occur for each of the m atomic registers
• But the same pair $\langle ts,v \rangle$ can be produced by several proc.	• from which follows that if p_i sees $m(n-1) + 2$ collects returning the same array, at least two consecutive of them are not separated by an operation write()
C Anonymity in read/write systems 25	C Anonymity in read/write systems 26
Operation snapshot()	On the termination side
Double asynchronous collect operation snapshot() is $count_i \leftarrow 1$; for each $x \in \{1,, m\}$ do $sm1_i[x] \leftarrow SM[x]$ end for; repeat forever for each $y \in \{1,, m\}$ do $sm2_i[y] \leftarrow SM[y]$ end for; if $(\forall x \in \{1,, m\} : sm1_i[x] = sm2_i[x])$ then $count_i \leftarrow count_i + 1$; if $count_i = m(n-1) + 2$ then $return(sm1_i[1m].value)$ end if else $count_i \leftarrow 1$ end if; $sm1_i[1m] \leftarrow sm2_i[1m]$	 write(x, v): always terminates snapshot(): is trivially obstruction-free Satisfies also non-blocking It is possible to implement a snapshot object satisfying the wait-freedom progress condition despite processanonymity and any number of process crashes It follows that, when considering the implementation of a snapshot object, the "process anonymity" adversary does not create a <i>computability threshold</i> in the progress condition hierarchy

	Consensus object
Selected piece 2 Process-Anonymity Obstruction-freedom and any Number of Process Crashes Binary consensus object	 One of the most fundamental objects of fault-tolerant distributed computing One-shot concurrent object that has a single operation, denoted propose() Defined by the following safety properties: Validity. If a value is decided by a process, it was proposed * Agreement. No two processes decide different values. Binary vs multivalued consensus
A fundamental <i>impossibility</i> result	C Anonymity in read/write systems 30 What is possible
 It is impossible to design a deterministic algorithm that implements a wait-free consensus object in asynchronous systems where even only one process may crash, processes have identities, and communicate by read/write registers or message-passing. Intuitively: asynchrony ⇒ no process can know if anotherprocess is slow ot crashed Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus with one faulty process. <i>Journal of the ACM</i>, 32(2):374-382 (1985) Loui M.C., and Abu-Amara H.H., Memory requirements for agreement among unreliable asynchronous processes. <i>Parallel and Distributed Computing: Vol. 4 of Advances in Computing Research</i>, JAI Press, 4:163-183 (1987) 	 Consensus experiences a <i>computability threshold</i> separating the obstruction-freedom and wait-freedom progress conditions in read/write asynchronous systems. In the following is presented a simple obstruction-free process-anonymous binary consensus algorithm.
C Anonymity in read/write systems 31	C Anonymity in read/write systems 32

Reminder	Mutex object (Lock)
names for the global observernames for process p_i names for process p_j $SM[1]$ $SM[2]$ $SM[3]$ $SM[2]$ $SM[3]$ $SM[1]$ $SM[3]$ $SM[1]$ $SM[2]$ $SM[3]$ $SM[1]$ $SM[2]$ No process knows these permutations!	 The oldest (1965) and most important synchro object Two operations acquire() and release() Imposed "bracket structure" pattern: acquire(); critical section; release()* Safety property: no two processes simultaneously in their critical section Progress condition: Deadlock-freedom
© Anonymity in read/write systems 37 Notion of a symmetric algorithm	IRISA © Anonymity in read/write systems 38 Internal representation of the mutex object
 Aim: obtain algorithms "as general as possible", i.e., which rely on "as weak as possible" assumptions On the process side: Processes have distinct ids, but the same code Process identities can only be compared (= or ≠) Process identities are not ordered No process crashes Consider (for the moment) n = 2 processes Let m be an odd integer, greater than n = 2 	The mutex object is represented by • An array $SM[1m]$ intialized to $[0, \dots, 0]$ * known as $SM_i[1m]$ by p_i * known as $SM_j[1m]$ by p_j • Ech process p_i manages * a local index k_i * a local array $sm_i[1m]$

 $\ensuremath{\mathbb{C}}$ Anonymity in read/write systems

40

© Anonymity in read/write systems

Internal representation of the consensus object	Algorithm
The consensus object is represented by	operation $propose(v)$ is
 An array SM[12n - 1] of atomic read/write registers SM[x] is pair ⟨SM[x].id, SM[x].val⟩, initialized to ⟨-,⊥⟩ known as SM_i[12n - 1] by p_i known as SM_j[12n - 1] by p_j Ech process p_i manages a local estimate of the decision value est_i a local index k_i a local rray sm_i[12n - 1] 	$\begin{array}{l} est_i \leftarrow v;\\ \textbf{repeat}\\ \textbf{for each } k_i \in \{1, \cdots, 2n-1\} \ \textbf{do} \ sm_i[k_i] \leftarrow SM_i[k_i] \ \textbf{end for};\\ \textbf{if } \exists v \neq \bot : \{k \ \text{such that } sm_i[k].val = v\} \geq n \\ \textbf{then } est_i \leftarrow v\\ \textbf{end if;}\\ \textbf{if } (\exists \ x \in \{1, \cdots, 2n-1\} \ \textbf{such that } sm_i[x] \neq \langle i, est_i \rangle)\\ \textbf{then } SM_i[x] \leftarrow \langle i, est_i \rangle\\ \textbf{end if}\\ \textbf{until } \boxed{sm_i[12n-1] = [\langle i, est_i \rangle, \cdots, \langle i, est_i \rangle]} \ \textbf{end repeat};\\ \textbf{return}(est_i). \end{array}$
C Anonymity in read/write systems 45	© Anonymity in read/write systems 46
Selected piece 5 Process-Anonymity, Obstruction-freedom Universal construction	 Safety properties: * Validity: If a process decides a value, this value was proposed by a process * Agreement: At most k different values are decided Liveness property: obstruction-freedom
Bouzid Z., Raynal M., and Sutra P., Anonymous obstruction-free (n,k) -set agreement with $(n-k+1)$ atomic read/write registers. Distributed Computing, 31:99-117 (2018)	1-SA is consensus k -SA is strictly stronger than $(k + 1)$ -set agreement

🗲 I R I S A

Conclusion	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
C Anonymity in read/write systems 53	© Anonymity in read/write systems 54 More important: He told me
 A gentle introduction to process-anonymity memory-anonymity Computability issues Promising research domain we are far from knowing everything! Many open problems 	'Algorithms are at the core of Informatics'

🗲 I R I S A

And, maybe more important, SHE told me with the second s				
Anonymity in read/write systems 57	And, maybe	e more important, SHE told m	ne	
IRISA Anonymity in read/write systems				
C Anonymity in read/write systems 57				
		© Anonymity in read/write systems	57	