
Set-Constrained Delivery Broadcast:
Definition, Abstraction Power, and

Computability Limits

Damien Imbs Achour Mostefaoui Michel Raynal
Ma�hieu Perrin

LIF LS2N IUF, IRISA
Université Aix-Marseille Université de Nantes Université de Rennes

Descartes Seminar

October 1st, 2018

From a paper published at ICDCN 2018

Introduction – Equivalence Broadcast/Objects
Hypothesis on the system

leader
(+Ω)

majority
(+Σ)

asynchronous
with crashes

Objects and tasks Broadcast abstractions

I State machine
replication

I Consensus
' Atomic broadcast

I Atomic registers,
sets, counters,
key-value stores...

I La�ice agreement

' ?

I Weakly consistent
CRDTs

I Causal memory
' Causal/FIFO/

(Uniform) Reliable
broadcast

A ' B: A can be implemented from B and reciprocally

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 1 / 19

Introduction – Equivalence Broadcast/Objects
Hypothesis on the system

leader
(+Ω)

majority
(+Σ)

asynchronous
with crashes

Objects and tasks Broadcast abstractions

I State machine
replication

I Consensus
' Atomic broadcast

I Atomic registers,
sets, counters,
key-value stores...

I La�ice agreement

' ?

I Weakly consistent
CRDTs

I Causal memory
' Causal/FIFO/

(Uniform) Reliable
broadcast

A ' B: A can be implemented from B and reciprocally

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 1 / 19

Introduction – Equivalence Broadcast/Objects
Hypothesis on the system

leader
(+Ω)

majority
(+Σ)

asynchronous
with crashes

Objects and tasks Broadcast abstractions

I State machine
replication

I Consensus
' Atomic broadcast

I Atomic registers,
sets, counters,
key-value stores...

I La�ice agreement

' ?

I Weakly consistent
CRDTs

I Causal memory
' Causal/FIFO/

(Uniform) Reliable
broadcast

A ' B: A can be implemented from B and reciprocally

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 1 / 19

Introduction – Outline

1. Introduction

2. Consistency

3. Definition of SCD-Broadcast
Intuition
Definition
Properties

4. Abstraction Power
Sequentially consistent grow-only set
Atomic grow-only set
Sequentially consistent snapshot object
Atomic snapshot object

5. Implementation and Computability Limits
Computability limits
Message-passing implementation
Complexity

6. Perspectives

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 2 / 19

Consistency – Which histories are correct?

p insert(1).⊥ read.{1} insert(2).⊥ read.{1, 2} read.{1, 2} read.{1, 2}

Linearizable:
p1

p2

insert(1).⊥ read.{1}

insert(2).⊥ read.{1, 2}

read.{1, 2}

read.{1, 2}

Sequentially consistent:
p1

p2

insert(1).⊥ read.{1}

insert(2).⊥ read.{1, 2}

read.{1, 2}

read.{1, 2}

Causally consistent:
p1

p2

insert(1).⊥ read.{1}

insert(2).⊥ read.{2}

read.{1, 2}

read.{1, 2}

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 3 / 19

Consistency – Which histories are correct?

p insert(1).⊥ read.{1} insert(2).⊥ read.{1, 2} read.{1, 2} read.{1, 2}

Linearizable:
p1

p2

insert(1).⊥ read.{1}

insert(2).⊥ read.{1, 2}

read.{1, 2}

read.{1, 2}

Sequentially consistent:
p1

p2

insert(1).⊥ read.{1}

insert(2).⊥ read.{1, 2}

read.{1, 2}

read.{1, 2}

Causally consistent:
p1

p2

insert(1).⊥ read.{1}

insert(2).⊥ read.{2}

read.{1, 2}

read.{1, 2}

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 3 / 19

Consistency – Which histories are correct?

p insert(1).⊥ read.{1} insert(2).⊥ read.{1, 2} read.{1, 2} read.{1, 2}

Linearizable:
p1

p2

insert(1).⊥ read.{1}

insert(2).⊥ read.{1, 2}

read.{1, 2}

read.{1, 2}

Sequentially consistent:
p1

p2

insert(1).⊥ read.{1}

insert(2).⊥ read.{1, 2}

read.{1, 2}

read.{1, 2}

Causally consistent:
p1

p2

insert(1).⊥ read.{1}

insert(2).⊥ read.{2}

read.{1, 2}

read.{1, 2}

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 3 / 19

Consistency – Which histories are correct?

p insert(1).⊥ read.{1} insert(2).⊥ read.{1, 2} read.{1, 2} read.{1, 2}

Linearizable:
p1

p2

insert(1).⊥ read.{1}

insert(2).⊥ read.{1, 2}

read.{1, 2}

read.{1, 2}

Sequentially consistent:
p1

p2

insert(1).⊥ read.{1}

insert(2).⊥ read.{1, 2}

read.{1, 2}

read.{1, 2}

Causally consistent:
p1

p2

insert(1).⊥ read.{1}

insert(2).⊥ read.{2}

read.{1, 2}

read.{1, 2}

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 3 / 19

Consistency – Which histories are correct?

p insert(1).⊥ read.{1} insert(2).⊥ read.{1, 2} read.{1, 2} read.{1, 2}

Linearizable:
p1

p2

insert(1).⊥ read.{1}

insert(2).⊥ read.{1, 2}

read.{1, 2}

read.{1, 2}

Sequentially consistent:
p1

p2

insert(1).⊥ read.{1}

insert(2).⊥ read.{1, 2}

read.{1, 2}

read.{1, 2}

Causally consistent:
p1

p2

insert(1).⊥ read.{1}

insert(2).⊥ read.{2}

read.{1, 2}

read.{1, 2}

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 3 / 19

Consistency – Sequential consistency
An execution is sequentially consistent if

There is a total order on all operations such that:

I The order is compliant with the order of each process

I The sequential specification is respected

Counter-example

p1

p2

insert(1) read.{1}

insert(2) read.{2}

read.{1, 2}

read.{1, 2}

Example

p1

p2

insert(1) read.{1, 2}

insert(2) read.{2}

read.{1, 2}

read.{1, 2}

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 4 / 19

Consistency – Linearizability

An execution is linearizable if
Same as sequential consistency, and:

I The order is compliant with real-time

Counter-example

p1

p2

insert(1) read.{1, 2}

insert(2) read.{2}

read.{1, 2}

read.{1, 2}

Example

p1

p2

insert(1) read.{1}

insert(2) read.{1, 2}

read.{1, 2}

read.{1, 2}

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 5 / 19

Definition – Intuition: a sequentially consistent set

Grow-only set (G-Set) object: operations

insert(v): adds v ∈N to the set

read(): returns the full set

Algorithm with Atomic Broadcast
1 operation read(): return state;
2 operation insert(v): atomic-broadcast (I(v)); wait delivery;
3 event atomic-deliver(I(v)): state← state ∪ {v};

p1

p2

insert(1)

insert(2)

1: 2:

3:

4:

5:

read().{1} read().{1, 2}

read().{1, 2}

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 6 / 19

Definition – Intuition: a sequentially consistent set

Grow-only set (G-Set) object: operations

insert(v): adds v ∈N to the set

read(): returns the full set

Algorithm with FIFO Broadcast
1 operation read(): return state;
2 operation insert(v): fifo-broadcast (I(v)); wait delivery;
3 event fifo-deliver(I(v)): state← state ∪ {v};

p1

p2

insert(1)

insert(2)

read().{1} read().{1, 2}

read().{2} read().{1, 2}

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 6 / 19

Definition – Intuition: a sequentially consistent set

Grow-only set (G-Set) object: operations

insert(v): adds v ∈N to the set

read(): returns the full set

Algorithm with FIFO Broadcast
1 operation read(): return state;
2 operation insert(v): fifo-broadcast (I(v)); wait delivery;
3 event fifo-deliver(I(v)): state← state ∪ {v};

p1

p2

insert(1)

insert(2)

1: 2:

3:

4:

5:

read().{1} read().{1, 2}

read().{2} read().{1, 2}

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 6 / 19

Definition – Intuition: a sequentially consistent set

Grow-only set (G-Set) object: operations

insert(v): adds v ∈N to the set

read(): returns the full set

Algorithm with SCD Broadcast
1 operation read(): return state;
2 operation insert(v): scd-broadcast (I(v)); wait delivery;
3 event scd-deliver({I(v1), ..., I(vk)}): state← state ∪ {v1, ..., vk};

p1

p2

insert(1)

insert(2)

1: 2:

3:

4:

5:

read().{1} read().{1, 2}

one single event read().{1, 2}

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 6 / 19

Definition – Set-Constraint Delivery Broadcast

Interface

operation: scd-broadcast (m) event: scd-deliver (mset)

Properties

Validity: pi scd-delivers m ∈ mset ⇒ some pj scd-broadcast m

Integrity: m is scd-delivered at most once by pi
MS-Ordering: pi scd-delivers m ∈ mseti and later m′ ∈ mset ′i

⇓
impossible that

pj scd-delivers m′ ∈ mset ′j and later m ∈ msetj
Termination-1: If a non-faulty pi scd-broadcasts m, it terminates its

scd-broadcast invocation and scd-delivers m ∈ mset

Termination-2: pi scd-delivers m
⇒ every non-faulty pj scd-delivers m ∈ mset

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 7 / 19

Definition – Set-Constraint Delivery Broadcast

Interface

operation: scd-broadcast (m) event: scd-deliver (mset)

Properties

Validity: pi scd-delivers m ∈ mset ⇒ some pj scd-broadcast m

Integrity: m is scd-delivered at most once by pi
MS-Ordering: pi scd-delivers m ∈ mseti and later m′ ∈ mset ′i

⇓
impossible that

pj scd-delivers m′ ∈ mset ′j and later m ∈ msetj
Termination-1: If a non-faulty pi scd-broadcasts m, it terminates its

scd-broadcast invocation and scd-delivers m ∈ mset

Termination-2: pi scd-delivers m
⇒ every non-faulty pj scd-delivers m ∈ mset

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 7 / 19

Definition – Set-Constraint Delivery Broadcast

Interface

operation: scd-broadcast (m) event: scd-deliver (mset)

Properties

Validity: pi scd-delivers m ∈ mset ⇒ some pj scd-broadcast m

Integrity: m is scd-delivered at most once by pi
MS-Ordering: pi scd-delivers m ∈ mseti and later m′ ∈ mset ′i

⇓
impossible that

pj scd-delivers m′ ∈ mset ′j and later m ∈ msetj
Termination-1: If a non-faulty pi scd-broadcasts m, it terminates its

scd-broadcast invocation and scd-delivers m ∈ mset

Termination-2: pi scd-delivers m
⇒ every non-faulty pj scd-delivers m ∈ mset

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 7 / 19

Definition – Set-Constraint Delivery Broadcast

Interface

operation: scd-broadcast (m) event: scd-deliver (mset)

Properties

Validity: pi scd-delivers m ∈ mset ⇒ some pj scd-broadcast m

Integrity: m is scd-delivered at most once by pi
MS-Ordering: pi scd-delivers m ∈ mseti and later m′ ∈ mset ′i

⇓
impossible that

pj scd-delivers m′ ∈ mset ′j and later m ∈ msetj
Termination-1: If a non-faulty pi scd-broadcasts m, it terminates its

scd-broadcast invocation and scd-delivers m ∈ mset

Termination-2: pi scd-delivers m
⇒ every non-faulty pj scd-delivers m ∈ mset

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 7 / 19

Definition – MS-Ordering examples

Messages SCD-broadcast by processes:

m1,m2,m3,m4,m5,m6,m7,m8

Correct SCD-deliveries

at p1: {m1,m2}, {m3,m4,m5}, {m6}, {m7,m8}
at p2: {m1}, {m2,m3}, {m4,m5,m6}, {m7}, {m8}
at p3: {m1,m2,m3}, {m4,m5,m6}, {m7}, {m8}

Incorrect SCD-deliveries

at p1: {m1,m2}, {m3,m4,m5}, {m6}, {m7,m8}
at p2: {m1,m3}, {m2}, {m6,m4,m5}, {m7}, {m8}

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 8 / 19

Definition – MS-Ordering examples

Messages SCD-broadcast by processes:

m1,m2,m3,m4,m5,m6,m7,m8

Correct SCD-deliveries

at p1: {m1,m2}, {m3,m4,m5}, {m6}, {m7,m8}
at p2: {m1}, {m2,m3}, {m4,m5,m6}, {m7}, {m8}
at p3: {m1,m2,m3}, {m4,m5,m6}, {m7}, {m8}

Incorrect SCD-deliveries

at p1: {m1,m2}, {m3,m4,m5}, {m6}, {m7,m8}
at p2: {m1,m3}, {m2}, {m6,m4,m5}, {m7}, {m8}

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 8 / 19

Definition – MS-Ordering examples

Messages SCD-broadcast by processes:

m1,m2,m3,m4,m5,m6,m7,m8

Correct SCD-deliveries

at p1: {m1,m2}, {m3,m4,m5}, {m6}, {m7,m8}
at p2: {m1}, {m2,m3}, {m4,m5,m6}, {m7}, {m8}
at p3: {m1,m2,m3}, {m4,m5,m6}, {m7}, {m8}

Incorrect SCD-deliveries

at p1: {m1,m2}, {m3,m4,m5}, {m6}, {m7,m8}
at p2: {m1,m3}, {m2}, {m6,m4,m5}, {m7}, {m8}

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 8 / 19

Definition – MS-Ordering examples

Messages SCD-broadcast by processes:

m1,m2,m3,m4,m5,m6,m7,m8

Correct SCD-deliveries

at p1: {m1,m2}, {m3,m4,m5}, {m6}, {m7,m8}
at p2: {m1}, {m2,m3}, {m4,m5,m6}, {m7}, {m8}
at p3: {m1,m2,m3}, {m4,m5,m6}, {m7}, {m8}

Incorrect SCD-deliveries

at p1: {m1,m2}, {m3,m4,m5}, {m6}, {m7,m8}
at p2: {m1,m3}, {m2}, {m6,m4,m5}, {m7}, {m8}

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 8 / 19

Definition – MS-Ordering examples

Messages SCD-broadcast by processes:

m1,m2,m3,m4,m5,m6,m7,m8

Correct SCD-deliveries

at p1: {m1,m2}, {m3,m4,m5}, {m6}, {m7,m8}
at p2: {m1}, {m2,m3}, {m4,m5,m6}, {m7}, {m8}
at p3: {m1,m2,m3}, {m4,m5,m6}, {m7}, {m8}

Incorrect SCD-deliveries

at p1: {m1,m2}, {m3,m4,m5}, {m6}, {m7,m8}
at p2: {m1,m3}, {m2}, {m6,m4,m5}, {m7}, {m8}

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 8 / 19

Definition – Propositions

Graph interpretation

I Local SCD-delivery order: m 7→i m′

I pi delivers m in a message set mset
I later pi delivers m′ in an other message set mset ′

I Global SCD-delivery order: 7→=
⋃n

i=1 7→i
I 7→ is a partial order

I Let ≤ be some total order extending 7→
I processes scd-deliver sections of ≤

A containment property

I let msxi the x-th message set scd-delivered by pi
I let MSxi = ms1

i ∪ · · · ∪msxi
I ∀i, j, x, y, (MSxi ⊆ MSyj) ∨ (MSyj ⊆ MSxi)

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 9 / 19

Definition – Propositions

Graph interpretation

I Local SCD-delivery order: m 7→i m′

I pi delivers m in a message set mset
I later pi delivers m′ in an other message set mset ′

I Global SCD-delivery order: 7→=
⋃n

i=1 7→i
I 7→ is a partial order

I Let ≤ be some total order extending 7→
I processes scd-deliver sections of ≤

A containment property

I let msxi the x-th message set scd-delivered by pi
I let MSxi = ms1

i ∪ · · · ∪msxi
I ∀i, j, x, y, (MSxi ⊆ MSyj) ∨ (MSyj ⊆ MSxi)

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 9 / 19

Power – Sequentially consistent grow-only set

1 operation read():
2 return state;

3 operation insert(v):
4 scd-broadcast I(v); wait local delivery;

5 event scd-deliver ({I(v1), ..., I(vk)}):
6 state← state ∪ {v1, ..., vk}

∅ {I(1)}
{I(1), I(2)}

p1

p2

1: insert(1)

3: insert(2)

2: read().{1}

4: read().{1, 2}

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 10 / 19

Power – Atomic grow-only set

1 operation read():
2 scd-broadcast Sync; wait local delivery;
3 return state;

4 operation insert(v):
5 scd-broadcast I(v); wait local delivery;

6 event scd-deliver ({I(v1), ..., I(vk), Sync1, ..., Syncl}):
7 state← state ∪ {v1, ..., vk}

p1

p2

insert(2)

read().{2}

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 11 / 19

Power – Sequentially consistent snapshot object

The MWMR snapshot object

abstract state: an array of registers

write(x, v): write v in register x

snapshot(): returns the whole array

1 operation snapshot():
2 return Regs;

3 operation write(x, v):
4 let 〈sn, j〉 ← tsa[x];
5 scd-broadcast Write(x, v, 〈sn+ 1, i〉); wait local delivery;

6 event scd-deliver (mset):
7 foreach Write(x, v, ts) ∈ mset s.t. ts > tsa[x] do
8 Regs[x]← v ; tsa[x]← ts;

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 12 / 19

Power – Sequentially consistent snapshot object

The MWMR snapshot object

abstract state: an array of registers

write(x, v): write v in register x

snapshot(): returns the whole array

1 operation snapshot():
2 return Regs;

3 operation write(x, v):
4 let 〈sn, j〉 ← tsa[x];
5 scd-broadcast Write(x, v, 〈sn+ 1, i〉); wait local delivery;

6 event scd-deliver (mset):
7 foreach Write(x, v, ts) ∈ mset s.t. ts > tsa[x] do
8 Regs[x]← v ; tsa[x]← ts;

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 12 / 19

Power – Atomic snapshot object

p1

p2

write(x, 2)

write(x, 1)

snapshot().[x = 2]

〈0, 2〉
〈0, 1〉

Sync

1 operation snapshot():
2 scd-broadcast Sync; wait local delivery;
3 return Regs;

4 operation write(x, v):
5 scd-broadcast Sync; wait local delivery;
6 let 〈sn, j〉 ← tsa[x];
7 scd-broadcast Write(x, v, 〈sn+ 1, i〉); wait local delivery;

8 event scd-deliver (mset):
9 foreach Write(x, v, ts) ∈ mset s.t. ts > tsa[x] do
10 Regs[x]← v ; tsa[x]← ts;

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 13 / 19

Power – Atomic snapshot object

p1

p2

write(x, 2)

write(x, 1)

snapshot().[x = 2]

〈0, 2〉
〈1, 1〉Sync

Sync

1 operation snapshot():
2 scd-broadcast Sync; wait local delivery;
3 return Regs;

4 operation write(x, v):
5 scd-broadcast Sync; wait local delivery;
6 let 〈sn, j〉 ← tsa[x];
7 scd-broadcast Write(x, v, 〈sn+ 1, i〉); wait local delivery;

8 event scd-deliver (mset):
9 foreach Write(x, v, ts) ∈ mset s.t. ts > tsa[x] do
10 Regs[x]← v ; tsa[x]← ts;

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 13 / 19

Power – Remarks for so�ware engineers
1 operation snapshot():
2 scd-broadcast Sync; wait local delivery;
3 return Regs;

4 operation write(x, v):
5 scd-broadcast Sync; wait local delivery;
6 let 〈sn, j〉 ← tsa[x];
7 scd-broadcast Write(x, v, 〈sn+ 1, i〉); wait local delivery;

8 event scd-deliver (mset):
9 foreach Write(x, v, ts) ∈ mset s.t. ts > tsa[x] do
10 Regs[x]← v ; tsa[x]← ts;

Observations
I No quorum at this abstraction level!
I Each element plays its role:

I structure, sequential consistency, overwriting, real-time

I Works for all objects with commutative/overwriting operations

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 14 / 19

Implementation – Shared memory

1 operation SCD-broadcast(m): Reg[i]← Reg[i] ·m;
2 Regularly do:
3 regs ← Reg.snapshot();
4 S ← ⋃n

j=1 regs[j] \ delivered ;
5 if S 6= ∅ then SCD-deliver(S);

Consequences

I From sequential consistency to linearizability

I Equivalence SCD-broadcast/atomic register

SCD Snapshot Atomic
broadcast object register

Above

Previous slide

Afek et Al.

(projection)

I Consensus Number = 1

I Message-passing implementation : t < n
2

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 15 / 19

Implementation – Shared memory

1 operation SCD-broadcast(m): Reg[i]← Reg[i] ·m;
2 Regularly do:
3 regs ← Reg.snapshot();
4 S ← ⋃n

j=1 regs[j] \ delivered ;
5 if S 6= ∅ then SCD-deliver(S);

Consequences

I From sequential consistency to linearizability

I Equivalence SCD-broadcast/atomic register

SCD Snapshot Atomic
broadcast object register

Above

Previous slide

Afek et Al.

(projection)

I Consensus Number = 1

I Message-passing implementation : t < n
2

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 15 / 19

Implementation – Message-passing
Process psd SCD-broadcasts m

I each process pf fifo-broadcasts forward(m, sd, snsd , f , snf)

Dependencies
I pf views m before m′ if

I pf sends forward(m, ·, ·, f , snf) and forward(m′, ·, ·, f , sn′f)
I snf < sn′f

I pi knows that pf has viewed m before m′ if pi received either
I forward(m, ·, ·, f , ·) but no forward(m′, ·, ·, f , ·)
I forward(m, ·, ·, f , snf) and forward(m′, ·, ·, f , sn′f), snf < sn′f

I m depends on m′ (according to pi) unless pi knows that:
I a majority of processes have viewed m before m′

Delivery condition
I pi can scd-deliver mset if for all m ∈ mset

I pi received forward messages from a majority
I mset contains all non-delivered dependencies of m

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 16 / 19

Implementation – Message-passing
Process psd SCD-broadcasts m

I each process pf fifo-broadcasts forward(m, sd, snsd , f , snf)

Dependencies
I pf views m before m′ if

I pf sends forward(m, ·, ·, f , snf) and forward(m′, ·, ·, f , sn′f)
I snf < sn′f

I pi knows that pf has viewed m before m′ if pi received either
I forward(m, ·, ·, f , ·) but no forward(m′, ·, ·, f , ·)
I forward(m, ·, ·, f , snf) and forward(m′, ·, ·, f , sn′f), snf < sn′f

I m depends on m′ (according to pi) unless pi knows that:
I a majority of processes have viewed m before m′

Delivery condition
I pi can scd-deliver mset if for all m ∈ mset

I pi received forward messages from a majority
I mset contains all non-delivered dependencies of m

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 16 / 19

Implementation – Message-passing
Process psd SCD-broadcasts m

I each process pf fifo-broadcasts forward(m, sd, snsd , f , snf)

Dependencies
I pf views m before m′ if

I pf sends forward(m, ·, ·, f , snf) and forward(m′, ·, ·, f , sn′f)
I snf < sn′f

I pi knows that pf has viewed m before m′ if pi received either
I forward(m, ·, ·, f , ·) but no forward(m′, ·, ·, f , ·)
I forward(m, ·, ·, f , snf) and forward(m′, ·, ·, f , sn′f), snf < sn′f

I m depends on m′ (according to pi) unless pi knows that:
I a majority of processes have viewed m before m′

Delivery condition
I pi can scd-deliver mset if for all m ∈ mset

I pi received forward messages from a majority
I mset contains all non-delivered dependencies of m

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 16 / 19

Implementation – Message-passing
Process psd SCD-broadcasts m

I each process pf fifo-broadcasts forward(m, sd, snsd , f , snf)

Dependencies
I pf views m before m′ if

I pf sends forward(m, ·, ·, f , snf) and forward(m′, ·, ·, f , sn′f)
I snf < sn′f

I pi knows that pf has viewed m before m′ if pi received either
I forward(m, ·, ·, f , ·) but no forward(m′, ·, ·, f , ·)
I forward(m, ·, ·, f , snf) and forward(m′, ·, ·, f , sn′f), snf < sn′f

I m depends on m′ (according to pi) unless pi knows that:
I a majority of processes have viewed m before m′

Delivery condition
I pi can scd-deliver mset if for all m ∈ mset

I pi received forward messages from a majority
I mset contains all non-delivered dependencies of m

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 16 / 19

Implementation – Complexity
SCD-broadcast

msgs: n2

latency: 2∆ (∆: network delay)

Snapshot object

ABD

ABD + AR
DGFRR

SCD-Atomic

PPMJ
SCD-Sequential

Read / Snapshot
msgs

O(n)
O(n2 log n)

O(n3)
O(n2)

0
0

latency

4∆
O(n log n∆)
O(n∆)

2∆

0 — 4∆
0

Write
msgs

O(n)
O(n2 log n)
O(n)
O(n2)

O(n2)
O(n2)

latency

2∆
O(n log n∆)
O(n∆)

4∆
0

2∆
[ABD] A�iya, Bar-Noy, Dolev. Sharing memory robustly in message-passing systems. JACM, 1995.
[AR] A�iya, Rachman. Atomic snapshots in O(n log n) operations. SIAM Journal on Computing, 1998.
[DGFRR] Delporte-Gallet, Fauconnier, Rajsbaum, Raynal. Implementing snapshot objects on top of crash-prone asynchronous
message-passing systems. ICA3PP, 2016.
[PPMJ] P., Petrolia, Mostefaoui, Jard. On Composition and Implementation of Sequential Consistency. DISC, 2016.

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 17 / 19

Implementation – Complexity
SCD-broadcast

msgs: n2

latency: 2∆ (∆: network delay)

Snapshot object

ABD

ABD + AR
DGFRR

SCD-Atomic

PPMJ
SCD-Sequential

Read / Snapshot
msgs

O(n)
O(n2 log n)

O(n3)
O(n2)

0
0

latency

4∆
O(n log n∆)
O(n∆)

2∆

0 — 4∆
0

Write
msgs

O(n)
O(n2 log n)
O(n)
O(n2)

O(n2)
O(n2)

latency

2∆
O(n log n∆)
O(n∆)

4∆
0

2∆
[ABD] A�iya, Bar-Noy, Dolev. Sharing memory robustly in message-passing systems. JACM, 1995.
[AR] A�iya, Rachman. Atomic snapshots in O(n log n) operations. SIAM Journal on Computing, 1998.
[DGFRR] Delporte-Gallet, Fauconnier, Rajsbaum, Raynal. Implementing snapshot objects on top of crash-prone asynchronous
message-passing systems. ICA3PP, 2016.
[PPMJ] P., Petrolia, Mostefaoui, Jard. On Composition and Implementation of Sequential Consistency. DISC, 2016.

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 17 / 19

Perspectives – k-SCD broadcast

Can we limit the size of the message sets?

k-SCD broadcast

Definition: All message sets contain at most k messages

Observation: 1-SCD broadcast ' Atomic broadcast

k-set agreement
Extension of consensus

Termination: Each non-faulty process eventually decides a value

Validity: All decided values have been proposed

k-Agreement: At most k di�erent values are decided

Theorem
k-SCD broadcast ' SCD broadcast + k-set agreement

[IMPR] Imbs, Mostéfaoui, P., Raynal. Which Broadcast Abstraction Captures k-Set Agreement? DISC 2017.

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 18 / 19

Perspectives – k-SCD broadcast

Can we limit the size of the message sets?

k-SCD broadcast

Definition: All message sets contain at most k messages

Observation: 1-SCD broadcast ' Atomic broadcast

k-set agreement
Extension of consensus

Termination: Each non-faulty process eventually decides a value

Validity: All decided values have been proposed

k-Agreement: At most k di�erent values are decided

Theorem
k-SCD broadcast ' SCD broadcast + k-set agreement

[IMPR] Imbs, Mostéfaoui, P., Raynal. Which Broadcast Abstraction Captures k-Set Agreement? DISC 2017.

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 18 / 19

Perspectives – MG-broadcast

Some operations do not commute

Monotonic Generic Broadcast

I Based on a conflict relation (like generic broadcast)

I Conflicting operations ordered inside message sets

Specific cases

I No conflicts: SCD-broadcast

I Only conflicts: Atomic broadcast

Consensus: only when necessary

[ERGPS] Enes, Rezende, Gotsman, P., Sutra. Fast State-Machine Replication via Monotonic Generic Broadcast. Report 2017.

Ma�hieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits 19 / 19

	Introduction
	Consistency
	Definition of SCD-Broadcast
	Intuition
	Definition
	Properties

	Abstraction Power
	Sequentially consistent grow-only set
	Atomic grow-only set
	Sequentially consistent snapshot object
	Atomic snapshot object

	Implementation and Computability Limits
	Computability limits
	Message-passing implementation
	Complexity

	Perspectives

