Set-Constrained Delivery Broadcast:
Definition, Abstraction Power, and
Computability Limits

Damien Imbs Achour Mostefaoui Michel Raynal
Matthieu Perrin

LIF LS2N IUF, IRISA
Université Aix-Marseille Université de Nantes Université de Rennes

Descartes Seminar

October 1st, 2018

From a paper published at ICDCN 2018

Introduction — Equivalence Broadcast/Objects
Hypothesis on the system

leader
(+Q)
majority
(+X)
» Weakly consistent C
ausal/FIFO/
asy.nchronous CRDTs ™ (Uniform) Reliable
with crashes - broad
» Causal memory roadcast
Objects and tasks Broadcast abstractions

A >~ B: A can be implemented from B and reciprocally

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Introduction — Equivalence Broadcast/Objects
Hypothesis on the system

» State machine
I(ej((i)e)r replication ™~ Atomic broadcast
» Consensus
majority
(+X)
» Weakly consistent C
ausal/FIFO/
asy.nchronous CRDTs ™ (Uniform) Reliable
with crashes - broad
» Causal memory roadcast
Objects and tasks Broadcast abstractions

A >~ B: A can be implemented from B and reciprocally

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Introduction — Equivalence Broadcast/Objects
Hypothesis on the system

» State machine
I(ej?)e)r replication ™~ Atomic broadcast
» Consensus
> Atomic registers,
majority sets, counters, ~ ?
(+%) key-value stores... — !
> Lattice agreement
» Weakly consistent
Causal/FIFO/
asy.nchronous CRDTs ™ (Uniform) Reliable
with crashes — broad
» Causal memory roadcast
Objects and tasks Broadcast abstractions

A >~ B: A can be implemented from B and reciprocally

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Introduction — Outline

1. Introduction
2. Consistency

3. Definition of SCD-Broadcast
Intuition
Definition
Properties

4. Abstraction Power
Sequentially consistent grow-only set
Atomic grow-only set
Sequentially consistent snapshot object
Atomic snapshot object

5. Implementation and Computability Limits
Computability limits
Message-passing implementation
Complexity

6. Perspectives

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Consistency — Which histories are correct?

P { insert(1)>_L H read>{1} H insert(2)>_L H read>{1, 2} H read>{1, 2} H read>{1,2} }—»

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Consistency — Which histories are correct?

P { insert(1)>_L H read>{1} H insert(2)>_L H read>{1, 2} H read>{1, 2} H read>{1,2} }—»

p1 {insert(1)l>J_H read>{1} } @l—»
p2 } insert(2)>_L H read>{1, 2}

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Consistency — Which histories are correct?

P { insert(1)>_L H read>{1} H insert(2)>_L H read>{1, 2} H read>{1, 2} H read>{1,2} }—»

p1 {insert(1)l>J_H read>{1} } @l—»
p2 } insert(2)>_L H read>{1, 2}

,
p

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Consistency — Which histories are correct?

P { insert(1)>_L H read>{1} H insert(2)>_L H read>{1, 2} H read>{1, 2} H read>{1,2} }—»

p1 {insert(1)l>J_H read>{1} } @l—»
p2 } insert(2)>_L H read>{1, 2}

,
p

p
p

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Consistency — Which histories are correct?

P { insert(1)>_L H read>{1} H insert(2)>_L H read>{1, 2} H read>{1, 2} H read>{1,2} }—»

Linearizable:

p1 {insert(1)l>J_H read>{1} } @l—»
p2 } insert(2)>_L H read>{1, 2}

Sequentially consistent:

,
p

Causally consistent:

,
p

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Consistency — Sequential consistency
An execution is sequentially consistent if

There is a total order on all operations such that:
» The order is compliant with the order of each process

» The sequential specification is respected

Counter-example

pr — insert(1) j—] read>{1}
pr———— insert(2) |== read>{2} |—read>{1,2}}——
Example

pr—| insert() |—]read>{1, 2} }—Fread>{1, 2}}—
pr————— insm:{ read>{2} }—{read:{m}}—»

|

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Consistency — Linearizability

An execution is linearizable if
Same as sequential consistency, and:

» The order is compliant with real-time

Counter-example

P1—{ insert(1) }—{readD{LZ}
P24{ insert(2) }—{ read>{2} }—{readb{],Z}}—»
Example

p1 —{ insert(1) }—{ read>{1}
p2 4{ insert(2) }—{readb{l Z}Hreadb{l 2}}—»

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Definition — Intuition: a sequentially consistent set

Grow-only set (G-Set) object: operations
insert(v): adds v € IN to the set

read(): returns the full set

Algorithm with Atomic Broadcast
1 operation read(): return state;
2 operation insert(v): atomic-broadcast (/(v)); wait delivery;
3 event atomic-deliver(/(v)): state < state U {v};

T1:insert(1) 2:read()>{1} 4:read()>{1,2}

P — - -

= = =

p | . | 1]

2 | —— 1 [
3:insert(2) 5:read()>{1,2}

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Definition — Intuition: a sequentially consistent set

Grow-only set (G-Set) object: operations
insert(v): adds v € IN to the set

read(): returns the full set

Algorithm with FIFO Broadcast
1 operation read(): return state;
2 operation insert(v): fifo-broadcast (/(v)); wait delivery;
3 event fifo-deliver(/(v)): state « state U {v};

insert(1) read()>{1} read()>{1,2}

P1 £
| | — [

P | — —
L[>~ 7 | L]
insert(2) read()>{2} read()>{1,2}

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Definition — Intuition: a sequentially consistent set

Grow-only set (G-Set) object: operations
insert(v): adds v € IN to the set

read(): returns the full set

Algorithm with FIFO Broadcast

1 operation read(): return state;
2 operation insert(v): fifo-broadcast (/(v)); wait delivery;
3 event fifo-deliver(/(v)): state « state U {v};

T1:insert(1) 2:read()>{1} 4:read()>{1,2}

pr] -]
| l>é-i —
P2 | | =
[>~—~ | |]

3:insert(2) read()>{2} 5:read()>{1,2}

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Definition — Intuition: a sequentially consistent set

Grow-only set (G-Set) object: operations
insert(v): adds v € IN to the set

read(): returns the full set

Algorithm with SCD Broadcast
1 operation read(): return state;
2 operation insert(v): scd-broadcast (/(v)); wait delivery;
3 event scd-deliver({I(v1), ..., I(vk) }): state <— state U {v1, ..., vi };

T1:insert(1) 2:read()>{1} 4:read()>{1,2}
P [= | || [l

= &— £
P2 I
3:insert(2) onesingle event 5:read()>{1,2}

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Definition — Set-Constraint Delivery Broadcast

Interface

operation: scd-broadcast (m) event: scd-deliver (mset)

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Definition — Set-Constraint Delivery Broadcast

Interface

operation: scd-broadcast (m) event: scd-deliver (mset)

Properties

Validity: p; scd-delivers m € mset = some p; scd-broadcast m

Integrity: mis scd-delivered at most once by p;

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Definition — Set-Constraint Delivery Broadcast

Interface

operation: scd-broadcast (m) event: scd-deliver (mset)

Properties

Validity: p; scd-delivers m € mset = some p; scd-broadcast m

Integrity: mis scd-delivered at most once by p;

Termination-1: If a non-faulty p; scd-broadcasts m, it terminates its
scd-broadcast invocation and scd-delivers m € mset

Termination-2: p; scd-delivers m
= every non-faulty p; scd-delivers m € mset

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Definition — Set-Constraint Delivery Broadcast

Interface

operation: scd-broadcast (m) event: scd-deliver (mset)

Properties

Validity: p; scd-delivers m € mset = some p; scd-broadcast m
Integrity: mis scd-delivered at most once by p;
MS-Ordering: p; scd-delivers m € mset; and later m" € mset!

4

impossible that
pj scd-delivers m’ € mset] and later m € mset;

Termination-1: If a non-faulty p; scd-broadcasts m, it terminates its
scd-broadcast invocation and scd-delivers m € mset

Termination-2: p; scd-delivers m
= every non-faulty p; scd-delivers m € mset

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Definition — MS-Ordering examples
Messages SCD-broadcast by processes:

my, my, m3, My, Mms, Mg, My, Mg

Correct SCD-deliveries

at pri: {mqy, my}, {ms, mq, ms}, {mg}, {my, mg}
at py: {m}, {my, ms}, {my, ms, mg}, {ms}, {msg}

at p3: {m, my, ms}, {mq, ms, mg}, {m7}, {ms}

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Definition — MS-Ordering examples
Messages SCD-broadcast by processes:

my, my, m3, My, Mms, Mg, My, Mg

Correct SCD-deliveries

at pri: {mqy, my}, {ms, mq, ms}, {mg}, {my, mg}
at py: {m}, {my, ms}, {mq, ms, me}, {m;}, {msg}

at p3: {m, my, ms}, {mq, ms, mg}, {m7}, {ms}

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Definition — MS-Ordering examples
Messages SCD-broadcast by processes:

my, my, m3, My, Mms, Mg, My, Mg

Correct SCD-deliveries

at pri: {mqy, my}, {ms, mq, ms}, {mg}, {my, mg}
at py: {m}, {my, ms}, {my, ms, mg}, {ms}, {msg}

at p3: {m, my, ms}, {mq, ms, me}, {m;}, {ms}

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Definition — MS-Ordering examples
Messages SCD-broadcast by processes:

my, my, m3, My, Mms, Mg, My, Mg

Correct SCD-deliveries

at pri: {my, my}, {ms, mq, ms}, {mg}, {my, mg}
at py: {m}, {my, ms}, {my, ms, mg}, {ms}, {msg}

at p3: {m, my, ms}, {mq, ms, me}, {m;}, {ms}

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Definition — MS-Ordering examples
Messages SCD-broadcast by processes:

my, my, m3, My, Mms, Mg, My, Mg

Correct SCD-deliveries

at pri: {mqy, my}, {ms, mq, ms}, {mg}, {my, mg}
at py: {m}, {my, ms}, {my, ms, mg}, {ms}, {msg}

at p3: {m, my, ms}, {mq, ms, mg}, {m7}, {ms}

Incorrect SCD-deliveries

at pri: {my, my}, {ms, mq, ms}, {me}, {my, ms}

at pp: {my, ms}, {my}, {me, my, ms}, {m;}, {ms}

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Definition — Propositions

Graph interpretation

» Local SCD-delivery order: m —; m’

> p; delivers m in a message set mset
> later p; delivers m’ in an other message set mset’

» Global SCD-delivery order: —= [Ji_; —;
» — is a partial order

» Let < be some total order extending —>
» processes scd-deliver sections of <

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Definition — Propositions

Graph interpretation

» Local SCD-delivery order: m —; m’

> p; delivers min a message set mset
> later p; delivers m’ in an other message set mset’

» Global SCD-delivery order: —= [Ji_; —;
» — is a partial order

» Let < be some total order extending —>
» processes scd-deliver sections of <

A containment property

» let ms} the x-th message set scd-delivered by p;
> let MSX = ms] U---Ums’
> Vi j, x,y, (MS*C Msj)V (Msj C MSY)

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Power — Sequentially consistent grow-only set

1 operation read():
2 L return state;
3 operation insert(v):
4 L scd-broadcast I(v); wait local delivery;
event scd-deliver ({/(v1), ..., I(v) }):
| state stateU {vy, ..., vic}

a O

1: insert(1) 2: read()>{1}
st S OEs—
°o — e
p2 ! — |

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Power — Atomic grow-only set

-

operation read():

2 scd-broadcast Sync; wait local delivery;
3 return state;
4 operation insert(v):

5]

L scd-broadcast I(v); wait local delivery;

event scd-deliver ({/(v1), ..., I(v), Syncy, ..., Synci}):

=)}

7 | state < stateU {w, ..., v}
read()>{2}
p1 £
==
P2 | | \
~
insert(2)

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Power — Sequentially consistent snapshot object

The MWMR snapshot object
abstract state: an array of registers
write(x, v): write v in register x

snapshot(): returns the whole array

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Power — Sequentially consistent snapshot object

The MWMR snapshot object
abstract state: an array of registers
write(x, v): write v in register x
snapshot(): returns the whole array

1 operation snapshot():
2 L return Regs;

w

operation write(x, v):
4 let (sn, j) < tsa[x];
5 | scd-broadcast Write(x, v, (sn+ 1, i)); wait local delivery;

a
(¢}

vent scd-deliver (mset):
7 | foreach Write(x, v, ts) € mset s.t. ts > tsa[x| do
8 L Regs[x]| < v; tsa|x] + ts;

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Power — Atomic snapshot object

write(x, 1)
P —
. —— (0,2) — Sync
write(x, 2) snapshot()>[x = 2]

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Power — Atomic snapshot object

write(x, 1)
pi P Vi \
p2 —| | <0'2N == "
< N
write(x, 2) snapshot ()>[x = 2]

operation snapshot():
2 scd-broadcast Sync; wait local delivery;

-

3 return Regs;

4 operation write(x, v):

5 scd-broadcast Sync; wait local delivery;

6 | let(sn,j) < tsa[x];

7 scd-broadcast Write(x, v, (sn+ 1,1)); wait local delivery;

vent scd-deliver (mset):
foreach Write(x, v, ts) € mset s.t. ts > tsa[x] do
10 L Regs[x| < v; tsa]x] < ts;

oo
(¢’]

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Power — Remarks for software engineers

-

operation snapshot():
2 scd-broadcast Sync; wait local delivery;

3 return Regs;

4 operation write(x, v):

5 scd-broadcast Sync; wait local delivery;

6 let (sn, j) < tsa[x];

7 | scd-broadcast Write(x, v, (sn+ 1,i)); wait local delivery;

vent scd-deliver (mset):
9 | foreach Write(x, v, ts) € mset s.t. ts > tsa[x| do
10 | Regs[x] < v; tsa[x] « ts;

oo
(¢}

Observations
» No quorum at this abstraction level!
» Each element plays its role:

» structure, sequential consistency, overwriting, real-time

» Works for all objects with commutative/overwriting operations

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Implementation — Shared memory

1 operation SCD-broadcast(m): Regli] < Regl[i] - m;
2 Regularly do:

3 regs <— Reg.snapshot();

a | S« UL, regs[j] \ delivered,

5 | if S # @ then SCD-deliver(S);

Matthieu Perrin

SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Implementation — Shared memory

1 operation SCD-broadcast(m): Regli] < Regl[i] - m;
2 Regularly do:

3 regs <— Reg.snapshot();

a | S« UL, regs[j] \ delivered,

5 | if S # @ then SCD-deliver(S);

Consequences

» From sequential consistency to linearizability

» Equivalence SCD-broadcast/atomic register

scD Previogﬁde Snapshot (projitl(:n) Atomic
— bject T register
broadcast Above %) Afek et Al

» Consensus Number = 1

> Message-passing implementation : t < §

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Implementation — Message-passing
Process psg SCD-broadcasts m
» each process pf fifo-broadcasts forward(m, sd, snyg, f, snf)

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Implementation — Message-passing
Process psg SCD-broadcasts m
» each process pf fifo-broadcasts forward(m, sd, snyg, f, snf)

Dependencies
» ps views m before m' if
» ps sends forward(m, -, -, f, sny) and forward(m, -, -, f, sn})
> snp < sng
» p; knows that ps has viewed m before m’ if p; received either
» forward(m,-, -, f,) but no forward(nm', -, -, f,-)
> forward(m, -, f,sns) and forward(m', -, -, f, s;), sne < s

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Implementation — Message-passing
Process psg SCD-broadcasts m
» each process pf fifo-broadcasts forward(m, sd, snyg, f, snf)

Dependencies

» ps views m before m' if
> pr sends forward(m, -, -, f, snf) and forward(m, -, -, f, sn})
> snp < sng

» p; knows that ps has viewed m before m’ if p; received either
» forward(m,-, -, f,) but no forward(nm', -, -, f,-)
> forward(m, -, f,sns) and forward(m', -, -, f, s;), sne < s

» mdepends on m’ (according to p;) unless p; knows that:
> a majority of processes have viewed m before m’

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Implementation — Message-passing
Process psg SCD-broadcasts m
» each process pf fifo-broadcasts forward(m, sd, snyg, f, snf)

Dependencies

» ps views m before m' if
> pr sends forward(m, -, -, f, snf) and forward(m, -, -, f, sn})
> snp < sng

» p; knows that ps has viewed m before m’ if p; received either
» forward(m,-, -, f,) but no forward(nm', -, -, f,-)
> forward(m, -, f,sns) and forward(m', -, -, f, s;), sne < s

» mdepends on m’ (according to p;) unless p; knows that:
> a majority of processes have viewed m before m’

Delivery condition

» pi can scd-deliver mset if for all m € mset

» p;received forward messages from a majority
» mset contains all non-delivered dependencies of m

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Implementation — Complexity
SCD-broadcast

msgs: n’

latency: 2A (A: network delay)

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Implementation — Complexity

SCD-broadcast

msgs: n’

latency: 2A (A: network delay)

Snapshot object

Read / Snapshot Write
msgs latency # msgs latency
ABD O(n) 4N O(n) 2A
ABD + AR |O(n?logn)| O(nlognA) | O(n?logn)| O(nlognA)
DGFRR O(n) O(nh) O(n) O(nA)
SCD-Atomic | O(n?) 2A O(n?) aA
PPMJ 0 0 — 4A O(n?) 0
SCD-Sequential 0 0 O(n*) 2A

[ABD] Attiya, Bar-Noy, Dolev. Sharing memory robustly in message-passing systems. JACM, 1995.
[AR] Attiya, Rachman. Atomic snapshots in O (nlog n) operations. SIAM Journal on Computing, 1998.
[DGFRR] Delporte-Gallet, Fauconnier, Rajsbaum, Raynal. Implementing snapshot objects on top of crash-prone asynchronous

message-passing systems. ICA3PP, 2076.
[PPM]] P., Petrolia, Mostefaoui, Jard. On Composition and Implementation of Sequential Consistency. DISC, 2016.

t: Definition, Abstraction Power, and Computability Limits

Matthieu Perrin

Perspectives — k-SCD broadcast

Can we limit the size of the message sets?

k-SCD broadcast

Definition: All message sets contain at most k messages

Observation: 1-SCD broadcast ~ Atomic broadcast

[IMPR] Imbs, Mostéfaoui, P., Raynal. Which Broadcast Abstraction Captures k-Set Agreement? DISC 2017.

atthieu Perrin efinition, Abstraction Power, and Computability Limits

Perspectives — k-SCD broadcast

Can we limit the size of the message sets?

k-SCD broadcast
Definition: All message sets contain at most k messages

Observation: 1-SCD broadcast ~ Atomic broadcast

k-set agreement
Extension of consensus

Termination: Each non-faulty process eventually decides a value
Validity: All decided values have been proposed

k-Agreement: At most k different values are decided

Theorem
k-SCD broadcast >~ SCD broadcast + k-set agreement

[IMPR] Imbs, Mostéfaoui, P., Raynal. Which Broadcast Abstraction Captures k-Set Agreement? DISC 2017.

Matthieu Perrin SCD Broadcast: Definition, Abstraction Power, and Computability Limits

Perspectives — MG-broadcast

Some operations do not commute

Monotonic Generic Broadcast

» Based on a conflict relation (like generic broadcast)

» Conflicting operations ordered inside message sets

Specific cases
» No conflicts: SCD-broadcast

» Only conflicts: Atomic broadcast

Consensus: only when necessary

[ERGPS] Enes, Rezende, Gotsman, P., Sutra. Fast State-Machine Replication via Monotonic Generic Broadcast. Report 2017.

Matthieu Perrin r t: Definition, Abstraction Power, and Computability Limits

	Introduction
	Consistency
	Definition of SCD-Broadcast
	Intuition
	Definition
	Properties

	Abstraction Power
	Sequentially consistent grow-only set
	Atomic grow-only set
	Sequentially consistent snapshot object
	Atomic snapshot object

	Implementation and Computability Limits
	Computability limits
	Message-passing implementation
	Complexity

	Perspectives

