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Distributed Verification

Graph ¢ = (V,E)
* Node = processor

e Edge = communication link

Synchronous massage passing, no faults

Nodes have uniqueids: 1, ...,n

No central control

No shared memory




Distributed Verification

* Configuration: (G, x)

* Predicates P of a graph G:
* Diam(G) < 4
e ( is 3-colorable

* Predicates P of a configuration (G, x):
* X is aspanning tree

* x is a proper coloring




Decision Mechanism

Claim: (G, x) satisfies predicate P

* Prover: assigns labels to nodes

Verification process - each node:
* Collects labels from neighbors

* Decides by the labels
Goal:

Minimize the proof size

P holds <& all nodes accept

proof—size = maximum label size



Example: 3-colorability

* Claim: The graph is 3-colorable

* Prover: assigns colors

* Verification:
all neighbors’ colors o

different from mine




Example: 3-colorability

* Claim: The graph is 3-colorable

What if it is not 3-colorable?




Example: 3-colorability

e Claim: The graph is not 3-colorable

* Prover:
Give each node @
the whole graph

e \erification:

* all labels equal

e Consistent with node’s view

e Contain non 3-colorable graph




Example: 3-colorability

e Claim: The graph is not 3-colorable

5

e The universal scheme
 Takes @(nz) bits

* No better scheme possible!




Why Should we Care?

e Practical: Self stabilization

* Make sure a network is in a good state

* Theoretical: Non-determinism in distributed graph algorithms
e Adistributed analogue of NP



Previous Work

e LCL [Naor, Stockmeyer 93]
0(1) e Colorability
O(logn) e Spanning tree [Korman, Kutten, Peleg 05]
@(10 2 Tl) . :
8  Minimum spanning tree [Korman, Kutten 06]
O(n) e Diameter [Censor-Hillel, Paz, Perry 17]

(2
@(n ) e Non-3-colorability [Go6s, Suomela 11]




Distance-t Verification

* Nodes decide by their t-neighborhood




Distance-t Verification

* Nodes decide by their t-neighborhood

e Scaling [Ostrovsky, Perry, Rosenbaum 17]
* f(t)-scaling:

roof—size(n, 1
proof—size(n,t) = 0 <p ( )>

f(©)



Previous Results

t-scaling (linear)

* The universal scheme [Ostrovsky, Perry, Rosenbaum 17]
* Minimum spanning tree, for t = logn
[Korman, Kutten, Masuzawa 15]

* That is: log n-bits for distance-logn
(instead of log? n-bits for distance-1)



Upper Bounds

t-scaling (linear)
* Any predicate on cycles, paths, grids and trees

* Diameter, spanning tree, minimum spanning tree, spanners

b(t)-scaling (optimal)

* The universal scheme

b(t) = minimum size

of a ball of radius t




Lower Bounds

* Diameter and additive spanners:

* Any distance-t scheme has size { (%)

* Thatis, the linear-scaling scheme is optimal

 New lower-bound technigue



Upper Bounds

Schemes for Distance-t Verification



Linear Scaling on Specific Graphs

* Any verification scheme scales linearly on:
* Cycles
e Grids
* Trees

* And more...



Scaling on a Cycle

Start with a distance-1 scheme for a cycle

* Keep 2 out of every t labels

* Reduces average label size

e \erification:

e Simulate all possible assignments to the missing labels

O
Helcishals




Scaling on a Cycle

Given a sparse scheme

e Spread the labels among the neighbors without labels

* Reduces maximum label size

e \erification:

* Reconstruct the labels, and proceed as before



Other Graphs

* Trees

e Grids




Other Graphs




The Uniform Scheme Scale

Optimally
 Uniform Scheme: all labels are the same

* The universal scheme: O(nz)—bit labels

* Works for any predicate

e Optimal for:
* Non 3-colorability

e Symmetric graphs

&




Scaling of Uniform Labels

Split the label into ~b(t) blocks
e Assign random blocks to each node

e Claim:

For any node,

all blocks exist in its
t-neighborhood whp

e Reconstruct the labels and use distance-1 verification



Uniform Labels — Afterthoughts

* Need to enumerate blocks — lose log factor

* We use the probabilistic method for the proof;
the scheme and verification are deterministic



Linear Scaling for Diameter 00

* Diameter

* Distance-1: Must keep all distances




Linear Scaling for Diameter

* Diameter
* Distance-1: Must keep all distances

* Distance-t: Keep distances from ~% nodes

e Claim:

For any source,
on any sub path of length t

of the BFS tree from it,
at least one label is kept




Linear Scaling for Diameter

* Diameter

* Distance-1: Must keep all distances

* Distance-t: Keep distances from ~% nodes

e Claim:
For any source,
on any sub path of length t
of the BFS tree from it,
at least one label is kept
* Spanners

 Similar, but keep distance both for the graph and the spanner




Linear Scaling for Other Predicates

* Spanning tree

e Labels of size O (lofn)

* MST

2
e Labels of size O (logt -

) fort = O(logn)

 Optimal fort = ©(logn)



Lower Bounds

When Alice and Bob are Far Apart



The Disjointness(k) Problem

* Two players: Alice and Bob

* Inputs
* Alice 4 € [K]
* Bob SB C [k]

e Goal: Does S, NSz = @?

<
-[4,5,6,7 o Ao 1,2(3,4,5,87,89 }



Non-determinstic Disjointness

e Alice and Bob get a hint

* Example: For non-disjointness,
hint = index of intersection

* Communicating log k bits is enough

 For disjointness, need to communicate Q(k) bits

@D, - 4 O
{6 12345678 |} {0,128458789 }




Veritying Diameter

* Linear scaling is optimal
e Assume the contrary:

e there is a scheme labels of 0 (%) bit

* Alice and Bob are experts in distributed verification!

* Use this scheme to solve disjointness






The Graph — Adding Edges

* Edges depending on Sy, Sp
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The Simulation
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deterministic strings as labels

* |nterpret non-




The Simulation

e Simulate verification




10N

The Simulat

e Simulate verification




The Simulation

e Decide Diam=2t+ 77




Deciding Disjointness

e Decide Diam=2t+ 77

SAﬂSB=(Z)

= Diam = 2t+7

= All nodes accept

= Alice and Bob return “disjoint”



Deciding Disjointness

e Decide Diam=2t+ 77

S,NSg # 0@

= Diam = 2t+8

= Some node rejects

= Alice or Bob return “Not-disjoint”



To Conclude

Alice and Bob can decide disjointness

Exchange O(tlogn) labels
e Must exchange Q(n) bits

. Thereisalabelon( - )

tlogn
 Scaling lower bound



Lower Bound — Afterthoughts

* Ascheme for diameter cannot scale better than () (t 1:g n)

* Technique:
* Non-deterministic communication complexity
e Small-cut construction
e Simulation technique from CONGEST model

* But, our model resembles the LOCAL model



Open Questions

* |slinear scaling always possible?

* Proved for specific graphs: cycles, trees,...
* Proved for specific predicates: spanning tree, MST, diameter

* |s optimal scaling always possible?

* Proved for all predicates that require the universal scheme

Thank You



