INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

Redundancy in Distributed Verification

Ami Paz

Joint work with: Laurent Feuilloley, Pierre Fraigniaud, Juho Hirvonen, Mor Perry

Distributed Verification

- Graph G = (V, E)
 - Node = processor
 - Edge = communication link
- Synchronous massage passing, no faults
- Nodes have unique ids: 1, ..., n
- No central control
- No shared memory

Distributed Verification

- Configuration: (*G*, *x*)
- Predicates *P* of a graph *G*:
 - Diam(G) < 4
 - G is 3-colorable
- Predicates *P* of a configuration (*G*, *x*):
 - x is a spanning tree
 - x is a proper coloring

Decision Mechanism

- Claim: (G, x) satisfies predicate P
- Prover: assigns labels to nodes
- Verification process each node:
 - Collects labels from neighbors
 - Decides by the labels
- P holds \iff all nodes accept
- proof-size = maximum label size

Goal: Minimize the proof size

- Claim: The graph is 3-colorable
- Prover: assigns colors
- Verification: all neighbors' colors different from mine

• Claim: The graph is 3-colorable

What if it is not 3-colorable?

- Claim: The graph is **not** 3-colorable
- Prover: Give each node the whole graph
- Verification:
 - all labels equal
 - Consistent with node's view
 - Contain non 3-colorable graph

• Claim: The graph is **not** 3-colorable

- The universal scheme
 - Takes $\Theta(n^2)$ bits
 - No better scheme possible!

Why Should we Care?

- Practical: Self stabilization
 - Make sure a network is in a good state
- Theoretical: Non-determinism in distributed graph algorithms
 - A distributed analogue of NP

Previous Work

0	• LCL [Naor, Stockmeyer 93]
$\Theta(1)$	• Colorability
$\Theta(\log n)$	• Spanning tree [Korman, Kutten, Peleg 05]
$\Theta(\log^2 n)$	• Minimum spanning tree [Korman, Kutten 06]
$\widetilde{\Theta}(n)$	• Diameter [Censor-Hillel, Paz, Perry 17]
$\widetilde{\Theta}(n^2)$	• Non-3-colorability [Göös, Suomela 11]

Distance-t Verification

• Nodes decide by their *t*-neighborhood

Distance-t Verification

- Nodes decide by their *t*-neighborhood
- Scaling [Ostrovsky, Perry, Rosenbaum 17]
 - f(t)-scaling:

proof-size(n, t) =
$$O\left(\frac{\text{proof-size}(n, 1)}{f(t)}\right)$$

Previous Results

t-scaling (linear)

- The universal scheme [Ostrovsky, Perry, Rosenbaum 17]
- Minimum spanning tree, for $t = \log n$ [Korman, Kutten, Masuzawa 15]
 - That is: log n-bits for distance-log n (instead of log² n-bits for distance-1)

Upper Bounds

t-scaling (linear)

- Any predicate on cycles, paths, grids and trees
- Diameter, spanning tree, minimum spanning tree, spanners

b(t)-scaling (optimal)

• The universal scheme

b(t) = minimum size of a ball of radius t

Lower Bounds

- Diameter and additive spanners:
 - Any distance-*t* scheme has size $\widetilde{\Omega}\left(\frac{n}{t}\right)$
 - That is, the linear-scaling scheme is optimal

• New lower-bound technique

Upper Bounds

Schemes for Distance-t Verification

Linear Scaling on Specific Graphs

- Any verification scheme scales linearly on:
 - Cycles
 - Grids
 - Trees
 - And more...

Scaling on a Cycle

Start with a distance-1 scheme for a cycle

- Keep 2 out of every *t* labels
 - Reduces average label size
- Verification:
 - Simulate all possible assignments to the missing labels

Scaling on a Cycle

Given a sparse scheme

- Spread the labels among the neighbors without labels
 - Reduces maximum label size
- Verification:
 - Reconstruct the labels, and proceed as before

Other Graphs

• Grids

Other Graphs

t

The Uniform Scheme Scale Optimally

- Uniform Scheme: all labels are the same
- The universal scheme: $O(n^2)$ -bit labels
 - Works for any predicate
- Optimal for:
 - Non 3-colorability
 - Symmetric graphs

• ...

Scaling of Uniform Labels

- Split the label into $\sim b(t)$ blocks
- Assign random blocks to each node
- Claim:

For any node, all blocks exist in its *t*-neighborhood whp

• Reconstruct the labels and use distance-1 verification

Uniform Labels – Afterthoughts

- Need to enumerate blocks lose log factor
- We use the probabilistic method for the proof; the scheme and verification are deterministic

Linear Scaling for Diameter

- Diameter
 - Distance-1: Must keep all distances

Linear Scaling for Diameter

- Diameter
 - Distance-1: Must keep all distances
 - Distance-t: Keep distances from $\sim \frac{n}{t}$ nodes
 - Claim:

For any source, on any sub path of length *t* of the BFS tree from it, at least one label is kept

Linear Scaling for Diameter

- Diameter
 - Distance-1: Must keep all distances
 - Distance-t: Keep distances from $\sim \frac{n}{t}$ nodes
 - Claim:

For any source, on any sub path of length *t* of the BFS tree from it, at least one label is kept

- Spanners
 - Similar, but keep distance both for the graph and the spanner

Linear Scaling for Other Predicates

- Spanning tree
 - Labels of size $O\left(\frac{\log n}{t}\right)$
- MST

• Labels of size
$$O\left(\frac{\log^2 n}{t}\right)$$
 for $t = O(\log n)$

• Optimal for $t = \Theta(\log n)$

Lower Bounds

When Alice and Bob are Far Apart

The Disjointness(k) Problem

- Two players: Alice and Bob
- Inputs
 - Alice $S_A \subseteq [k]$
 - Bob $S_B \subseteq [k]$
- Goal: Does $S_A \cap S_B = \emptyset$?

- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Non-determinstic Disjointness

- Alice and Bob get a hint
- Example: For non-disjointness, hint = index of intersection
 - Communicating log k bits is enough
- For disjointness, need to communicate $\Omega(k)$ bits

Bob Alice 0, 1, 2, 3, 4, 5, 6, 7, 8, - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Verifying Diameter

- Linear scaling is optimal
- Assume the contrary:
 - there is a scheme labels of $\tilde{o}\left(\frac{n}{t}\right)$ bit
- Alice and Bob are experts in distributed verification!
 - Use this scheme to solve disjointness

The Graph – Adding Edges

• Edges depending on S_A , S_B

L

• Diameter implies $S_A \cap S_B = \emptyset \Rightarrow \text{Diam} = 2t + 7$ $S_A \cap S_B \neq \emptyset \Rightarrow \text{Diam} = 2t + 8$

• Interpret non-deterministic strings as labels

• Simulate verification

• Decide Diam = 2t + 7?

Deciding Disjointness

• Decide Diam = 2t + 7?

 $S_A \cap S_B = \emptyset$

- \Rightarrow Diam = 2t+7
- ⇒ All nodes accept
- \Rightarrow Alice and Bob return "disjoint"

Deciding Disjointness

- Decide Diam = 2t + 7?
- $S_A \cap S_B \neq \emptyset$
- \Rightarrow Diam = 2t+8
- \Rightarrow Some node rejects
- ⇒ Alice or Bob return "Not-disjoint"

To Conclude

- Alice and Bob can decide disjointness
- Exchange $O(t \log n)$ labels
- Must exchange $\Omega(n)$ bits

• There is a label of
$$\Omega\left(\frac{n}{t\log n}\right)$$

• Scaling lower bound

Lower Bound – Afterthoughts

- A scheme for diameter cannot scale better than $\Omega\left(\frac{n}{t \log n}\right)$
- Technique:
 - Non-deterministic communication complexity
 - Small-cut construction
 - Simulation technique from CONGEST model
 - But, our model resembles the LOCAL model

Open Questions

- Is linear scaling always possible?
 - Proved for specific graphs: cycles, trees,...
 - Proved for specific predicates: spanning tree, MST, diameter
- Is optimal scaling always possible?
 - Proved for all predicates that require the universal scheme

