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Distributed Verification

• Graph 𝐺 = (𝑉, 𝐸)

• Node  =  processor

• Edge  =  communication link

• Synchronous massage passing, no faults

• Nodes have unique ids: 1,… , 𝑛

• No central control

• No shared memory



Distributed Verification

• Configuration: 𝐺, 𝑥

• Predicates 𝑃 of a graph 𝐺:

• Diam 𝐺 < 4

• 𝐺 is 3-colorable

• Predicates 𝑃 of a configuration 𝐺, 𝑥 :

• 𝑥 is a spanning tree

• 𝑥 is a proper coloring



Decision Mechanism

• Claim: 𝐺, 𝑥 satisfies predicate 𝑃

• Prover: assigns labels to nodes

• Verification process - each node:

• Collects labels from neighbors

• Decides by the labels

• 𝑃 holds   ⟺ all nodes accept

• proof−size = maximum label size

Goal:
Minimize the proof size



Example: 3-colorability

• Claim: The graph is 3-colorable

• Prover: assigns colors

• Verification: 
all neighbors’ colors
different from mine
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Example: 3-colorability

• Claim: The graph is 3-colorable

What if it is not 3-colorable?
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Example: 3-colorability

• Claim: The graph is not 3-colorable

• Prover: 
Give each node 
the whole graph

• Verification:

• all labels equal

• Consistent with node’s view

• Contain non 3-colorable graph



Example: 3-colorability

• Claim: The graph is not 3-colorable

• The universal scheme

• Takes Θ 𝑛2 bits

• No better scheme possible!



Why Should we Care?

• Practical: Self stabilization

• Make sure a network is in a good state

• Theoretical: Non-determinism in distributed graph algorithms

• A distributed analogue of NP



Previous Work

• LCL  [Naor, Stockmeyer 93]0

• ColorabilityΘ 1

• Spanning tree  [Korman, Kutten, Peleg 05]Θ log 𝑛

• Minimum spanning tree [Korman, Kutten 06]Θ log2 𝑛

• Diameter [Censor-Hillel, Paz, Perry 17] Θ 𝑛

• Non-3-colorability [Göös, Suomela 11] Θ 𝑛2



Distance-𝑡 Verification

• Nodes decide by their 𝑡-neighborhood



Distance-𝑡 Verification

• Nodes decide by their 𝑡-neighborhood

• Scaling [Ostrovsky, Perry, Rosenbaum 17]

• 𝑓 𝑡 -scaling:

proof−size 𝑛, 𝑡 = 𝑂
proof−size 𝑛, 1

𝑓 𝑡



Previous Results

𝑡-scaling (linear)

• The universal scheme [Ostrovsky, Perry, Rosenbaum 17]

• Minimum spanning tree, for 𝑡 = log 𝑛
[Korman, Kutten, Masuzawa 15]

• That is: log 𝑛-bits for distance-log 𝑛

(instead of log2 𝑛-bits for distance-1)



Upper Bounds

𝑡-scaling (linear)

• Any predicate on cycles, paths, grids and trees

• Diameter, spanning tree, minimum spanning tree, spanners

𝑏 𝑡 -scaling (optimal)

• The universal scheme

𝑏 𝑡 = minimum size 
of a ball of radius 𝑡



Lower Bounds

• Diameter and additive spanners:

• Any distance-𝑡 scheme has size  Ω
𝑛

𝑡

• That is, the linear-scaling scheme is optimal

• New lower-bound technique



Upper Bounds

Schemes for Distance-𝑡 Verification



Linear Scaling on Specific Graphs

• Any verification scheme scales linearly on:

• Cycles

• Grids

• Trees

• And more…



Scaling on a Cycle

Start with a distance-1 scheme for a cycle

• Keep 2 out of every 𝑡 labels

• Reduces average label size

• Verification:

• Simulate all possible assignments to the missing labels

? ? ?

𝑡
𝑡



Scaling on a Cycle

Given a sparse scheme

• Spread the labels among the neighbors without labels

• Reduces maximum label size

• Verification:

• Reconstruct the labels, and proceed as before



Other Graphs
• Trees • Grids

𝑡



Other Graphs

𝑡

𝑡



The Uniform Scheme Scale 
Optimally
• Uniform Scheme: all labels are the same

• The universal scheme: 𝑂 𝑛2 -bit labels

• Works for any predicate

• Optimal for:

• Non 3-colorability

• Symmetric graphs

• …



Scaling of Uniform Labels

• Split the label into ~𝑏 𝑡 blocks

• Assign random blocks to each node

• Claim:

• Reconstruct the labels and use distance-1 verification

For any node, 
all blocks exist in its 
𝑡-neighborhood whp



Uniform Labels – Afterthoughts

• Need to enumerate blocks – lose log factor

• We use the probabilistic method for the proof;
the scheme and verification are deterministic



Linear Scaling for Diameter

• Diameter

• Distance-1: Must keep all distances 𝟏
𝟏
𝟐

…

𝟏
𝟐
𝟎

…



Linear Scaling for Diameter

• Diameter

• Distance-1: Must keep all distances

• Distance-𝑡: Keep distances from ~
𝑛

𝑡
nodes

• Claim:
For any source, 

on any sub path of length 𝑡
of the BFS tree from it, 

at least one label is kept



Linear Scaling for Diameter

• Diameter

• Distance-1: Must keep all distances

• Distance-𝑡: Keep distances from ~
𝑛

𝑡
nodes

• Claim:

• Spanners

• Similar, but keep distance both for the graph and the spanner

𝟏

𝟏

𝟐

For any source, 
on any sub path of length 𝑡

of the BFS tree from it, 
at least one label is kept



Linear Scaling for Other Predicates

• Spanning tree

• Labels of size 𝑂
log 𝑛

𝑡

• MST

• Labels of size 𝑂
log2 𝑛

𝑡
for 𝑡 = 𝑂 log𝑛

• Optimal for 𝑡 = Θ log𝑛



Lower Bounds

When Alice and Bob are Far Apart



The Disjointness 𝑘 Problem

• Two players:  Alice and Bob

• Inputs

• Alice 𝑆𝐴 ⊆ 𝑘

• Bob 𝑆𝐵 ⊆ 𝑘

• Goal: Does 𝑆𝐴 ∩ 𝑆𝐵 = ∅?

0, 1,2,3,4,5,6,7,8,9 0, 1,2,3,4,5,6,7,8,9

Alice Bob



Non-determinstic Disjointness

• Alice and Bob get a hint

• Example: For non-disjointness,
hint = index of intersection
• Communicating log 𝑘 bits is enough

• For disjointness, need to communicate Ω 𝑘 bits

0, 1,2,3,4,5,6,7,8,9 0, 1,2,3,4,5,6,7,8,9

Alice Bob
3 3



Verifying Diameter

• Linear scaling is optimal

• Assume the contrary: 

• there is a scheme labels of  𝑜
𝑛

𝑡
bit

• Alice and Bob are experts in distributed verification!

• Use this scheme to solve disjointness



Centers𝐶ℓ 𝐶𝑟

Bit Gadgets2𝑡 + 2 -paths 𝑅𝐿
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𝐶ℓ 𝐶𝑟

𝑅𝐿

The Graph – Adding Edges
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• Edges depending on SA, 𝑆𝐵
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𝐶ℓ 𝐶𝑟

𝑅𝐿

The Graph – Diameter 
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• Diameter implies disjointness!𝑆𝐴 ∩ 𝑆𝐵 = ∅ ⇒ Diam = 2𝑡 + 7

𝑆𝐴 ∩ 𝑆𝐵 ≠ ∅ ⇒ Diam = 2𝑡 + 8



𝐶ℓ 𝐶𝑟
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The Simulation
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𝑂 𝑡 log 𝑛
labelsAlice Bob



𝐶ℓ 𝐶𝑟

The Simulation
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• Simulate verification

Alice



𝐶ℓ 𝐶𝑟

The Simulation
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𝐶ℓ 𝐶𝑟

The Simulation
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• Decide Diam = 2𝑡 + 7 ?



Deciding Disjointness

• Decide Diam = 2𝑡 + 7 ?

𝑆𝐴 ∩ 𝑆𝐵 = ∅

⇒ Diam = 2t+7

⇒ All nodes accept

⇒ Alice and Bob return “disjoint”



Deciding Disjointness

• Decide Diam = 2𝑡 + 7 ?

𝑆𝐴 ∩ 𝑆𝐵 ≠ ∅

⇒ Diam = 2t+8

⇒ Some node rejects

⇒ Alice or Bob return “Not-disjoint”



To Conclude

• Alice and Bob can decide disjointness

• Exchange 𝑂 𝑡 log 𝑛 labels

• Must exchange Ω 𝑛 bits

• There is a label of Ω
𝑛

𝑡 log 𝑛

• Scaling lower bound



Lower Bound – Afterthoughts 

• A scheme for diameter cannot scale better than Ω
𝑛

𝑡 log 𝑛

• Technique:

• Non-deterministic communication complexity

• Small-cut construction

• Simulation technique from CONGEST model

• But, our model resembles the LOCAL model



Open Questions

• Is linear scaling always possible?

• Proved for specific graphs: cycles, trees,…

• Proved for specific predicates: spanning tree, MST, diameter

• Is optimal scaling always possible?

• Proved for all predicates that require the universal scheme

Thank You


