
Optimal Memory-Anonymous Symmetric
Deadlock-Free Mutual Exclusion

ZAHRA AGHAZADEH DAMIEN IMBS MICHEL RAYNAL

GADI TAUBENFELD PHILIPP WOELFEL

bg=

Highlights

• Memory anonymity

• Process symmetry

• An interesting computability condition for Mutual Exclusion

bg=

Memory anonymity

In classical shared memory models,
a priori agreement on the indexes of shared registers:

Process j : SM j[8]

fi(1) fi(7) fj(9)fi(3)fi(2) fi(4) fi(5) fj(6) fi(8)

Process i : SMi[8]

bg=

Memory anonymity
Anonymous memory:
Each process has its own map to access registers:

SMi[mapi[y]]

SM j[mapj[y]]

fj(1) fj(2) fj(3) f((5) fj(6) fj(7) fj(8) fj(9)fj(4)

fi(1) fi(7) fj(9)fi(3)fi(2) fi(4) fi(5) fj(6) fi(8)

Other processes have other maps
• Used implicitly in the early 80s (Rabin 82)
• Conceptualized and formalized recently by

G. Taubenfeld (PODC’17)

bg=

Memory anonymity
An adversarial view

The adversary:
• shuffles the memory map of each process

• prohibits agreement on register indexes
(not true for all combinations of numbers of registers and
processes, Godard-I.-Raynal-Taubenfeld, SIROCCO 2019)

bg=

Process identities

For n processes:
• The "classical" model

• Unique ids from 1 to n
• The model for comparison-based algorithms

• Unique ids from a huge namespace of size M >> n
• Process anonymity

• No ids, no way to identify individual processes

• Process symmetry

bg=

Process symmetry

• Processes have unique identities...
... but they can only be compared by equality

No a priori agreement on a total order on identities

⇒ Only test allowed on ids: equality
(no <,≤, > or ≥)

• Processes also have the same code
(otherwise the id could be embedded in the code)

bg=

Deadlock-free mutual exclusion

• Safety: mutual exclusion
At any given time, at most one process
is in the Critical Section

• Liveness: Deadlock-freedom
At any time, if a process wants to enter the Critical Section,
at least one process (not necessarily the same) will enter

bg=

Model

• n asynchronous symmetric processes
(ids cannot be compared)

• m anonymous registers
(no a priori agreement on the indexes)

• A process
• knows its identity
• knows n
• knows all identities are different
• does not know the other identities

Operations on registers: either
• Read and Write, or
• Read-Modify-Write (RMW), e.g. Compare&Swap

bg=

Symmetric deadlock-free mutual exclusion
with an anonymous memory

Previous results: G. Taubenfeld, PODC’17

• Read-Write, for n = 2: m odd necessary and sufficient
Let M(n) = {m > n | ∀ ` : 1 < ` ≤ n : gcd(`,m) = 1}.

• Read-Write, for n > 2: m ∈ M(n) necessary

In this work:
• Read-Write, for n ≥ 2: m ∈ M(n) necessary and sufficient
- New algorithm
• Read-Modify-Write, for n ≥ 2:

m ∈ M(n) ∪ {1} necessary, sufficient using C&S
- New algorithm and extension of previous impossibility proof

bg=

The condition

For an anonymous memory consisting of m read/write registers,

m ∈ M(n) = {m > n | ∀ ` : 1 < ` ≤ n : gcd(`,m) = 1}

is a necessary and sufficient condition.

With Read-Modify-Write, also solvable for m = 1 (single reg)

• Not a "threshold" kind of condition
• Another example in the red side of the coin:

Weak Symmetry Breaking (Do you know any other one?)
• Yet another example, but with mobile agents:

Leader election in a ring

bg=

Impossibility result
Sketch of the proof

Result: with m registers, necessary that m such that
∀ ` : 1 < ` ≤ n : gcd(`,m) = 1
• Suppose there exists ` ∈ {2, . . . ,n} that divides m

• Run ` processes in lock-step

• Arrange registers R[0], . . . ,R[m − 1] on a ring:

• Assign mappings such that
register x of the k th process is R[(k ×m/`) + x mod m]
(mappings start m/` apart & follow the same cyclic order)

⇒ processes cannot break symmetry

bg=

Algorithm
Read-Write

Initially, all registers = ⊥

To enter the Critical Section:

Take a snapshot. If all registers = ⊥ or your id appears:
• If there is an empty register (= ⊥), write your id:

⊥⊥⊥⊥⊥⊥ ⊥⊥⊥ ⊥⊥⊥ ⊥⊥⊥

bg=

Algorithm
Read-Write

Initially, all registers = ⊥

To enter the Critical Section:

Take a snapshot. If all registers = ⊥ or your id appears:
• If there is an empty register (= ⊥), write your id:

⊥⊥⊥⊥⊥⊥ ⊥⊥⊥ aaa ⊥⊥⊥

bg=

Algorithm
Read-Write

Initially, all registers = ⊥

To enter the Critical Section:

Take a snapshot. If all registers = ⊥ or your id appears:
• If there is an empty register (= ⊥), write your id:

⊥⊥⊥bbb ⊥⊥⊥ aaa ⊥⊥⊥

bg=

Algorithm
Read-Write

Initially, all registers = ⊥

To enter the Critical Section:

Take a snapshot. If all registers = ⊥ or your id appears:
• If there is an empty register (= ⊥), write your id:

⊥⊥⊥bbb ⊥⊥⊥ aaa bbb

bg=

Algorithm
Read-Write

Initially, all registers = ⊥

To enter the Critical Section:

Take a snapshot. If all registers = ⊥ or your id appears:
• If there is an empty register (= ⊥), write your id:

⊥⊥⊥bbb ccc aaa bbb

bg=

Algorithm
Read-Write

Initially, all registers = ⊥

To enter the Critical Section:

Take a snapshot. If all registers = ⊥ or your id appears:
• If there is an empty register (= ⊥), write your id:

aaabbb ccc aaa bbb

bg=

Algorithm
Read-Write

To enter the Critical Section:

Take a snapshot. If all registers = ⊥ or your id appears:
• If there is an empty register, write your id
• Otherwise, the memory is full:

aaabbb ccc aaa bbb

bg=

Algorithm
Read-Write

To enter the Critical Section:

Take a snapshot. If all registers = ⊥ or your id appears:
• If there is an empty register, write your id
• Otherwise, the memory is full:

aaabbb ccc aaa bbb

• If you own less than the average (regs that have your id):
withdraw from the competition by erasing your id

bg=

Algorithm
Read-Write

• Otherwise, the memory is full:

• If you own less than the average (regs that have your id):
withdraw from the competition by erasing your id:

ccc

average =

m/|participants|

aaa aaa

bbb bbb

At least one process will withdraw:
m not divisible by the current number of participants

bg=

Algorithm
Read-Write

To enter the Critical Section:

Take a snapshot. If all registers = ⊥ or your id appears:
• If there is an empty register, write your id
• Otherwise, the memory is full:

• If you own less than the average (regs that have your id):
withdraw from the competition by erasing your id

aaabbb ccc aaa bbb

bg=

Algorithm
Read-Write

To enter the Critical Section:

Take a snapshot. If all registers = ⊥ or your id appears:
• If there is an empty register, write your id
• Otherwise, the memory is full:

• If you own less than the average (regs that have your id):
withdraw from the competition by erasing your id

aaabbb ⊥⊥⊥ aaa bbb

bg=

Algorithm
Read-Write

To enter the Critical Section:

Take a snapshot. If all registers = ⊥ or your id appears:
• If there is an empty register, write your id
• Otherwise, the memory is full:

• If you own less than the average (regs that have your id):
withdraw from the competition by erasing your id

aaabbb bbb aaa bbb

bg=

Algorithm
Read-Write

To enter the Critical Section:

Take a snapshot. If all registers = ⊥ or your id appears:
• If there is an empty register, write your id
• Otherwise, the memory is full:

• If you own less than the average (regs that have your id):
withdraw from the competition by erasing your id

aaabbb bbb ⊥⊥⊥ bbb

bg=

Algorithm
Read-Write

To enter the Critical Section:

Take a snapshot. If all registers = ⊥ or your id appears:
• If there is an empty register, write your id
• Otherwise, the memory is full:

• If you own less than the average (regs that have your id):
withdraw from the competition by erasing your id

⊥⊥⊥bbb bbb ⊥⊥⊥ bbb

bg=

Algorithm
Read-Write

To enter the Critical Section:

Take a snapshot. If all registers = ⊥ or your id appears:
• If there is an empty register, write your id
• Otherwise, the memory is full:

• If you own less than the average (regs that have your id):
withdraw from the competition by erasing your id

⊥⊥⊥bbb bbb bbb bbb

bg=

Algorithm
Read-Write

To enter the Critical Section:

Take a snapshot. If all registers = ⊥ or your id appears:
• If there is an empty register, write your id
• Otherwise, the memory is full:

• If you own less than the average (regs that have your id):
withdraw from the competition by erasing your id

bbbbbb bbb bbb bbb

bg=

Algorithm
Read-Write

To enter the Critical Section:

Take a snapshot. If all registers = ⊥ or your id appears:
• If there is an empty register, write your id
• Otherwise, the memory is full:

If you own less than the average (regs that have your id):
withdraw from the competition by erasing your id

bbbbbb bbb bbb bbb

If your id appears in all registers, enter the Critical Section

bg=

Algorithm
Read-Write

To exit the Critical Section:
• Erase your id

bbbbbb bbb bbb bbb

bg=

Algorithm
Read-Write

To exit the Critical Section:
• Erase your id

bbb⊥⊥⊥ bbb bbb bbb

bg=

Algorithm
Read-Write

To exit the Critical Section:
• Erase your id

bbb⊥⊥⊥ ⊥⊥⊥ bbb bbb

bg=

Algorithm
Read-Write

To exit the Critical Section:
• Erase your id

bbb⊥⊥⊥ ⊥⊥⊥ ⊥⊥⊥ bbb

bg=

Algorithm
Read-Write

To exit the Critical Section:
• Erase your id

bbb⊥⊥⊥ ⊥⊥⊥ ⊥⊥⊥ ⊥⊥⊥

bg=

Algorithm
Read-Write

To exit the Critical Section:
• Erase your id

⊥⊥⊥⊥⊥⊥ ⊥⊥⊥ ⊥⊥⊥ ⊥⊥⊥

bg=

Algorithm
Read-Write

Mutual exclusion:
• A process enters the CS only if it owns all registers
• m > n regs: at most n − 1 can be overwritten while in CS

Deadlock-freedom:
• ∀ ` : 1 < ` ≤ n : gcd(`,m) = 1:
• Whatever the current number of participants (≥ 2),

once the memory is full,
at least one will withdraw and at least one will continue

bg=

Algorithm
Read-Modify-Write (Compare&Swap)

• RMW registers offering Compare&Swap:
• In addition to Read() and Write(v), a new operation:

Compare&Swap(old ,new)
• Effect:

• If the current value is old , replace it with new
• Otherwise, do nothing

Using Compare&Swap, Mutex also solvable for m = 1
⇒ not a big difference; the obstruction is not really linked to the
power of operations on individual registers

bg=

Algorithm
Read-Modify-Write (Compare&Swap)

The algorithm:
• To enter the CS:

• At each reg: try to impose your id using Compare&Swap()
• Scan the memory

• If a process owns more registers:
free your registers and
wait until memory is empty (another proc will enter first)

• Else: start again
• Until you own a majority of registers

• To exit the CS: reset all your registers to ⊥ using C&S

bg=

Algorithm
Read-Modify-Write (Compare&Swap)

Mutual exclusion:
• A process enters the CS only if it owns a majority
• Compare&Swap:

a process can only "capture" a register if it is empty
(cannot overwrite a process id)

Deadlock-freedom:
• ∀ ` : 1 < ` ≤ n : gcd(`,m) = 1:
• Whatever the current number of participants (≥ 2),

once the memory is full,
at least one will withdraw and at least one will continue

bg=

Conclusion

• Anonymous memory: a new communication model
• A tight characterization of the solvability of

symmetric deadlock-free mutual exclusion
• An interesting condition (not threshold-based)
• A new Read-Write mutex algorithm

(also works with a classical shared memory!)
• Another new algorithm based on Compare&Swap()

