Locality and Wait-free: Coloring

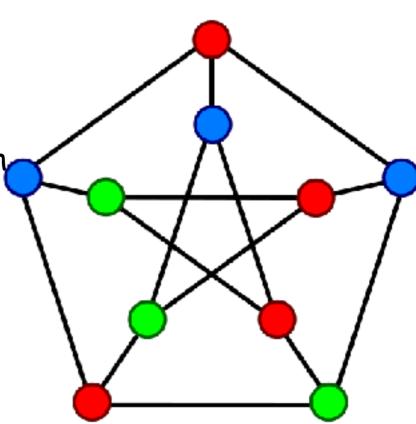
A. Castañeda, C. Delporte, H. Fauconnier, S. Rajsbaum, M. Raynal

Motivations

- Red-Blue:
 - log* versus tasks
 - local versus Wait-free
 - ANR displexity
- wait-free and communication graphs?
- What could be local wait-free?

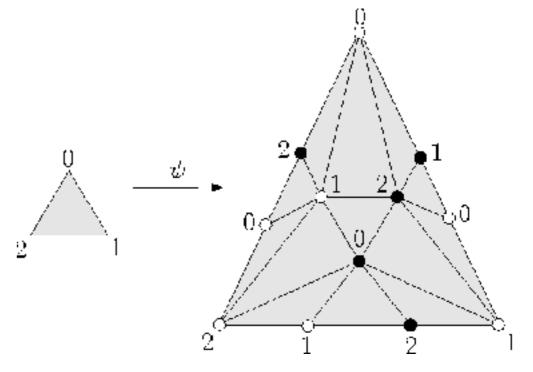
LOCAL and Graph coloring

- graphe G=(V,E)
 - coloring V->C s.t.:V(a)≠V(b) if (a,b)∈C
 - line: 2 colours, ring 3 colours (parity)
 - Locality (*LOCAL* model)
 - at each round processes exchange messages with the neighbours
 - (d rounds : information from nodes at distance
 d)
 - coloring on ring and trees:
 - $O(\log^* n \text{ rounds})$ (and $\Omega(\log^* n)$) Cole-Vishkin



Wait-free

- asynchronous processes.
 (Atomic) Shared Memory
- no wait: a process cannot wait for another process
 - any set of processes are able to terminate alone
 - (any number of process crashes)
- Wait-Free computation:
 - Tasks Input->Output
 - Many results...



Cole-Vishkin

 for paths, rings and trees colouring in 3 colours in O(log*n)

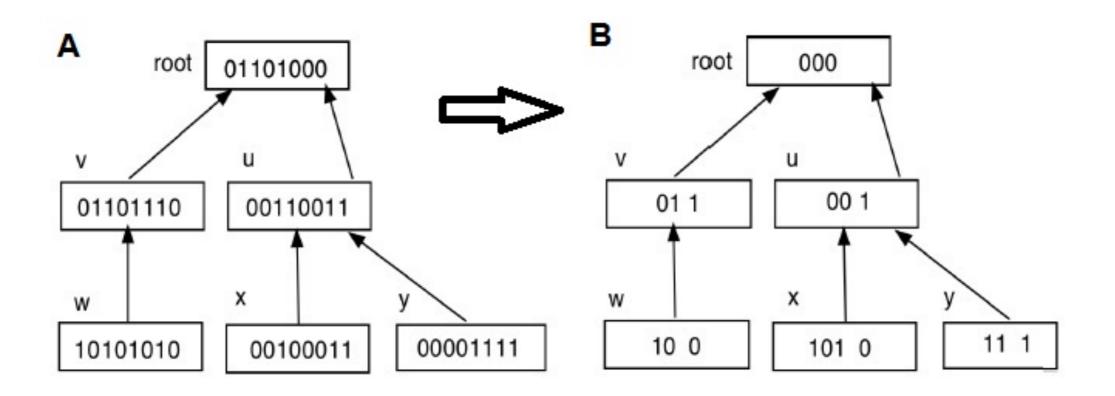
log*n = 0 si n≤1
 = 1+ log*(log n)

- 2 phases:
 - phase 1: reduce the number of colours to 6 (time : log* n)
 - phase 2: reduce the number of colours from 6 to 3 (time 3)

x	lg* <i>x</i>
(–∞, 1]	0
(1, 2]	1
(2, 4]	2
(4, 16]	3
(16, 65536]	4
(65536, 2 ⁶⁵⁵³⁶]	5

Algorithm

- 1: Each node *v* concurrently executes the following code:
- 2: Run Algorithm for $\log^* n$ rounds "6-Color" Cole Vishkin Algorithm
 - 1: Assume that initially the vertices are legally colored. each label only has $\log n$ bits
 - 2: The root assigns itself the label 0.
 - 3: Each other node v executes the following code (synchronously in parallel)
 - 4: send c_v to all children
 - 5: repeat
 - 6: receive c_p from parent
 - 7: interpret c_v and c_p as little-endian bit-strings: $c(k), \ldots, c(1), c(0)$
 - 8: let *i* be the smallest index where c_v and c_p differ
 - 9: the new label is *i* (as bitstring) followed by the bit $c_v(i)$ itself
 - 10: send c_v to all children
 - 11: until $c_w \in \{0, \ldots, 5\}$ for all nodes w

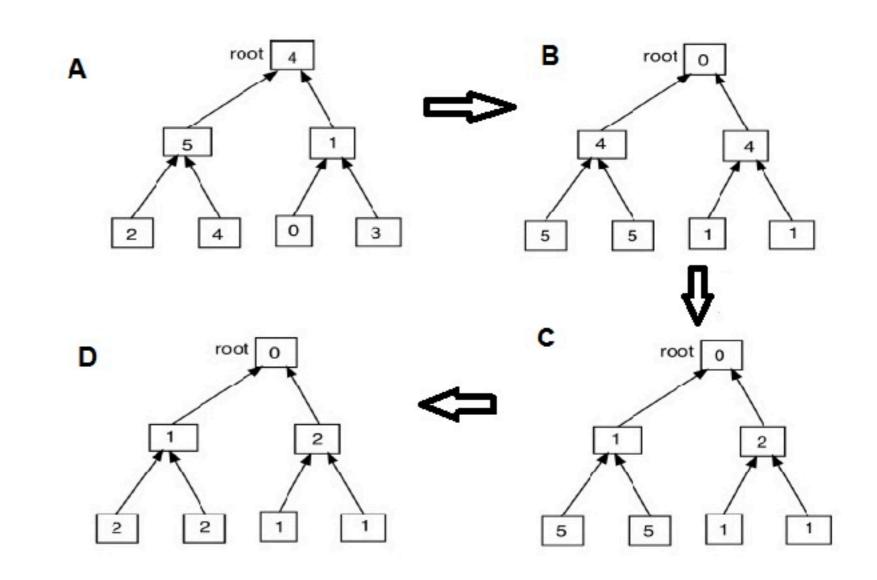


- 3: for x = 5, 4, 3 do
- 4: Perform subroutine Shift down
 - 1: Root chooses a new (different) color from $\{0, 1, 2\}$
 - 2: Each other node v concurrently executes the following code:
 - 3: Recolor v with the color of parent
- 5: if $c_v = x$ then
- 6: choose new color $c_v \in \{0, 1, 2\}$ using subroutine First Free

Give v the smallest admissible color {i.e., the smallest node color not used by any neighbor}

7: end if

8: end for

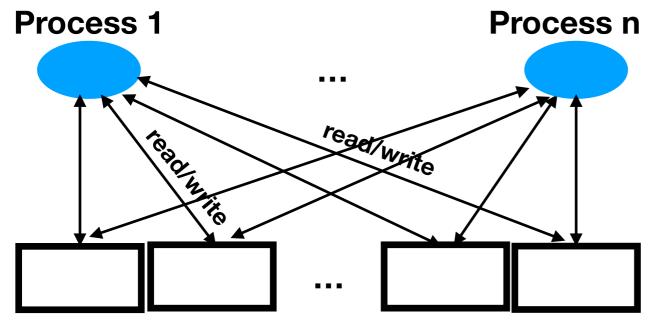


Model...

How to deal with « locality » in shared memory?

Communication graph:

Wait-free Model: shared memory MWMR

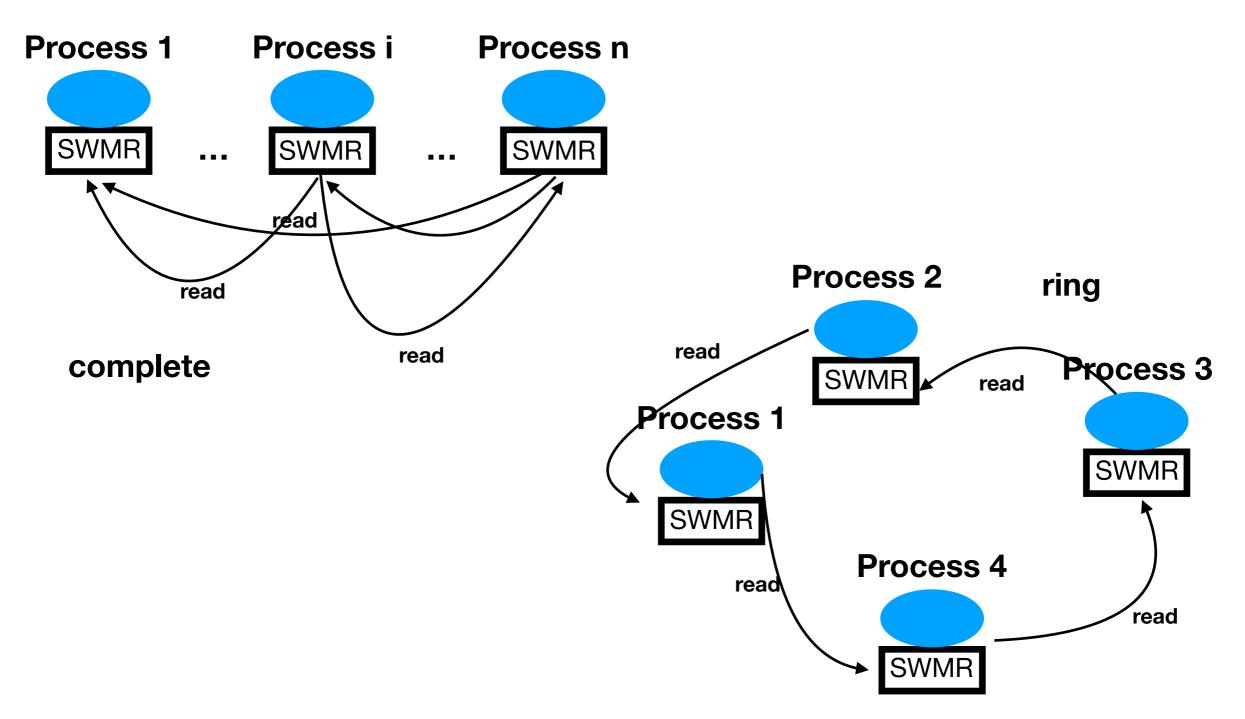


memory MWMR registers

Processes + communication layer

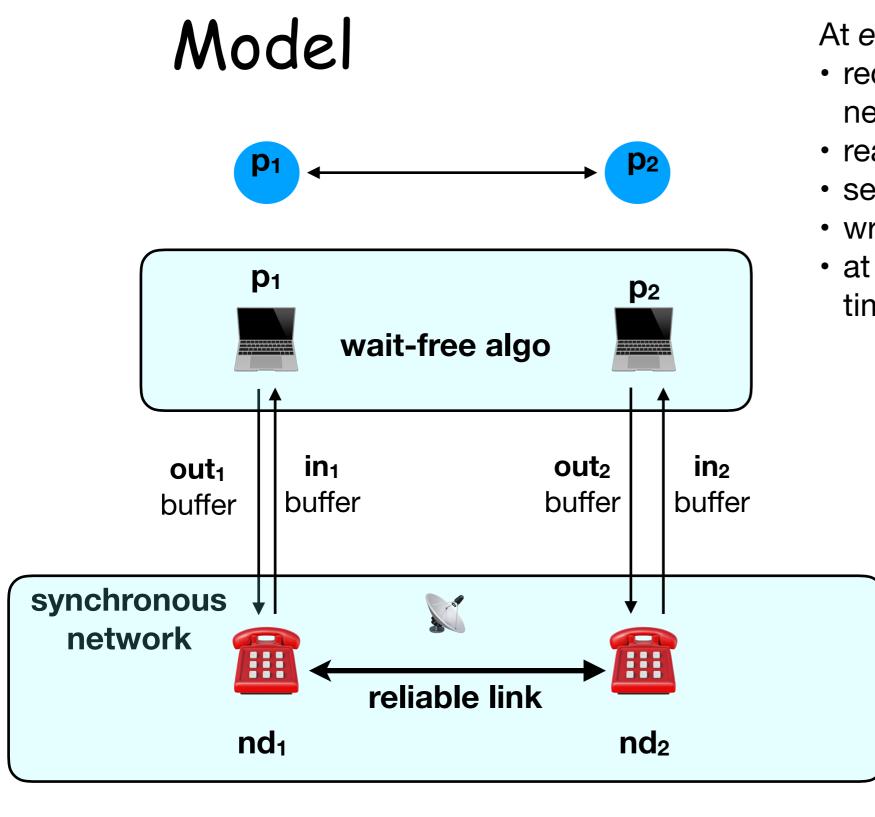
communication

SWMR



Model

- separate communication layer / processes
- Communication layer:
 - graph synchronous communication (round by round)
- Processes are asynchronous (may start at any time and be sleeping for any time) - communication by the way the communication layer (synchronous)
- global clock



At each round, nd_i :

- receives messages from its neighbours
- reads its buffer out_i
- sends all that to its neighbours
- writes that in *in_i*
- at each message is associated a timestamp ts from a global clock

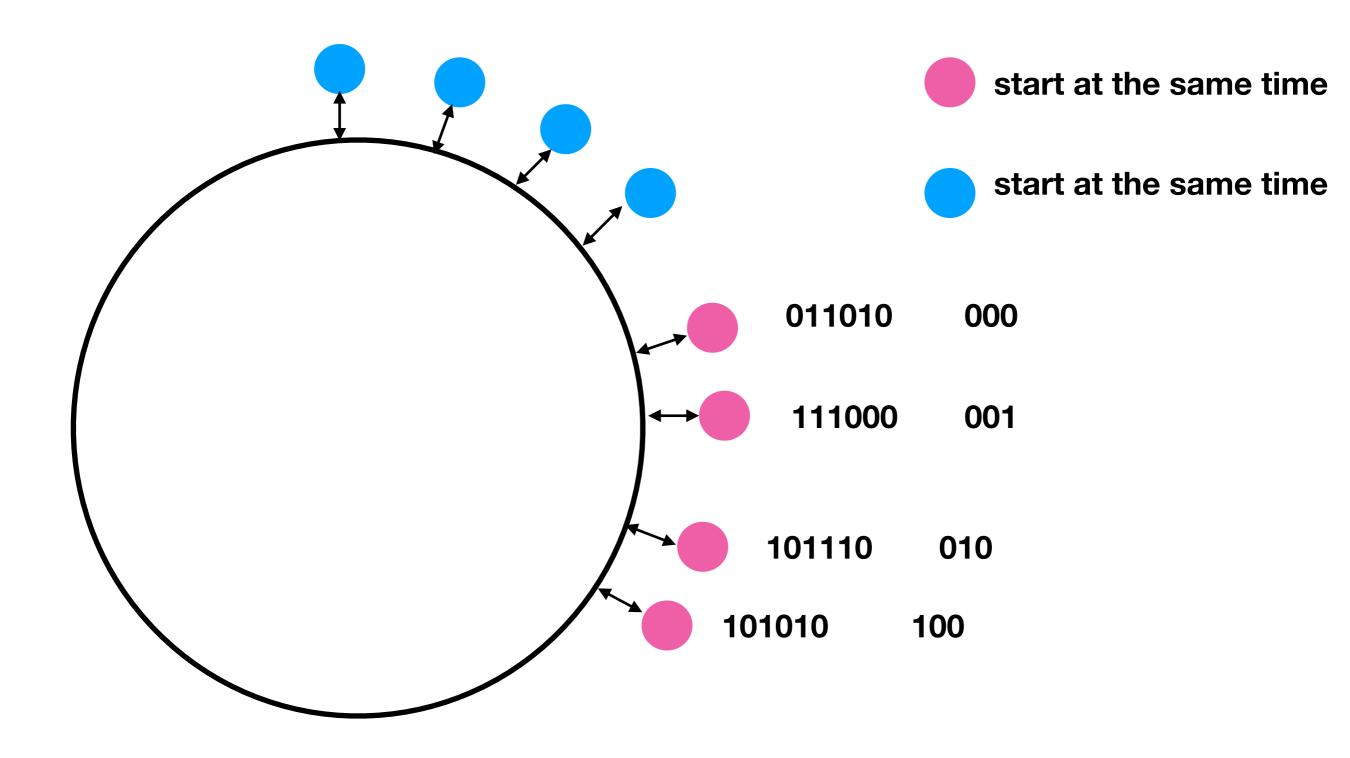
Process p_i is asynchronous

- reads in_i
- writes *out*_i

If p_i starts the algorithm at time *ts*, and p_j starts at time *ts*',

if $d(p_j, p_i) < ts - ts'$ then p_i gets all messages sent by p_j from time ts'to $ts' - d(p_j, p_i)$

If pi starts at time t, after D units of time pi can have information from processes in the graph at distance D



6 colors...

(01)when $r = st_i, st_i + 1, ..., (st_i - 1) + \log^* n$ do (02) begin synchronous round send COLOR $(0, st_i, color_i)$ to $next_i$ and $pred_i$; (03)receive msg_pred_i from $pred_i$; (04)(05) if $(msg_pred_i = COLOR(0, st_i, col))$ **then** x = first position (starting right at 0) where $color_i$ and col differ; (06)(07) $color_i \leftarrow bit$ string encoding the binary value of x followed at its right by b_x (first bit of $color_i$ where $color_i$ and col differ) (08)else p_i has no predecessor (it is an end process of its unit segment) it (09)considers $fict_pred_i$ as its predecessor and executes lines 06-08 (10)end if; (12)end synchronous round; % Here $color_i \in \{0, 1, \dots, 5\}$

3 colors

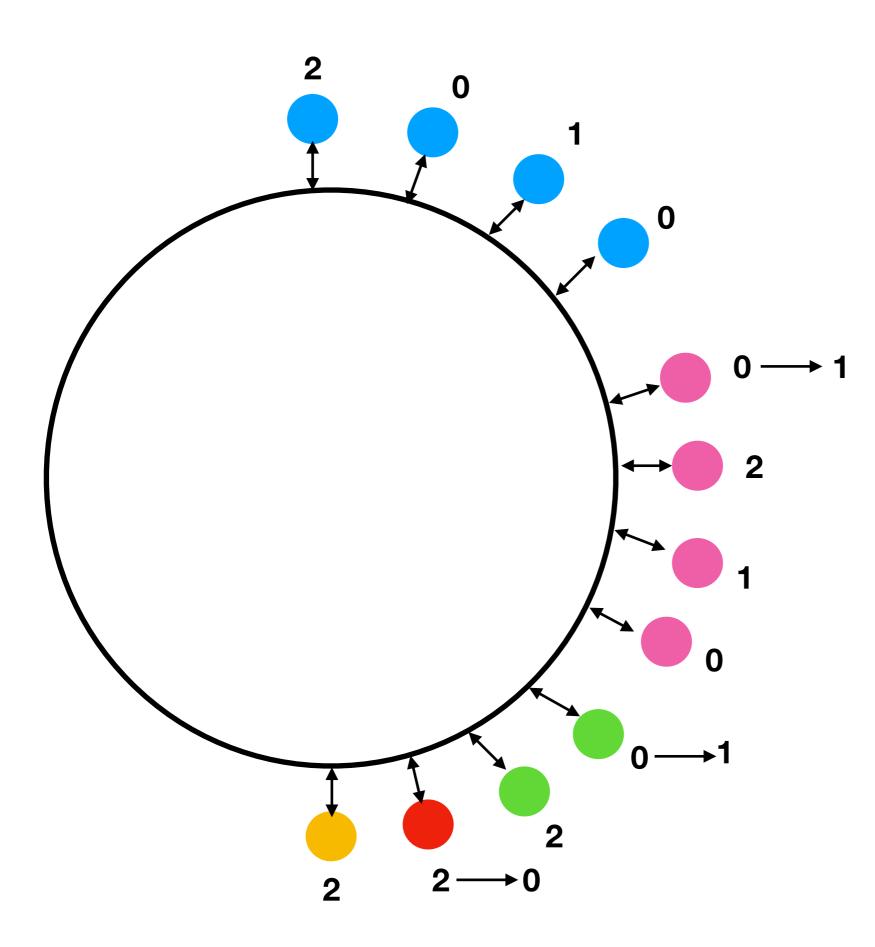
(13)when $r = (st_i - 1) + \log^* n + 1, (st_i - 1) + \log^* n + 2, (st_i - 1) + \log^* n + 3$ do (14)begin synchronous round send COLOR $(0, st_i, color_i)$ to $pred_i$ and $next_i$; (15) $color_set \leftarrow \emptyset;$ (16)if $COLOR(0, st_i, color_p)$ received from $pred_i$ (17)**then** $color_set \leftarrow color_set \cup color_p$ **end** if; (18) if $COLOR(0, st_i, color_n)$ received from $next_i$ then $color_set \leftarrow color_set \cup color_n$ end if: let k be $r - (st_i - 1 + \log^* n) + 2; \% k \in \{3, 4, 5\} \%$ (19)(20) if $(color_i = k)$ then $color_i \leftarrow$ any color from $\{0, 1, 2\} \setminus color_set$ end if (21)end synchronous round;

Change the left-end

= Part 3 : color_i can be changed only if p_i is the left end of its unit-segment $(22)\overline{\mathbf{when } r} = (st_i - 1) + \log^* n + 4 \mathbf{do}$ (23) begin synchronous round send COLOR(1, $color_i$) to $pred_i$ and $next_i$; (24)(25)for each $j \in \{1, 2, 3\}$ do (26)if (COLOR(j, color)) received from $pred_i$ in a round $\leq r$) then $color_i[j, pred_i] \leftarrow color$ end if; (27)if (COLOR(j, color)) received from $next_i$ in a round $\leq r$) then $color_i[j, next_i] \leftarrow color$ end if (28)end for; (29)if $(st_i > st_i [pred_i])$ then $\ \% p_i$ has not priority (30)case $(st_i = st_i [next_i])$ then $color_i \leftarrow a \ color \ in \ \{0, 1, 2\} \setminus \{color_i[2, pred_i], color_i[1, next_i]\}$ (31) $(st_i > st_i [next_i])$ then $color_i \leftarrow a \ color \ in \ \{0, 1, 2\} \setminus \{color_i[2, pred_i], color_i[2, next_i]\}$ $(st_i < st_i[next_i])$ then $color_i \leftarrow a$ color in $\{0, 1, 2\} \setminus \{color_i[2, pred_i]\}$ (32)(33)end case (34)end if (35)end synchronous round;

Change the right end

Part 4 : $color_i$ can be changed only if p_i is the right end of its unit-segment $(36)\overline{\mathbf{when } r} = (st_i - 1) + \log^* n + 5 \mathbf{ do}$ (37)begin synchronous round send COLOR(2, $color_i$) to $pred_i$ and $next_i$; (38)same statements as in lines 25-28; (39)if $(st_i > st_i [next_i])$ then $\% p_i$ has not priority (40)case $(st_i = st_i [pred_i])$ then (41) $color_i \leftarrow a \ color \ in \ \{0, 1, 2\} \setminus \{color_i[2, pred_i], color_i[3, next_i]\}$ $(st_i > st_i [pred_i])$ then (42) $color_i \leftarrow a \ color \ in \ \{0, 1, 2\} \setminus \{color_i[3, pred_i], color_i[3, next_i]\}$ $(st_i < st_i [pred_i])$ then $color_i \leftarrow a$ color in $\{0, 1, 2\} \setminus \{color_i [3, next_i]\}$ (43)(44)end case end if (45)(46)end synchronous round; = Additional round to inform the neighbors that will start later (47)when $r = (st_i - 1) + \log^* n + 6$ do send $COLOR(3, color_i)$ to $pred_i$ and $next_i$; (48)return $(color_i)$.



asynchronous

- only the first message is interesting
- communication only the starting message
- each process may simulate (alone) its part of the algorithm with only these starting messages
- (a process may sleep for a while)

Conclusion

- log* for blue people
- and for a tree?
 - guess: impossible but...
- Wait-free on network?