

Contention-Related Crash Failures

<u>Anaïs Durand</u>^{*}, Michel Raynal^{*,†}, and Gadi Taubenfeld[‡]

* IRISA, Université de Rennes, France
 † Polytechnic University, Hong Kong
 ‡ Interdisciplinary Center, Herzliya, Israel

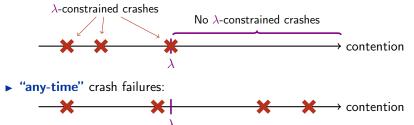
October 1st, 2018

Contention-Related Crash Failures

- Asynchronous deterministic system
- *n* processes p_1, \ldots, p_n
- Atomic read/write registers
- Process crashes
- Participation required

Contention = # processes that accessed a shared register

- $\lambda = \text{predefined contention threshold}$
- 2 kinds of crash failures:
 - λ-constrained crash failures:



Consensus:

- ▶ [Fischer et al., 85]: Impossible with one any-time crash failure.
- ► [Taubenfeld, 18]: Algorithm that tolerates one (n 1)-constrained crash failure for n > 1.

• *k*-Set Agreement, $1 \le k < n$:

- ▶ [Borowsky, Gafni, 93]: Impossible with k any-time crash failures.
- [Taubenfeld, 18]: Algorithm that tolerates ℓ + k − 2 (n − ℓ)-constrained crash failures for ℓ ≥ 1 and n ≥ 2ℓ + k − 2.

Consider a problem P that can be solved with t any-time crash failures.

Given λ , can P be solved with both $t_1 \ \lambda$ -constrained and t_2 any-time crash failures, with $t_1 + t_2 > t$?

We consider here: k-set agreement (for $k \ge 2$) and renaming

k-Set Agreement

Contention-Related Crash Failures

Definition

- One-shot object
- Operation propose(v): propose value v and return a decided value

Properties:

- Validity: decided value = proposed value
- ► Agreement: ≤ k decided values
- Termination: every correct process decides

k-Set Agreement Algorithm: Properties

 $\lambda = n - k$

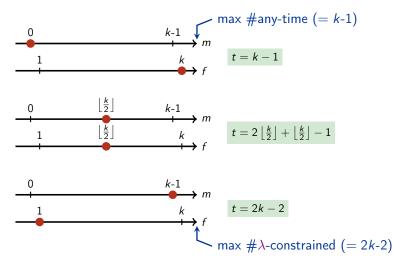
■ k = m + f, $m \ge 0$, $f \ge 1$

total # of faults	t=2m+f-1=k+m-1
λ -constrained crashes	2 <i>m</i>
any-time crashes	f-1

[Borowsky, Gafni, 93]: Impossible with k any-time crash failures.

k-Set Agreement: Parameters

Parameters f and m allow the user to **tune** the proportion of each type of crash failures.



DEC: atomic register, initially \perp

■ PART[1...,n]: snapshot object, initially [down,...,down]

Atomic (linearizable) operations write() and snapshot()

- ➤ array of single-writer multi-reader atomic register PART[1...n] such that:
 - p_i invokes write(v) = writes v into PART[i]
 - *p_i* invokes *snapshot*() = obtains the value of the array *PART*[1...*n*] as if it read simultaneously and instantaneously all its entries

k-Set Agreement: Shared Registers (2/2)

■ *MUTEX*[1]: one-shot deadlock-free *f*-mutex

■ *MUTEX*[2]: one-shot deadlock-free *m*-mutex

- Operations acquire() and release() (invoked at most once)
- Properties:
 - Mutual exclusion: $\leq m$ processes simultaneously in critical section
 - Deadlock-freedom: if < m processes crashes, then ≥ 1 process invoking acquire() terminates its invocation

operation $propose(in_i)$ is

(1) **PART.write**(up);

% signal participation

operation $propose(in_i)$ is

(1) PART.write(up);

% signal participation

(2) repeat
(3)
$$part_i := PART.snapshot();$$
 % wait for $n - t$
(4) $count_i := |\{x \text{ such that } part_i[x] = up\}|;$ % participants

(5) until *count*_i $\geq n - t$ end repeat;

operation $propose(in_i)$ is **PART**.write(up); (1)% signal participation repeat $part_i := PART.snapshot();$ (3) % wait for n - t*count*_{*i*} := $|\{x \text{ such that } part_i[x] = up\}|;$ (4)% participants until *count*_i $\geq n - t$ end repeat; (5)if $count_i < n - k$ then (6)% split processes into groups $group_i := 2;$ $\% \rightsquigarrow MUTEX[2] (m-mutex)$ else (8)(9) $group_i := 1;$ $\% \rightsquigarrow MUTEX[1]$ (f-mutex) end if

operation $propose(in_i)$ is **PART**.write(up); (1)% signal participation repeat $part_i := PART.snapshot();$ (3) % wait for n - t*count*_{*i*} := $|\{x \text{ such that } part_i[x] = up\}|;$ (4)% participants until *count*_i $\geq n - t$ end repeat; (5)if $count_i < n - k$ then (6)% split processes into groups $group_i := 2;$ $\% \rightsquigarrow MUTEX[2] (m-mutex)$ (7)else (8)(9) $group_i := 1;$ $\% \rightsquigarrow MUTEX[1]$ (f-mutex) end if launch in // the threads T_1 and T_2 ;

thread T_1 is					
(1)	loop forever				
(2)	if $DEC \neq \bot$ then				
(3)	return(<i>DEC</i>);				
(4)	end if;				
(5)	end loop;				

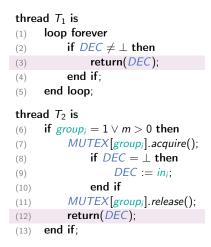
% wait for a decided value

thre	ad T_1 is	% wait for
(1)	loop forever	
(2)	if $DEC \neq \bot$ then	
(3)	return(<i>DEC</i>);	
(4)	end if;	
(5)	end loop;	
thre	ad T_2 is	% decide a
(6)	if $group_i = 1 \lor m > 0$ then	
(7)	<i>MUTEX</i> [group _i].acquire();	
(8)	if $DEC = \bot$ then	
(9)	$DEC := in_i;$	
(10)	end if	
(11)	<i>MUTEX</i> [group _i].release();	
(12)	return(<i>DEC</i>);	
(13)	end if;	

% wait for a decided value

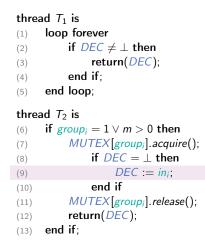
% decide a value if enters its CS

k-Set Agreement Algorithm: Validity & Agreement



a Decided value = *DEC*

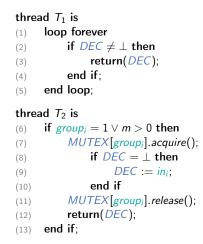
k-Set Agreement Algorithm: Validity & Agreement



a Decided value = *DEC*

DEC assigned to proposed values *in_i* in CS

k-Set Agreement Algorithm: Validity & Agreement



- Decided value = DEC
- **DEC** assigned to proposed values *in_i* in CS
- $\begin{array}{ll} \textbf{C} \quad MUTEX[1] \rightsquigarrow \leq f \neq \text{values} \\ MUTEX[2] \rightsquigarrow \leq m \neq \text{values} \end{array}$

 $\Rightarrow \leq f + m = k$ decided values

k-Set Agreement Algorithm: Termination

(1) **PART.write(up)**;

(2) repeat

- $(3) \quad part_i := PART.snapshot();$
- (4) $count_i := |\{x \text{ such that } part_i[x] = up\}|;$
- (5) **until** $count_i \ge n t$ end repeat;
- a $\leq t$ crashes + participation required \rightsquigarrow eventually $count_i \geq n - t$ at every correct process p_i

k-Set Agreement Algorithm: Termination

- (6) if $count_i \le n k$ then (7) $group_i := 2;$ (8) else (9) $group_i := 1;$ (10) end if
- a $\leq t$ crashes + participation required \rightsquigarrow eventually *count*_i $\geq n - t$ at every correct process p_i

b
$$group_i = 1 \Rightarrow count_i > n - k = \lambda$$

→ no λ-constrained crashes among participants of group 1 → ≤ f - 1 crashes in *f*-mutex *MUTEX*[1] a $\leq t$ crashes + participation required \rightsquigarrow eventually *count*_i $\geq n - t$ at every correct process p_i

group_i = 1 ⇒ count_i > n − k = λ
 ~ no λ-constrained crashes among participants of group 1
 ~ ≤ f − 1 crashes in f-mutex MUTEX[1]

If ≥ 1 correct process ∈ group 1 → ≥ 1 of them decides
 otherwise (some maths) → ≤ m − 1 crashes in m-mutex MUTEX[2]
 & ≥ 1 correct process in group 2 → ≥ 1 of them decides

Renaming

Anaïs Durand

Contention-Related Crash Failures

Definition

- Initial name: *id_i*
- New name space: {1...*M*}
- Operation rename(id_i): return a new name
- Properties:
 - ▶ Validity: new name $\in \{1 \dots M\}$
 - Agreement: no 2 same new names
 - Termination: invokation of rename() by a correct process terminates

Renaming Algorithm: Properties

$$M = n + f$$

$$\lambda = n - t - 1$$

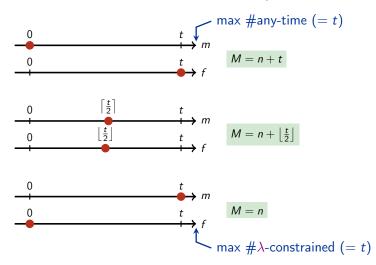
■
$$t = m + f$$
, $m \ge 0$, $f \ge 0$

total # of faults	t = m + f
λ -constrained crashes	т
any-time crashes	f

[Herlihy, Shavit, 93]: Impossible with f + 1 any-time crash failures.

Renaming Algorithm: Parameters

Parameters f and m allow the user to **tune** the proportion of each type of crash failures and the size of the new name space.



Contention-Related Crash Failures

■ *PART*[1...,n]: snapshot object, initially [down,...,down]

■ *RENAMING*_f: (*n* + *f*)-renaming object that:

- tolerates $\leq f$ any-time crash failures
- does not require participation
- e.g. [Attiya, Welch, 04]

operation rename(id_i) is

- PART.write(up);
- (2) repeat
- $(3) \quad part_i := PART.snapshot();$

(4)
$$count_i := |\{x \text{ such that } part_i[x] = up\}|;$$

(5) **until** $count_i \ge n - t$ end repeat;

- % signal participation
- % wait for n-t
- % participants

operation rename(id_i) is

- PART.write(up);
- (2) repeat

 $(3) \quad part_i := PART.snapshot();$

- (4) $count_i := |\{x \text{ such that } part_i[x] = up\}|;$
- % signal participation
- % wait for n-t
- % participants

(5) until *count*_i $\geq n - t$ end repeat;

```
(6) newName_i := RENAMING_f.rename(id_i); % get
```

(7) **return**(*newName_i*);

% get new name

Renaming Algorithm: Proof

```
(1) PART.write(up);
```

(2) repeat

- (3) $part_i := PART.snapshot();$
- (4) $count_i := |\{x \text{ such that } part_i[x] = up\}|;$
- (5) until *count*_i $\geq n t$ end repeat;
- a $\leq t$ crashes + participation required \rightsquigarrow eventually $count_i \geq n - t$ at every correct process p_i

Renaming Algorithm: Proof

PART.write(up);

(2) repeat

- (3) $part_i := PART.snapshot();$
- (4) $count_i := |\{x \text{ such that } part_i[x] = up\}|;$
- (5) until *count*_i $\geq n t$ end repeat;
- a ≤ t crashes + participation required
 → eventually count_i ≥ n − t at every correct process p_i
- **b** $n t > \lambda \rightsquigarrow$ no λ -constrained crashes in *RENAMING*_f $\rightsquigarrow \leq f$ crashes in *RENAMING*_f

PART.write(up);

(2) repeat

- $(3) \quad part_i := PART.snapshot();$
- (4) $count_i := |\{x \text{ such that } part_i[x] = up\}|;$
- (5) until *count*_i $\geq n t$ end repeat;
- a ≤ t crashes + participation required
 → eventually count_i ≥ n − t at every correct process p_i
- **b** $n t > \lambda \rightsquigarrow$ no λ -constrained crashes in *RENAMING*_f $\rightsquigarrow \leq f$ crashes in *RENAMING*_f
- **c** participation not required for *RENAMING*_f + properties of *RENAMING*_f

 \rightsquigarrow validity, agreement, & termination

Notion of contention-related crash failures

Allows to circumvent impossibility results

- Future work:
 - ► Tight bounds?
 - General algorithm for k-set agreement, $k \ge 1$.

Generalization to One-Shot Concurrent Objects

Transform OB = one-shot object tolerating < X any-time crashes, participation not required

$$\lambda = n - t - 1$$

•
$$t = m + f$$
, $m \ge 0$, $0 \le f \le X$

total # of faults	t = m + f
λ -constrained crashes	т
any-time crashes	$f \leq X$

operation $op(in_i)$ is

(2) repeat

$$(3) \quad part_i := PART.snapshot();$$

- (4) $count_i := |\{x \text{ such that } part_i[x] = up\}|;$
- (5) until *count*_i $\geq n t$ end repeat;

(6)
$$res_i := OB.op(in_i);$$

(7) return(res_i);