
Contention-Related Crash Failures

Anaïs Durand*, Michel Raynal*,†, and Gadi Taubenfeld‡

∗ IRISA, Université de Rennes, France
† Polytechnic University, Hong Kong

‡ Interdisciplinary Center, Herzliya, Israel

October 1st, 2018

Anaïs Durand Contention-Related Crash Failures
1/24

Computational Model

� Asynchronous deterministic system
� n processes p1, . . . , pn

� Atomic read/write registers
� Process crashes
� Participation required

Anaïs Durand Contention-Related Crash Failures
2/24

Contention-Related Crash Failures [Taubenfeld,18]

� Contention = # processes that accessed a shared register

� λ = predefined contention threshold

� 2 kinds of crash failures:
I λ-constrained crash failures:

contention
λ

No λ-constrained crashes
λ-constrained crashes

I “any-time” crash failures:
contention

λ

Anaïs Durand Contention-Related Crash Failures
3/24

Contention-Related vs. Any-Time Crash Failures

� Consensus:
I [Fischer et al., 85]: Impossible with one any-time crash failure.

I [Taubenfeld, 18]: Algorithm that tolerates one (n − 1)-constrained
crash failure for n > 1.

� k-Set Agreement, 1 ≤ k < n:
I [Borowsky, Gafni, 93]: Impossible with k any-time crash failures.

I [Taubenfeld, 18]: Algorithm that tolerates `+ k − 2 (n− `)-constrained
crash failures for ` ≥ 1 and n ≥ 2`+ k − 2.

Anaïs Durand Contention-Related Crash Failures
4/24

Motivation

Consider a problem P that can be solved with t any-time crash failures.

Given λ, can P be solved with both

t1 λ-constrained

and

t2 any-time

crash failures, with t1 + t2 > t?

We consider here: k-set agreement (for k ≥ 2) and renaming

Anaïs Durand Contention-Related Crash Failures
5/24

k-Set Agreement

Anaïs Durand Contention-Related Crash Failures
6/24

k-Set Agreement [Chaudhuri,90]

Definition

� One-shot object

� Operation propose(v): propose value v and return a decided value

� Properties:
I Validity: decided value = proposed value
I Agreement: ≤ k decided values
I Termination: every correct process decides

Anaïs Durand Contention-Related Crash Failures
7/24

k-Set Agreement Algorithm: Properties

� λ = n − k

� k ≥ 2
� k = m + f , m ≥ 0, f ≥ 1

total # of faults t = 2m + f − 1 = k +m − 1

λ-constrained crashes 2m

any-time crashes f − 1

[Borowsky, Gafni, 93]: Impossible with k any-time crash failures.

Anaïs Durand Contention-Related Crash Failures
8/24

k-Set Agreement: Parameters

Parameters f and m allow the user to tune the proportion of each type
of crash failures.

m

f

0 k-1

1 k t = k − 1

max #any-time (= k-1)

m

f

0 k-1
⌊
k
2

⌋
1 k

⌊
k
2

⌋
t = 2

⌊
k
2

⌋
+

⌊
k
2

⌋
− 1

m

f

0 k-1

1 k t = 2k − 2

max #λ-constrained (= 2k-2)

Anaïs Durand Contention-Related Crash Failures
9/24

k-Set Agreement: Shared Registers (1/2)

� DEC : atomic register, initially ⊥

� PART [1 . . . n]: snapshot object, initially [down, . . . , down]

I Atomic (linearizable) operations write() and snapshot()

I ≈ array of single-writer multi-reader atomic register
PART [1 . . . n] such that:
• pi invokes write(v) = writes v into PART [i]
• pi invokes snapshot() = obtains the value of the array

PART [1 . . . n] as if it read simultaneously and
instantaneously all its entries

Anaïs Durand Contention-Related Crash Failures
10/24

k-Set Agreement: Shared Registers (2/2)

� MUTEX [1]: one-shot deadlock-free f -mutex

� MUTEX [2]: one-shot deadlock-free m-mutex

I Operations acquire() and release() (invoked at most
once)

I Properties:
• Mutual exclusion: ≤ m processes simultaneously in critical

section
• Deadlock-freedom: if < m processes crashes, then ≥ 1

process invoking acquire() terminates its invocation

Anaïs Durand Contention-Related Crash Failures
11/24

k-Set Agreement Algorithm (1/2)

operation propose(ini) is

(1) PART .write(up); % signal participation

(2) repeat
(3) parti := PART .snapshot(); % wait for n − t

(4) counti := |{x such that parti [x] = up}|; % participants
(5) until counti ≥ n − t end repeat;

(6) if counti ≤ n − k then % split processes into groups
(7) groupi := 2; % MUTEX [2] (m-mutex)
(8) else
(9) groupi := 1; % MUTEX [1] (f-mutex)
(10) end if

(11) launch in // the threads T1 and T2;

Anaïs Durand Contention-Related Crash Failures
12/24

k-Set Agreement Algorithm (1/2)

operation propose(ini) is

(1) PART .write(up); % signal participation

(2) repeat
(3) parti := PART .snapshot(); % wait for n − t

(4) counti := |{x such that parti [x] = up}|; % participants
(5) until counti ≥ n − t end repeat;

(6) if counti ≤ n − k then % split processes into groups
(7) groupi := 2; % MUTEX [2] (m-mutex)
(8) else
(9) groupi := 1; % MUTEX [1] (f-mutex)
(10) end if

(11) launch in // the threads T1 and T2;

Anaïs Durand Contention-Related Crash Failures
12/24

k-Set Agreement Algorithm (1/2)

operation propose(ini) is

(1) PART .write(up); % signal participation

(2) repeat
(3) parti := PART .snapshot(); % wait for n − t

(4) counti := |{x such that parti [x] = up}|; % participants
(5) until counti ≥ n − t end repeat;

(6) if counti ≤ n − k then % split processes into groups
(7) groupi := 2; % MUTEX [2] (m-mutex)
(8) else
(9) groupi := 1; % MUTEX [1] (f-mutex)
(10) end if

(11) launch in // the threads T1 and T2;

Anaïs Durand Contention-Related Crash Failures
12/24

k-Set Agreement Algorithm (1/2)

operation propose(ini) is

(1) PART .write(up); % signal participation

(2) repeat
(3) parti := PART .snapshot(); % wait for n − t

(4) counti := |{x such that parti [x] = up}|; % participants
(5) until counti ≥ n − t end repeat;

(6) if counti ≤ n − k then % split processes into groups
(7) groupi := 2; % MUTEX [2] (m-mutex)
(8) else
(9) groupi := 1; % MUTEX [1] (f-mutex)
(10) end if

(11) launch in // the threads T1 and T2;

Anaïs Durand Contention-Related Crash Failures
12/24

k-Set Agreement Algorithm (2/2)

thread T1 is % wait for a decided value
(1) loop forever
(2) if DEC 6= ⊥ then
(3) return(DEC);
(4) end if;
(5) end loop;

thread T2 is % decide a value if enters its CS
(6) if groupi = 1 ∨m > 0 then
(7) MUTEX [groupi].acquire();
(8) if DEC = ⊥ then
(9) DEC := ini ;
(10) end if
(11) MUTEX [groupi].release();
(12) return(DEC);
(13) end if;

Anaïs Durand Contention-Related Crash Failures
13/24

k-Set Agreement Algorithm (2/2)

thread T1 is % wait for a decided value
(1) loop forever
(2) if DEC 6= ⊥ then
(3) return(DEC);
(4) end if;
(5) end loop;

thread T2 is % decide a value if enters its CS
(6) if groupi = 1 ∨m > 0 then
(7) MUTEX [groupi].acquire();
(8) if DEC = ⊥ then
(9) DEC := ini ;
(10) end if
(11) MUTEX [groupi].release();
(12) return(DEC);
(13) end if;

Anaïs Durand Contention-Related Crash Failures
13/24

k-Set Agreement Algorithm: Validity & Agreement

thread T1 is
(1) loop forever
(2) if DEC 6= ⊥ then
(3) return(DEC);
(4) end if;
(5) end loop;

thread T2 is
(6) if groupi = 1 ∨m > 0 then
(7) MUTEX [groupi].acquire();
(8) if DEC = ⊥ then
(9) DEC := ini ;
(10) end if
(11) MUTEX [groupi].release();
(12) return(DEC);
(13) end if;

a Decided value = DEC

b DEC assigned to proposed
values ini in CS

c MUTEX [1] ≤ f 6= values
MUTEX [2] ≤ m 6= values

⇒ ≤ f +m = k decided values

Anaïs Durand Contention-Related Crash Failures
14/24

k-Set Agreement Algorithm: Validity & Agreement

thread T1 is
(1) loop forever
(2) if DEC 6= ⊥ then
(3) return(DEC);
(4) end if;
(5) end loop;

thread T2 is
(6) if groupi = 1 ∨m > 0 then
(7) MUTEX [groupi].acquire();
(8) if DEC = ⊥ then
(9) DEC := ini ;
(10) end if
(11) MUTEX [groupi].release();
(12) return(DEC);
(13) end if;

a Decided value = DEC

b DEC assigned to proposed
values ini in CS

c MUTEX [1] ≤ f 6= values
MUTEX [2] ≤ m 6= values

⇒ ≤ f +m = k decided values

Anaïs Durand Contention-Related Crash Failures
14/24

k-Set Agreement Algorithm: Validity & Agreement

thread T1 is
(1) loop forever
(2) if DEC 6= ⊥ then
(3) return(DEC);
(4) end if;
(5) end loop;

thread T2 is
(6) if groupi = 1 ∨m > 0 then
(7) MUTEX [groupi].acquire();
(8) if DEC = ⊥ then
(9) DEC := ini ;
(10) end if
(11) MUTEX [groupi].release();
(12) return(DEC);
(13) end if;

a Decided value = DEC

b DEC assigned to proposed
values ini in CS

c MUTEX [1] ≤ f 6= values
MUTEX [2] ≤ m 6= values

⇒ ≤ f +m = k decided values

Anaïs Durand Contention-Related Crash Failures
14/24

k-Set Agreement Algorithm: Termination

(1) PART .write(up);
(2) repeat
(3) parti := PART .snapshot();
(4) counti := |{x such that parti [x] = up}|;
(5) until counti ≥ n − t end repeat;

a ≤ t crashes + participation required
 eventually counti ≥ n − t at every correct process pi

b groupi = 1⇒ counti > n − k = λ
 no λ-constrained crashes among participants of group 1
 ≤ f − 1 crashes in f -mutex MUTEX [1]

c If ≥ 1 correct process ∈ group 1 ≥ 1 of them decides
otherwise (some maths) ≤ m− 1 crashes in m-mutex MUTEX [2]

& ≥ 1 correct process in group 2 ≥ 1 of them decides

Anaïs Durand Contention-Related Crash Failures
15/24

k-Set Agreement Algorithm: Termination

(6) if counti ≤ n − k then
(7) groupi := 2;
(8) else
(9) groupi := 1;
(10) end if

a ≤ t crashes + participation required
 eventually counti ≥ n − t at every correct process pi

b groupi = 1⇒ counti > n − k = λ
 no λ-constrained crashes among participants of group 1
 ≤ f − 1 crashes in f -mutex MUTEX [1]

c If ≥ 1 correct process ∈ group 1 ≥ 1 of them decides
otherwise (some maths) ≤ m− 1 crashes in m-mutex MUTEX [2]

& ≥ 1 correct process in group 2 ≥ 1 of them decides

Anaïs Durand Contention-Related Crash Failures
15/24

k-Set Agreement Algorithm: Termination

a ≤ t crashes + participation required
 eventually counti ≥ n − t at every correct process pi

b groupi = 1⇒ counti > n − k = λ
 no λ-constrained crashes among participants of group 1
 ≤ f − 1 crashes in f -mutex MUTEX [1]

c If ≥ 1 correct process ∈ group 1 ≥ 1 of them decides
otherwise (some maths) ≤ m− 1 crashes in m-mutex MUTEX [2]

& ≥ 1 correct process in group 2 ≥ 1 of them decides

Anaïs Durand Contention-Related Crash Failures
15/24

Renaming

Anaïs Durand Contention-Related Crash Failures
16/24

Renaming [Attiya et al.,90]

Definition

� Initial name: idi
� New name space: {1 . . .M}
� Operation rename(idi): return a new name
� Properties:
I Validity: new name ∈ {1 . . .M}
I Agreement: no 2 same new names
I Termination: invokation of rename() by a correct process terminates

Anaïs Durand Contention-Related Crash Failures
17/24

Renaming Algorithm: Properties

� M = n + f

� λ = n − t − 1
� t = m + f , m ≥ 0, f ≥ 0

total # of faults t = m + f

λ-constrained crashes m

any-time crashes f

[Herlihy, Shavit, 93]: Impossible with f + 1 any-time crash failures.

Anaïs Durand Contention-Related Crash Failures
18/24

Renaming Algorithm: Parameters

Parameters f and m allow the user to tune the proportion of each type
of crash failures and the size of the new name space.

m

f

0 t

0 t M = n + t

max #any-time (= t)

m

f

0 t
⌈
t
2

⌉
0 t

⌊
t
2

⌋
M = n +

⌊
t
2

⌋

m

f

0 t

0 t M = n

max #λ-constrained (= t)

Anaïs Durand Contention-Related Crash Failures
19/24

Renaming Algorithm: Shared Registers

� PART [1 . . . n]: snapshot object, initially [down, . . . , down]

� RENAMING f : (n + f)-renaming object that:
I tolerates ≤ f any-time crash failures
I does not require participation

e.g. [Attiya, Welch, 04]

Anaïs Durand Contention-Related Crash Failures
20/24

Renaming Algorithm

operation rename(idi) is

(1) PART .write(up); % signal participation
(2) repeat
(3) parti := PART .snapshot(); % wait for n − t

(4) counti := |{x such that parti [x] = up}|; % participants
(5) until counti ≥ n − t end repeat;

(6) newNamei := RENAMING f .rename(idi); % get new name
(7) return(newNamei);

Anaïs Durand Contention-Related Crash Failures
21/24

Renaming Algorithm

operation rename(idi) is

(1) PART .write(up); % signal participation
(2) repeat
(3) parti := PART .snapshot(); % wait for n − t

(4) counti := |{x such that parti [x] = up}|; % participants
(5) until counti ≥ n − t end repeat;

(6) newNamei := RENAMING f .rename(idi); % get new name
(7) return(newNamei);

Anaïs Durand Contention-Related Crash Failures
21/24

Renaming Algorithm: Proof

(1) PART .write(up);
(2) repeat
(3) parti := PART .snapshot();
(4) counti := |{x such that parti [x] = up}|;
(5) until counti ≥ n − t end repeat;

a ≤ t crashes + participation required
 eventually counti ≥ n − t at every correct process pi

b n − t > λ no λ-constrained crashes in RENAMING f

 ≤ f crashes in RENAMING f

c participation not required for RENAMING f + properties of
RENAMING f

 validity, agreement, & termination

Anaïs Durand Contention-Related Crash Failures
22/24

Renaming Algorithm: Proof

(1) PART .write(up);
(2) repeat
(3) parti := PART .snapshot();
(4) counti := |{x such that parti [x] = up}|;
(5) until counti ≥ n − t end repeat;

a ≤ t crashes + participation required
 eventually counti ≥ n − t at every correct process pi

b n − t > λ no λ-constrained crashes in RENAMING f

 ≤ f crashes in RENAMING f

c participation not required for RENAMING f + properties of
RENAMING f

 validity, agreement, & termination

Anaïs Durand Contention-Related Crash Failures
22/24

Renaming Algorithm: Proof

(1) PART .write(up);
(2) repeat
(3) parti := PART .snapshot();
(4) counti := |{x such that parti [x] = up}|;
(5) until counti ≥ n − t end repeat;

a ≤ t crashes + participation required
 eventually counti ≥ n − t at every correct process pi

b n − t > λ no λ-constrained crashes in RENAMING f

 ≤ f crashes in RENAMING f

c participation not required for RENAMING f + properties of
RENAMING f

 validity, agreement, & termination

Anaïs Durand Contention-Related Crash Failures
22/24

Conclusion

� Notion of contention-related crash failures

� Allows to circumvent impossibility results

� Future work:
I Tight bounds?
I General algorithm for k-set agreement, k ≥ 1.

Anaïs Durand Contention-Related Crash Failures
23/24

Thank you for your attention!

Do you have any question?

Anaïs Durand Contention-Related Crash Failures
24/24

Generalization to One-Shot Concurrent Objects

Transform OB = one-shot object tolerating < X any-time crashes,
participation not required

� λ = n − t − 1
� t = m+ f , m ≥ 0, 0 ≤ f ≤ X

total # of faults t = m + f

λ-constrained crashes m

any-time crashes f ≤ X

operation op(ini) is

(1) PART .write(up);
(2) repeat
(3) parti := PART .snapshot();
(4) counti := |{x such that parti [x] = up}|;
(5) until counti ≥ n − t end repeat;

(6) resi := OB.op(ini);
(7) return(resi);

Anaïs Durand Contention-Related Crash Failures
25/24

	k-Set Agreement
	Renaming
	Appendix

