Self-stabilizing Systems in Spite of High Dynamics

Karine Altisen\(^1\), Stéphane Devismes\(^1\), Anaïs Durand \(^2,4\)
Colette Johnen\(^3\), Franck Petit\(^4\)

\(^1\) VERIMAG, Grenoble
\(^2\) LIMOS, Clermont Ferrand
\(^3\) LaBRI, Bordeaux
\(^4\) LIP6, Paris

Meeting DESCARTES, October 10 2019, Paris
Self-stabilization, [Dijkstra, ACM Com., 74]

Correct behavior

Transitory faults (finite and rare)

General approach for tolerating transient faults

Altisen et al.

Self-stabilizing Systems in Spite of High Dynamics
Self-stabilization, [Dijkstra, ACM Com., 74]

Correct behavior

Transient faults (finite and rare)

General approach for tolerating transient faults
Some results:

Process Crashes: FTSS [Beauquier and Kekkonen-Moneta, PODC’97]

Byzantine failures: strict stabilization [Nesterenko and Arora, ICDCS’02]

Intermittent Faults: intermittent lost, duplication, or reordering of messages [Delaêt and Tixeuil, JPDC, 2002]
Other Failure Patterns

Some results:

Process Crashes: FTSS [Beauquier and Kekkonen-Moneta, PODC’97]

Byzantine failures: strict stabilization [Nesterenko and Arora, ICDCS’02]

Intermittent Faults: intermittent lost, duplication, or reordering of messages [Delaët and Tixeuil, JPDC, 2002]

Even with an high failure rate, convergence is possible
Other Failure Patterns

Some results:

Process Crashes: FTSS [Beauquier and Kekkonen-Moneta, PODC’97]

Byzantine failures: strict stabilization [Nesterenko and Arora, ICDCS’02]

Intermittent Faults: intermittent lost, duplication, or reordering of messages [Delaët and Tixeuil, JPDC, 2002]

Even with an high failure rate, convergence is possible

However: **static communication networks**
If topological are **locally detected** and **infrequent**, then a self-stabilizing algorithm designed for arbitrary topologies is well-suited.

Moreover:

Superstabilization: quick convergence after few topological changes from a legitimate configuration [Dolev and Herman, Chicago Journal of Theoretical Computer Science, 1997]

Gradual Stabilization: a generalization of superstabilization [Altisen et al., JPDC, 2019]

However: **topological changes should be transient**
Negative result: Even if the network is always connected over the time, silent self-stabilization is impossible!
[Braud-Santoni et al., IJNC, 2016]

Silence: converges within finite time to a configuration from which the values of the communication registers used by the algorithm remain fixed.
Self-stabilization in Highly Dynamic Systems

Few results

Negative result: Even if the network is *always connected over the time*, silent self-stabilization is impossible! [Braud-Santoni et al., IJNC, 2016]

Silence: converges within finite time to a configuration from which the values of the communication registers used by the algorithm remain fixed.

Positive result: Self-stabilizing exploration of a highly dynamic ring by a cohort of synchronous robots [Bournat et al., TCS, 2019]

Robot: visibility sensors, moving actuators, yet no communication capabilities.

However, only one edge maybe missing at a time (the network is *always connected over the time*)
Challenge

- Self-stabilization in highly dynamic message-passing systems
- Dynamics modeled as Time-Varying Graphs (TVG)
 [Casteigts et al., IJPEDS, 2012]
Challenge

- Self-stabilization in **highly dynamic message-passing** systems
- Dynamics modeled as **Time-Varying Graphs (TVG)**
 \[\text{[Casteigts et al., IJPEDS, 2012]} \]

We look for (non-silent) self-stabilizing algorithm for **general classes of TVGs**

(\textit{e.g.}, we do not enforce the network to be in a particular topology at a given time)
Time-Varying Graphs (TVG)

TVG: $G = (V, E, T, \rho)$

- V is a set of n nodes
- E is a set of arcs
- T is an interval over \mathbb{N}^*
- $\rho: E \times T \to \{0, 1\}$ is the presence function
Time-Varying Graphs (TVG)

TVG: \(G = (V, E, T, \rho) \)

- \(V \) is a set of \(n \) nodes
- \(E \) is a set of arcs
- \(T \) is an interval over \(\mathbb{N}^* \)
- \(\rho : E \times T \rightarrow \{0, 1\} \) is the *presence* function

Snapshot of \(G \) at time \(t \in T \):

\[
G_t = (V, \{e \in E : \rho(e, t) = 1\})
\]
Time-Varying Graphs (TVG)

TVG: $G = (V, E, T, \rho)$

- V is a set of n nodes
- E is a set of arcs
- T is an interval over \mathbb{N}^*
- $\rho : E \times T \rightarrow \{0, 1\}$ is the *presence* function

Snapshot of G at time $t \in T$:

$$G_t = (V, \{e \in E : \rho(e, t) = 1\})$$

Snapshot at 1: G_1
Time-Varying Graphs (TVG)

TVG: $\mathcal{G} = (V, E, T, \rho)$

- V is a set of n nodes
- E is a set of arcs
- T is an interval over \mathbb{N}^*
- $\rho : E \times T \rightarrow \{0, 1\}$ is the presence function

Snapshot of \mathcal{G} at time $t \in T$:

$$G_t = (V, \{e \in E : \rho(e, t) = 1\})$$

Temporal Subgraph of \mathcal{G} for $[t, t'] \subseteq T$:

$$\mathcal{G}_{[t, t']} = (V, E, [t, t'], \rho')$$

where ρ' is ρ restricted to $[t, t']$.

Snapshot at 2: G_2
Time-Varying Graphs (TVG)

TVG: $\mathcal{G} = (V, E, T, \rho)$

- V is a set of n nodes
- E is a set of arcs
- T is an interval over \mathbb{N}^*
- $\rho : E \times T \rightarrow \{0, 1\}$ is the *presence* function

Snapshot of \mathcal{G} at time $t \in T$:

$$G_t = (V, \{e \in E : \rho(e, t) = 1\})$$
Time-Varying Graphs (TVG)

TVG: $G = (V, E, T, \rho)$

- V is a set of n nodes
- E is a set of arcs
- T is an interval over \mathbb{N}^*
- $\rho : E \times T \rightarrow \{0, 1\}$ is the *presence* function

Snapshot of G at time $t \in T$:

$$G_t = (V, \{ e \in E : \rho(e, t) = 1 \})$$

Diagram

- **Node** a connected to b, c, d.
- b connected to c.
- c connected to d.
- Edges' time intervals:
 - b to c: [3, 4]
 - c to d: [5, 6] \cup [8, 9]
 - a to b: [1, 2]
 - a to c: [2, 3]
Time-Varying Graphs (TVG)

TVG: $G = (V, E, T, \rho)$

- V is a set of n nodes
- E is a set of arcs
- T is an interval over \mathbb{N}^*
- $\rho : E \times T \rightarrow \{0, 1\}$ is the presence function

Snapshot of G at time $t \in T$:

$$G_t = (V, \{e \in E : \rho(e, t) = 1\})$$

![Diagram of a TVG example]

Snapshot at 5: G_5
Time-Varying Graphs (TVG)

TVG: $G = (V, E, T, \rho)$
- V is a set of n nodes
- E is a set of arcs
- T is an interval over \mathbb{N}^*
- $\rho : E \times T \rightarrow \{0, 1\}$ is the presence function

Snapshot of G at time $t \in T$:

$$G_t = (V, \{e \in E : \rho(e, t) = 1\})$$

Snapshot at 6: G_6
Time-Varying Graphs (TVG)

TVG: $G = (V, E, T, \rho)$

- V is a set of n nodes
- E is a set of arcs
- T is an interval over \mathbb{N}^*
- $\rho : E \times T \rightarrow \{0, 1\}$ is the presence function

Snapshot of G at time $t \in T$:

$$G_t = (V, \{e \in E : \rho(e, t) = 1\})$$

Snapshot at 7: G_7
Time-Varying Graphs (TVG)

TVG: $G = (V, E, T, \rho)$

- V is a set of n nodes
- E is a set of arcs
- T is an interval over \mathbb{N}^*
- $\rho : E \times T \rightarrow \{0, 1\}$ is the presence function

Snapshot of G at time $t \in T$:

$$G_t = (V, \{e \in E : \rho(e, t) = 1\})$$

Snapshot at 8: G_8
Time-Varying Graphs (TVG)

TVG: $G = (V, E, T, \rho)$

- V is a set of n nodes
- E is a set of arcs
- T is an interval over \mathbb{N}^*
- $\rho : E \times T \rightarrow \{0, 1\}$ is the **presence** function

Snapshot of G at time $t \in T$:

$$G_t = (V, \{e \in E : \rho(e, t) = 1\})$$

Snapshot at 9: G_9
Time-Varying Graphs (TVG)

TVG: $G = (V, E, T, \rho)$
- V is a set of n nodes
- E is a set of arcs
- T is an interval over \mathbb{N}^*
- $\rho : E \times T \to \{0, 1\}$ is the presence function

Snapshot of G at time $t \in T$:

$$G_t = (V, \{e \in E : \rho(e, t) = 1\})$$

Temporal Subgraph of G for $[t, t'] \subseteq T$:

$$G_{[t,t']} = (V, E, [t, t'], \rho')$$

where ρ' is ρ restricted to $[t, t']$.
Journey:
\[\mathcal{J} = (e_1, t_1), (e_2, t_2), \ldots, (e_k, t_k) \]
such that \(\forall i \in \{1, \ldots, k\} \)

- \(e_i = (p_i, q_i) \in E \)
- \(\rho(e_i, t_i) = 1 \)
- \(i < k \Rightarrow q_i = p_{i+1} \land t_i < t_{i+1} \)

Temporal length: \(t_k - t_1 + 1 \)
Journey:
\[J = (e_1, t_1), (e_2, t_2), \ldots, (e_k, t_k) \]
such that \(\forall i \in \{1, \ldots, k\} \)
- \(e_i = (p_i, q_i) \in E \)
- \(\rho(e_i, t_i) = 1 \)
- \(i < k \implies q_i = p_{i+1} \land t_i < t_{i+1} \)

Temporal length: \(t_k - t_1 + 1 \)

Example:
\(((a, b), 1), ((b, c), 4), ((c, d), 5)\) is a journey of length 5 from \(a \) to \(d \)
Journey

Journey:
\[\mathcal{J} = (e_1, t_1), (e_2, t_2), \ldots, (e_k, t_k) \]
such that \(\forall i \in \{1, \ldots, k\} \)
- \(e_i = (p_i, q_i) \in E \)
- \(\rho(e_i, t_i) = 1 \)
- \(i < k \Rightarrow q_i = p_{i+1} \land t_i < t_{i+1} \)

Temporal length: \(t_k - t_1 + 1 \)

Example:
\(((a, b), 1), ((b, c), 4), ((c, d), 5) \) is a journey of length 5 from \(a \) to \(d \)
Journey:
\[\mathcal{J} = (e_1, t_1), (e_2, t_2), \ldots, (e_k, t_k) \]
such that \(\forall i \in \{1, \ldots, k\} \)
- \(e_i = (p_i, q_i) \in E \)
- \(\rho(e_i, t_i) = 1 \)
- \(i < k \Rightarrow q_i = p_{i+1} \land t_i < t_{i+1} \)

Temporal length: \(t_k - t_1 + 1 \)

Example:
\(((a, b), 1), ((b, c), 4), ((c, d), 5) \) is a journey of length 5 from \(a \) to \(d \)
Journey:
\[J = (e_1, t_1), (e_2, t_2), \ldots, (e_k, t_k) \]
such that \(\forall i \in \{1, \ldots, k\} \)
- \(e_i = (p_i, q_i) \in E \)
- \(\rho(e_i, t_i) = 1 \)
- \(i < k \Rightarrow q_i = p_{i+1} \land t_i < t_{i+1} \)

Temporal length: \(t_k - t_1 + 1 \)

Example:
\(((a, b), 1), ((b, c), 4), ((c, d), 5) \) is a journey of length 5 from \(a \) to \(d \)

Snapshot at time 3: \(G_3 \)
Journey:
\[J = (e_1, t_1), (e_2, t_2), \ldots, (e_k, t_k) \]
such that \(\forall i \in \{1, \ldots, k\} \)

- \(e_i = (p_i, q_i) \in E \)
- \(\rho(e_i, t_i) = 1 \)
- \(i < k \Rightarrow q_i = p_{i+1} \land t_i < t_{i+1} \)

Temporal length: \(t_k - t_1 + 1 \)

Example:
\(((a, b), 1), ((b, c), 4), ((c, d), 5) \) is a journey of length 5 from \(a \) to \(d \)
Journey:

\[\mathcal{J} = (e_1, t_1), (e_2, t_2), \ldots, (e_k, t_k) \]
such that \(\forall \, i \in \{1, \ldots, k\} \)

- \(e_i = (p_i, q_i) \in E \)
- \(\rho(e_i, t_i) = 1 \)
- \(i < k \Rightarrow q_i = p_{i+1} \land t_i < t_{i+1} \)

Temporal length: \(t_k - t_1 + 1 \)

Example:

\[((a, b), 1), ((b, c), 4), ((c, d), 5) \]
is a journey of length 5 from \(a \) to \(d \)

Snapshot at time 5: \(G_5 \)
Journey:
\[\mathcal{J} = (e_1, t_1), (e_2, t_2), \ldots, (e_k, t_k) \]
such that \(\forall i \in \{1, \ldots, k\} \)

- \(e_i = (p_i, q_i) \in E \)
- \(\rho(e_i, t_i) = 1 \)
- \(i < k \Rightarrow q_i = p_{i+1} \wedge t_i < t_{i+1} \)

Temporal length: \(t_k - t_1 + 1 \)

Example:
\[((a, b), 1), ((b, c), 4), ((c, d), 5) \]
is a journey of length 5 from \(a \) to \(d \)
Journey:
\[J = (e_1, t_1), (e_2, t_2), \ldots, (e_k, t_k) \]
such that \(\forall i \in \{1, \ldots, k\} \)
- \(e_i = (p_i, q_i) \in E \)
- \(\rho(e_i, t_i) = 1 \)
- \(i < k \Rightarrow q_i = p_{i+1} \land t_i < t_{i+1} \)

Temporal length: \(t_k - t_1 + 1 \)

Example:
\(((a, b), 1), ((b, c), 4), ((c, d), 5)\) is a journey of length 5 from \(a \) to \(d \)
Journey:
\[\mathcal{J} = (e_1, t_1), (e_2, t_2), \ldots, (e_k, t_k) \]
such that \(\forall i \in \{1, \ldots, k\} \)
- \(e_i = (p_i, q_i) \in E \)
- \(\rho(e_i, t_i) = 1 \)
- \(i < k \Rightarrow q_i = p_{i+1} \land t_i < t_{i+1} \)

Temporal length: \(t_k - t_1 + 1 \)

Example:
\(((a, b), 1), ((b, c), 4), ((c, d), 5) \) is a journey of length 5 from \(a \) to \(d \)
Journey

\[J = (e_1, t_1), (e_2, t_2), \ldots, (e_k, t_k) \]

such that \(\forall i \in \{1, \ldots, k\} \)

- \(e_i = (p_i, q_i) \in E \)
- \(\rho(e_i, t_i) = 1 \)
- \(i < k \Rightarrow q_i = p_{i+1} \land t_i < t_{i+1} \)

Temporal length: \(t_k - t_1 + 1 \)

Example:

\(((a, b), 1), ((b, c), 4), ((c, d), 5)\) is a journey of length 5 from a to d
Considered Classes of TVGs

We only consider infinite TVG: $G = (V, E, T, \rho)$: T is right-open.

Class $\mathcal{T}C^B(\Delta)$ with $\Delta \in \mathbb{N}^*$ (Bounded Temporal Diameter): At any point in time, every node can reach all the others through a journey of temporal length at most Δ, i.e., the temporal diameter is bounded by Δ, [Gómez-Calzado et al., Euro-Par’15]

Class $\mathcal{T}C^Q(\Delta)$ with $\Delta \in \mathbb{N}^*$ (Quasi Bounded Temporal Diameter): Every node can always eventually reach each other node through a journey of temporal length at most Δ. [New]

Class $\mathcal{T}C^R$ (Recurrent Temporal Connectivity): At any point in time, every node can reach all the others through a journey, [Casteigts et al., IJPEDS, 2012]
Considered Classes of TVGs

We only consider infinite TVG: $G = (V, E, T, \rho)$: T is **right-open**.

Class $TC^B(\Delta)$ with $\Delta \in \mathbb{N}^*$ (Bounded Temporal Diameter): At any point in time, every node can reach all the others through a journey of temporal length at most Δ, i.e., the temporal diameter is bounded by Δ, [Gómez-Calzado et al., Euro-Par’15]

Class $TC^Q(\Delta)$ with $\Delta \in \mathbb{N}^*$ (Quasi Bounded Temporal Diameter): Every node can always eventually reach each other node through a journey of temporal length at most Δ. [New]

Class TC^R (Recurrent Temporal Connectivity): At any point in time, every node can reach all the others through a journey, [Casteigts et al., IJPEDS, 2012]

$$TC^B(\Delta) \subseteq TC^Q(\Delta) \subseteq TC^R$$
We model the dynamic network topology by a TVG $G = (V, E, \mathcal{T}, \rho)$, where \mathcal{T} is right-open, i.e., G is infinite.

Let $o_{\mathcal{T}} = \min \mathcal{T}$ the first instant

The neighborhood of node p at Round i is

$$N(p)^i = \{q \in V : \rho((p, q), o_{\mathcal{T}} + i - 1) = 1\}$$

(i.e., neighbors of p in the snapshot $G_{o_{\mathcal{T}}+i-1}$)

$N(p)^i$ is unknown by all nodes
Execution in \(G \): infinite sequence of configurations \(\gamma_0, \gamma_1, \ldots \) such that

- \(\gamma_0 \) is arbitrary
- \(\forall i > 0, \gamma_i \) is obtained from \(\gamma_{i-1} \) as follows:
 1. Every node \(p \) sends a message consisting of all or a part of its local state in \(\gamma_{i-1} \),
 2. \(p \) receives all messages sent by nodes in \(\mathcal{N}(p)^i \), and
 3. \(p \) computes its state in \(\gamma_i \).

\[\forall i > 0, \]

- \(\gamma_{i-1} \) is the configuration at the beginning of Round \(i \)
- \(\gamma_i \) is the configuration at the end of Round \(i \)
Self-stabilization in an Highly Dynamic Context

Adaptation of the definition in the book [Self-Stabilization, Dolev, 2000]

An algorithm \mathcal{A} is **self-stabilizing** for the specification SP on the TVG class \mathcal{C} if there exists a non-empty subset of configurations \mathcal{L}, called the set of **legitimate configurations**, such that:

1. for every $G \in \mathcal{C}$, for every configuration γ, every execution of \mathcal{A} in G starting from γ contains a legitimate configuration $\gamma' \in \mathcal{L}$ (Convergence), and

2. for every $G \in \mathcal{C}$, for every $t \geq o_T$, for every legitimate configuration $\gamma \in \mathcal{L}$, for every execution e in $G_{[t, +\infty)}$ starting from γ, $SP(e)$ holds (Correctness).
These three classes are **recurring** in the sense that

\[\forall G \in \mathcal{C}, \forall t \geq o_T, G_{[t, +\infty)} \in \mathcal{C} \]

In this case, the definition can be simplified as follows

An algorithm \(A \) is **self-stabilizing** for the specification \(SP \) on the recurring TVG class \(\mathcal{C} \) if there exists a non-empty subset of legitimate configurations \(L \) such that:

1. for every \(G \in \mathcal{C} \), for every configuration \(\gamma \), every execution of \(A \) in \(G \) starting from \(\gamma \) contains a legitimate configuration \(\gamma' \in L \) (**Convergence**), and

2. for every \(G \in \mathcal{C} \), for every legitimate configuration \(\gamma \in L \), for every execution \(e \) in \(G \) starting from \(\gamma \), \(SP(e) \) holds (**Correctness**).
Self-stabilizing Algorithms for Highly Dynamic Systems (1/3)

Case-Study: Leader Election

In Classes:

Class $\mathcal{TC}^B(\Delta)$ with $\Delta \in \mathbb{N}^*$: Bounded Temporal Diameter

Class $\mathcal{TC}^Q(\Delta)$ with $\Delta \in \mathbb{N}^*$: Quasi Bounded Temporal Diameter

Class \mathcal{TC}^R: Recurrent Temporal Connectivity

$\mathcal{TC}^B(\Delta) \subseteq \mathcal{TC}^Q(\Delta) \subseteq \mathcal{TC}^R$
Case-Study: Leader Election

In Class $\mathcal{T}C^B(\Delta)$ with $\Delta \in \mathbb{N}^*$ (Bounded Temporal Diameter)

- Δ known
- Stabilization Time: at most 3Δ rounds
- Memory Requirement: $O(\log(n + \Delta))$ bits per node
Case-Study: Leader Election

Class $\mathcal{T}C^Q(\Delta)$ with $\Delta \in \mathbb{N}^*$ (Quasi Bounded Temporal Diameter)

- Δ and n known
- Memory Requirement: $O(n(\log(n + \Delta)))$ bits per node

Class $\mathcal{T}C^R$(Recurrent Temporal Connectivity)

- n known
- Memory Requirement: infinite
Case-Study: Leader Election

Class $\mathcal{T}C^Q(\Delta)$ with $\Delta \in \mathbb{N}^*$ (Quasi Bounded Temporal Diameter)

- Δ and n known
- Memory Requirement: $O(n(\log(n + \Delta)))$ bits per node

Class $\mathcal{T}C^R$ (Recurrent Temporal Connectivity)

- n known
- Memory Requirement: infinite

Stabilization time unboundable in those two classes, but ...
Speculation [Kotla et al., ACM Trans. Comput. Syst., 2009]:

- the system satisfies its requirements for all executions,
- but also exhibits significantly better performances in a subset of more probable executions.

Idea:

- worst possible scenarios are often rare in practice.
- A speculative algorithm self-adapts its performances w.r.t. the "quality" of the environment, i.e., the more favorable the environment is, the better the complexity of the algorithm should be.

In Self-Stabilizing (Static) Systems:

- a self-stabilizing mutual exclusion algorithm whose stabilization time is significantly better when the execution is synchronous. [Dubois and Guerraoui, PODC'13]
Speculation [Kotla et al., ACM Trans. Comput. Syst., 2009]:

- the system satisfies its requirements for all executions,
- but also exhibits significantly better performances in a subset of more probable executions.

Idea: worst possible scenarios are often rare in practice.

A speculative algorithm self-adapts its performances \textit{w.r.t.} the “quality” of the environment, \textit{i.e.}, the more favorable the environment is, the better the complexity of the algorithm should be.
Speculation [Kotla et al., ACM Trans. Comput. Syst., 2009]:

- the system satisfies its requirements for all executions,
- but also exhibits significantly better performances in a subset of more probable executions.

Idea: worst possible scenarios are often rare in practice.

A speculative algorithm self-adapts its performances w.r.t. the “quality” of the environment, i.e., the more favorable the environment is, the better the complexity of the algorithm should be.

In **Self-Stabilizing (Static) Systems**: a self-stabilizing mutual exclusion algorithm whose stabilization time is significantly better when the execution is synchronous. [Dubois and Guerraoui, PODC’13]
Speculative Self-stabilizing Algorithms for Highly Dynamic Systems

Our solutions

Class $\mathcal{T}\mathcal{C}^Q(\Delta)$ with $\Delta \in \mathbb{N}^*$ (Quasi Bounded Temporal Diameter)

- Δ and n known
- Memory Requirement: $O(n(\log(n + \Delta)))$ bits per node
- **Speculation:** stabilization time in $\mathcal{T}\mathcal{C}^B(\Delta) \subseteq \mathcal{T}\mathcal{C}^Q(\Delta)$ is at most 2Δ rounds

Class $\mathcal{T}\mathcal{C}^R$ (Recurrent Temporal Connectivity)

- n known
- Memory Requirement: infinite
- **Speculation:** stabilization time in $\mathcal{T}\mathcal{C}^B(\Delta) \subseteq \mathcal{T}\mathcal{C}^R$ is at most $\Delta + 1$ rounds
Overview of our solutions

Nodes are **identified**: \(\forall p \in V, \ id(p) \) is unique identifier of \(p \)
Overview of our solutions

Nodes are identified: $\forall p \in V$, $id(p)$ is unique identifier of p

Let $IDSET$ be the definition domain of the identifiers
($n.b.$, usually $|IDSET| \gg n$)
Overview of our solutions

Nodes are identified: \(\forall p \in V, \; id(p) \) is unique identifier of \(p \)

Let \(IDSET \) be the definition domain of the identifiers (\(n.b., \) usually \(|IDSET| \gg n \))

\[\forall v \in IDSET, \]

- \(v \) is a real ID if \(\exists p \in V, \; id(p) = v, \)
- \(v \) is a fake ID otherwise
Overview of our solutions

Nodes are identified: $\forall p \in V, id(p)$ is unique identifier of p

Let IDSET be the definition domain of the identifiers
(n.b., usually $|\text{IDSET}| \gg n$)

$\forall v \in \text{IDSET}$,
- v is a real ID if $\exists p \in V, id(p) = v$,
- v is a fake ID otherwise

Every node p computes the identifier of the leader in $lid(p)$
Initially, the value of $lid(p)$ may be a fake ID
Overview of our solutions

Nodes are **identified**: \(\forall p \in V, \, id(p) \) is unique identifier of \(p \)

Let **IDSET** be the definition domain of the identifiers (\(n.b. \), usually \(|IDSET| \gg n \))

\[\forall v \in IDSET, \]

- \(v \) is a real ID if \(\exists p \in V, \, id(p) = v \),
- \(v \) is a fake ID otherwise

Every node \(p \) computes the identifier of the leader in \(lid(p) \)
Initially, the value of \(lid(p) \) may be a fake ID

Strategy:

1. First, **eliminate all fake IDs**, and then
2. Compute in all output variables the **minimum real ID**, noted \(id(\ell) \).
Self-stabilization in $\mathcal{T}C^B(\Delta)$ with $\Delta \in \mathbb{N}^*$ (1/3)

Bounded Temporal Diameter, Δ known

Variables: $lid(p) \in IDSET$ and $t(p) \in \{0, \ldots, 2\Delta\}$
Self-stabilization in $TC^B(\Delta)$ with $\Delta \in \mathbb{N}^*$ (1/3)

Bounded Temporal Diameter, Δ known

Variables: $lid(p) \in IDSET$ and $t(p) \in \{0, \ldots, 2\Delta\}$

For each node p, at each round:

1. p sends $\langle lid(p), t(p) \rangle$
2. If p receives some messages, then
 - Let (x, t_x) the smallest received pair (lexicographic order)
 - if $\langle x, t_x \rangle < \langle lid(p), t(p) \rangle$, then $\langle lid(p), t(p) \rangle := \langle x, t_x \rangle$
3. $t(p)++$
4. if $lid(p) \geq id(p) \lor t \geq 2\Delta$, then $\langle lid(p), t(p) \rangle := \langle id(p), 0 \rangle$ (Reset)
Self-stabilization in $\mathcal{TC}^B(\Delta)$ with $\Delta \in \mathbb{N}^*$ (2/3)

Bounded Temporal Diameter, Δ known

Legitimate Configurations:

\[\forall p \in V, \text{lid}(p) = \text{id}(\ell) \land t(p) \leq \Delta \land p = \ell \Rightarrow t(p) = 0 \]
Legitimate Configurations:

∀p ∈ V, lid(p) = id(ℓ) ∧ t(p) ≤ Δ ∧ p = ℓ ⇒ t(p) = 0

Correctness:

■ No fake ID ⇒ id(ℓ) is the minimum value of IDSET in the network.

So, lid(ℓ) = id(ℓ) and t(ℓ) = 0 forever
Self-stabilization in $\mathcal{T}C^B(\Delta)$ with $\Delta \in \mathbb{N}^*$ (2/3)

Bounded Temporal Diameter, Δ known

Legitimate Configurations:

$$\forall p \in V, \text{lid}(p) = \text{id}(\ell) \land t(p) \leq \Delta \land p = \ell \Rightarrow t(p) = 0$$

Correctness:

- No fake ID $\Rightarrow \text{id}(\ell)$ is the minimum value of IDSET in the network.

 So, $\text{lid}(\ell) = \text{id}(\ell)$ and $t(\ell) = 0$ forever

- Bounded temporal diameter \Rightarrow no reset

 So, $\forall p \in V, \text{lid}(p) = \text{id}(\ell)$ forever
Self-stabilization in $\mathcal{TC}^B(\Delta)$ with $\Delta \in \mathbb{N}^*$ (3/3)

Bounded Temporal Diameter, Δ known

Convergence:

Self-stabilization in $\mathcal{T}C^B(\Delta)$ with $\Delta \in \mathbb{N}^*$ (3/3)

Bounded Temporal Diameter, Δ known

Convergence:

- The timestamps associated to each fake ID increment at each round until reaching 2Δ and so vanishing,

 i.e., after at most 2Δ rounds, no fake ID

In particular, $lid(\ell) = id(\ell)$ and $t(\ell) = 0$ forever
Self-stabilization in $\mathcal{TC}^B(\Delta)$ with $\Delta \in \mathbb{N}^*$ (3/3)

Bounded Temporal Diameter, Δ known

Convergence:

- The timestamps associated to each fake ID increment at each round until reaching 2Δ and so vanishing,

 i.e., after at most 2Δ rounds, no fake ID

In particular, $lid(\ell) = id(\ell)$ and $t(\ell) = 0$ forever

- At most Δ additional rounds are necessary to reach a configuration where $\forall p \in V, lid(p) = id(\ell) \lor t(p) \leq \Delta$

Hence, a stabilization time of at most 3Δ rounds.
Self-stabilization in $\mathcal{TC}^Q(\Delta)$ with $\Delta \in \mathbb{N}^*$

Quasi Bounded Temporal Diameter, n and Δ known (1/3)

Variables:

- $lid(p) \in IDSET$
- $members(p)$: queue of at most n pairs $\langle id, t \rangle \in IDSET \times \{0, \ldots, \Delta\}$
Self-stabilization in $\mathcal{TC}^Q(\Delta)$ with $\Delta \in \mathbb{N}^*$

Quasi Bounded Temporal Diameter, n and Δ known (1/3)

Variables:
- $lid(p) \in IDSET$
- $members(p)$: queue of at most n pairs $\langle id, t \rangle \in IDSET \times \{0, \ldots, \Delta\}$

For each node p, at each round:
- p sends every pair $\langle x, y \rangle \in members(p)$ such that $y < \Delta$
Self-stabilization in $\mathcal{T}C^Q(\Delta)$ with $\Delta \in \mathbb{N}^*$

Quasi Bounded Temporal Diameter, n and Δ known (1/3)

Variables:
- $lid(p) \in IDSET$
- $members(p)$: queue of at most n pairs $\langle id, t \rangle \in IDSET \times \{0, \ldots, \Delta\}$

For each node p, at each round:
- p sends every pair $\langle x, y \rangle \in members(p)$ such that $y < \Delta$
- For each received pairs $\langle x, y \rangle$
 - If x already appears in a pair of $members(p)$, then replace the timestamp by y if y is smaller
 - Otherwise, if $members(p)$ is full, remove the tail
 Insert $\langle x, y \rangle$ at the head
Self-stabilization in $\mathcal{TC}^Q(\Delta)$ with $\Delta \in \mathbb{N}^*$

Quasi Bounded Temporal Diameter, n and Δ known (1/3)

Variables:
- $lid(p) \in IDSET$
- $members(p)$: queue of at most n pairs $\langle id, t \rangle \in IDSET \times \{0, \ldots, \Delta\}$

For each node p, at each round:
- p sends every pair $\langle x, y \rangle \in members(p)$ such that $y < \Delta$
- For each received pairs $\langle x, y \rangle$
 - If x already appears in a pair of $members(p)$, then replace the timestamp by y if y is smaller
 - Otherwise, if $members(p)$ is full, remove the tail
 Insert $\langle x, y \rangle$ at the head
- Increment all timestamps in $members(p)$
Self-stabilization in $TC^Q(\Delta)$ with $\Delta \in \mathbb{N}^*$

Quasi Bounded Temporal Diameter, n and Δ known (1/3)

Variables:
- $lid(p) \in IDSET$
- $members(p)$: queue of at most n pairs $\langle id, t \rangle \in IDSET \times \{0, \ldots, \Delta\}$

For each node p, at each round:
- p sends every pair $\langle x, y \rangle \in members(p)$ such that $y < \Delta$
- For each received pairs $\langle x, y \rangle$
 - If x already appears in a pair of $members(p)$, then replace the timestamp by y if y is smaller
 - Otherwise, if $members(p)$ is full, remove the tail
 Insert $\langle x, y \rangle$ at the head
- Increment all timestamps in $members(p)$
- if $members(p)$ is full, remove the tail
 Insert $\langle id(p), 0 \rangle$
Self-stabilization in $\mathcal{T}C^Q(\Delta)$ with $\Delta \in \mathbb{N}^*$

Quasi Bounded Temporal Diameter, n and Δ known (1/3)

Variables:
- $lid(p) \in IDSET$
- $members(p)$: queue of at most n pairs $\langle id, t \rangle \in IDSET \times \{0, \ldots, \Delta\}$

For each node p, at each round:
- p sends every pair $\langle x, y \rangle \in members(p)$ such that $y < \Delta$
- For each received pairs $\langle x, y \rangle$
 - If x already appears in a pair of $members(p)$, then replace the timestamp by y if y is smaller
 - Otherwise, if $members(p)$ is full, remove the tail
 Insert $\langle x, y \rangle$ at the head
- Increment all timestamps in $members(p)$
- if $members(p)$ is full, remove the tail
 Insert $\langle id(p), 0 \rangle$
- Update $lid(p)$ with the smallest ID in $members(p)$
Self-stabilization in $\mathcal{T}C^Q(\Delta)$ with $\Delta \in \mathbb{N}^*$

Quasi Bounded Temporal Diameter, n and Δ known (2/3)

Legitimate Configurations: $\forall p \in V$, $lid(p) = id(\ell) \land \{id : \langle id, _ \rangle \in members(p)\} = \{id(q) : q \in V\}$

Correctness: trivial since the set of legitimate configuration is closed
Convergence:

- The timestamps associated to each fake ID increment at each round until reaching Δ: after at most Δ rounds, no fake ID is sent and so no fake ID can be ever inserted in a members queue.
Convergence:

- The timestamps associated to each fake ID increment at each round until reaching Δ: after at most Δ rounds, no fake ID is sent and so no fake ID can be ever inserted in a members queue.

- Quasi Bounded Temporal Diameter \Rightarrow every real ID is regularly inserted in each members queue.
Self-stabilization in $\mathcal{T}C^Q(\Delta)$ with $\Delta \in \mathbb{N}^*$

Quasi Bounded Temporal Diameter, n and Δ known (3/3)

Convergence:
- The timestamps associated to each fake ID increment at each round until reaching Δ: after at most Δ rounds, no fake ID is sent and so no fake ID can be ever inserted in a members queue.

- Quasi Bounded Temporal Diameter \Rightarrow every real ID is regularly inserted in each members queue.

Speculation:
Bounded Temporal Diameter \Rightarrow all real ID are inserted in each members queue in each period of Δ rounds

Hence, the stabilization time is at most 2Δ rounds in $\mathcal{T}C^B(\Delta)$.
Variables:

- $lid(p) \in IDSET$
- $members(p)$: map of at most n pairs $\langle id, t \rangle \in IDSET \times \mathbb{N}$
Self-stabilization in \mathcal{TC}^R

Recurrent Temporal Connectivity, n known (1/3)

Variables:
- $lid(p) \in IDSET$
- $members(p)$: map of at most n pairs $\langle id, t \rangle \in IDSET \times \mathbb{N}$

For each node p, at each round:
- p sends $members(p)$
Self-stabilization in $\mathcal{T}C^R$

Recurrent Temporal Connectivity, n known (1/3)

Variables:
- $lid(p) \in IDSET$
- $members(p)$: map of at most n pairs $\langle id, t \rangle \in IDSET \times \mathbb{N}$

For each node p, at each round:
- p sends $members(p)$
- For each received pairs $\langle x, y \rangle$
 - If x already appears in a pair of $members(p)$, then replace the timestamp by y if y is smaller
 - Otherwise, let t be the largest timestamp in $members(p)$
 - If $y < t$ and $members(p)$ is full, then remove a pair $\langle _, t \rangle$ from $members$
 - If $members(p)$ is not full, then Insert $\langle x, y \rangle$ in $members(p)$
Self-stabilization in \mathcal{TC}^R

Recurrent Temporal Connectivity, n known (1/3)

Variables:
- $\text{lid}(p) \in \text{IDSET}$
- $\text{members}(p)$: map of at most n pairs $\langle id, t \rangle \in \text{IDSET} \times \mathbb{N}$

For each node p, at each round:
- p sends $\text{members}(p)$
- For each received pairs $\langle x, y \rangle$
 - If x already appears in a pair of $\text{members}(p)$, then replace the timestamp by y if y is smaller
 - Otherwise, let t be the largest timestamp in $\text{members}(p)$
 - If $y < t$ and $\text{members}(p)$ is full, then remove a pair $\langle _, t \rangle$ from members
 - If $\text{members}(p)$ is not full, then Insert $\langle x, y \rangle$ in $\text{members}(p)$
- Increment all timestamps in $\text{members}(p)$
Self-stabilization in $\mathcal{T}C^R$

Recurrent Temporal Connectivity, n known (1/3)

Variables:
- $\text{lid}(p) \in IDSET$
- $\text{members}(p)$: map of at most n pairs $\langle id, t \rangle \in IDSET \times \mathbb{N}$

For each node p, at each round:
- p sends $\text{members}(p)$
- For each received pairs $\langle x, y \rangle$
 - If x already appears in a pair of $\text{members}(p)$, then replace the timestamp by y if y is smaller
 - Otherwise, let t be the largest timestamp in $\text{members}(p)$
 If $y < t$ and $\text{members}(p)$ is full, then remove a pair $\langle _, t \rangle$ from members
 If $\text{members}(p)$ is not full, then Insert $\langle x, y \rangle$ in $\text{members}(p)$
- Increment all timestamps in $\text{members}(p)$
- If $\text{members}(p)$ is full, then remove a pair in members with a largest timestamp
 Insert $\langle id(p), 0 \rangle$
Self-stabilization in \mathcal{TC}^R

Recurrent Temporal Connectivity, n known (1/3)

Variables:

- $lid(p) \in IDSET$
- $members(p)$: map of at most n pairs $\langle id, t \rangle \in IDSET \times \mathbb{N}$

For each node p, at each round:

- p sends $members(p)$
- For each received pairs $\langle x, y \rangle$
 - If x already appears in a pair of $members(p)$, then replace the timestamp by y if y is smaller
 - Otherwise, let t be the largest timestamp in $members(p)$
 If $y < t$ and $members(p)$ is full, then remove a pair $\langle _ , t \rangle$ from $members$
 If $members(p)$ is not full, then Insert $\langle x, y \rangle$ in $members(p)$
- Increment all timestamps in $members(p)$
- If $members(p)$ is full, then remove a pair in $members$ with a largest timestamp
 Insert $\langle id(p), 0 \rangle$
- Update $lid(p)$ with the smallest ID in $members(p)$
Legitimate Configurations: \(\forall p \in V, \)
\[\text{lid}(p) = \text{id}(\ell) \land \{ \text{id} : \langle \text{id}, _ \rangle \in \text{members}(p) \} = \{ \text{id}(q) : q \in V \} \]

Correctness: trivial since the set of legitimate configuration is closed
Convergence: similar to the previous algorithm

Speculation: in $\mathcal{T}C^B(\Delta)$,

- After the first round, at each round, each node p sends $\langle id(p), 0 \rangle$
- For every node q, a pair $\langle id(p), x_q \rangle$ with $x_q \leq \Delta$ reaches q within x rounds.
- At that time, all fake IDs have a timestamps $> x_q$. So, $id(p)$ is inserted and never more removed.

Hence, a stabilization time in at most $\Delta + 1$ rounds in $\mathcal{T}C^B(\Delta)$.
Conclusion

It is a first attempt ...
Conclusion

It is a first attempt ...

Yet, we have circumvented the impossibility result of [Braud-Santoni et al., IJNC, 2016] by considering non-silent solutions

Actually, we have even considered more general classes!
Conclusion

It is a first attempt ...

Yet, we have circumvented the impossibility result of [Braud-Santoni et al., IJNC, 2016] by considering non-silent solutions

Actually, we have even considered more general classes!

Extensions:
- Even more general classes
- Expressiveness in particular TVG classes
 Transformer (e.g., [Katz and Perry, DC, 1993]):
 Propagation of Information with Feedback + Leader Election