
Silent Self-Stabilizing Scheme
for

Spanning-Tree-like Constructions

Stéphane Devismes1 Colette Johnen2 David Ilcinkas2

1 Univ. Grenoble Alpes, VERIMAG, 38000 Grenoble, France
2 CNRS & Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France

Meeting DESCARTES, March 28 2018, Paris

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
1/33



Self-Stabilization

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
2/33



Self-stabilization
[Dijkstra, ACM Com., 74]

Configurations

Time

Le
gi
tim

at
e

Ill
eg
iti
m
at
e

Transient faults

Legitimate
configurations

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
3/33



Self-stabilization
[Dijkstra, ACM Com., 74]

Configurations

Time

Le
gi
tim

at
e

Ill
eg
iti
m
at
e

Transient faults

Legitimate
configurations

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
3/33



Self-stabilization
[Dijkstra, ACM Com., 74]

Configurations

Time

Le
gi
tim

at
e

Ill
eg
iti
m
at
e

Transient faults

Legitimate
configurations

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
3/33



Self-stabilization
[Dijkstra, ACM Com., 74]

Configurations

Time

Le
gi
tim

at
e

Ill
eg
iti
m
at
e

Stabilization time

Transient faults

Legitimate
configurations

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
3/33



Silent Algorithm
[Dolev et al, Acta Informatica, 96]

A silent self-stabilizing algorithm converges within finite time to a
configuration from which the values of the registers used by the
algorithm remain fixed.

0

3 33

2 2

11

00

1 1

1 1

11

2 2

2 2
2

3

2 2

2

3
3

3

0

1

0

1

11

1

2

1

2

22
2

3

2

33 3

2 2

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
4/33



Silent Algorithm
[Dolev et al, Acta Informatica, 96]

A silent self-stabilizing algorithm converges within finite time to a
configuration from which the values of the registers used by the
algorithm remain fixed.

Advantages:
� Silence implies more simplicity in the algorithm design (classically

used in compositions).
� A silent algorithm may utilize less communication operations and

communication bandwidth.
� Well-suited to compute distributed data structures such as

spanning trees.

0

3 33

2 2

11

00

1 1

1 1

11

2 2

2 2
2

3

2 2

2

3
3

3

0

1

0

1

11

1

2

1

2

22
2

3

2

33 3

2 2

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
4/33



Model

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
5/33



Locally Shared Memory Model with Composite Atomicity

Abstraction of the message-passing model

Locally shared registers (variables) instead of communication links

A process can only read its variables and that of its neighbors.

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
6/33



Locally Shared Memory Model with Composite Atomicity

Abstraction of the message-passing model

Locally shared registers (variables) instead of communication links

A process can only read its variables and that of its neighbors.

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
6/33



Locally Shared Memory Model with Composite Atomicity
Configuration

� Reading of the variables of the neighbors
� Enabled nodes
� Daemon election: models the asynchronism
� Update of the local states

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
7/33



Locally Shared Memory Model with Composite Atomicity
Atomic Step

� Reading of the variables of the neighbors

� Enabled nodes
� Daemon election: models the asynchronism
� Update of the local states

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
7/33



Locally Shared Memory Model with Composite Atomicity
Atomic Step

� Reading of the variables of the neighbors
� Enabled nodes

� Daemon election: models the asynchronism
� Update of the local states

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
7/33



Locally Shared Memory Model with Composite Atomicity
Atomic Step

� Reading of the variables of the neighbors
� Enabled nodes
� Daemon election: models the asynchronism

� Update of the local states

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
7/33



Locally Shared Memory Model with Composite Atomicity
Atomic Step

� Reading of the variables of the neighbors
� Enabled nodes
� Daemon election: models the asynchronism
� Update of the local states

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
7/33



Daemons

� Synchronous
� Central / Distributed
� Fairness : Strongly Fair, Weakly Fair, Unfair

Distributed unfair daemon: no constraint, except progress!

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
8/33



Complexity

Space
Memory requirement in bits.

Time
(mainly stabilization time)

Rounds: execution time according to the slowest process.

Essentially similar to the notion of (asynchronous) rounds
in message-passing models.

Moves: local state updates.

Rather unusual.

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
9/33



Rounds

1st round 2nd round
Pr

oc
es

se
s

Time

Key: Enabled Activated Neutralized

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
10/33



Complexity in moves: “a measure of energy”

The stabilization time in moves
� captures the amount of computations an algorithm needs to recover

a correct behavior.

� can be bounded only if the algorithm is self-stabilizing under the
unfair daemon.

Contraposition: If an algorithm is self-stabilizing, for example,
under a weakly fair daemon, but not under an unfair one, then its
stabilization time in moves cannot be bounded.

This means that there are processes whose moves do not make the
system progress in the convergence: these processes waste
computation power and so energy.

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
11/33



Complexity in moves: “a measure of energy”

The stabilization time in moves
� captures the amount of computations an algorithm needs to recover

a correct behavior.
� can be bounded only if the algorithm is self-stabilizing under the

unfair daemon.

Contraposition: If an algorithm is self-stabilizing, for example,
under a weakly fair daemon, but not under an unfair one, then its
stabilization time in moves cannot be bounded.

This means that there are processes whose moves do not make the
system progress in the convergence: these processes waste
computation power and so energy.

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
11/33



Complexity in moves: “a measure of energy”

The stabilization time in moves
� captures the amount of computations an algorithm needs to recover

a correct behavior.
� can be bounded only if the algorithm is self-stabilizing under the

unfair daemon.

Contraposition: If an algorithm is self-stabilizing, for example,
under a weakly fair daemon, but not under an unfair one, then its
stabilization time in moves cannot be bounded.

This means that there are processes whose moves do not make the
system progress in the convergence: these processes waste
computation power and so energy.

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
11/33



Complexity in moves: “a measure of energy”

The stabilization time in moves
� captures the amount of computations an algorithm needs to recover

a correct behavior.
� can be bounded only if the algorithm is self-stabilizing under the

unfair daemon.

Contraposition: If an algorithm is self-stabilizing, for example,
under a weakly fair daemon, but not under an unfair one, then its
stabilization time in moves cannot be bounded.

This means that there are processes whose moves do not make the
system progress in the convergence: these processes waste
computation power and so energy.

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
11/33



Complexity in moves: unusual

Several a posteriori analyses show that (classical) self-stabilizing
algorithms that work under a distributed unfair daemon have an
exponential stabilization time in moves in the worst case.

� BFS spanning tree construction of Huang and Chen [Devismes and Johnen, JPDC 2016]
� Leader election of Datta, Larmore, Vemula [Durand et al, Inf. & Comp. 2017]
� . . .

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
12/33



General Schemes for
Self-Stabilization

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
13/33



Related Work

� The general transformer of [Katz & Perry, Dist. Comp. 93]: not
efficient, the purpose is only to demonstrate the feasability of the
transformation (characterization).

� Proof labeling scheme [Korman et al, Dist. Comp. 2010]:
restricted class of self-stabilizing algorithms (silent algorithms),
stabilization time linear in n. No move complexity analysis.

� [Devismes et al, TAAS 2009]: restricted class of self-stabilizing
algorithms (wave algorithms), stabilization time linear in n and
polynomial in moves.

Here, we restrict our study to silent spanning-tree-like data structure
(i.e., trees or forests).

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
14/33



Related Work

� The general transformer of [Katz & Perry, Dist. Comp. 93]: not
efficient, the purpose is only to demonstrate the feasability of the
transformation (characterization).

� Proof labeling scheme [Korman et al, Dist. Comp. 2010]:
restricted class of self-stabilizing algorithms (silent algorithms),
stabilization time linear in n. No move complexity analysis.

� [Devismes et al, TAAS 2009]: restricted class of self-stabilizing
algorithms (wave algorithms), stabilization time linear in n and
polynomial in moves.

Here, we restrict our study to silent spanning-tree-like data structure
(i.e., trees or forests).

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
14/33



Related Work

� The general transformer of [Katz & Perry, Dist. Comp. 93]: not
efficient, the purpose is only to demonstrate the feasability of the
transformation (characterization).

� Proof labeling scheme [Korman et al, Dist. Comp. 2010]:
restricted class of self-stabilizing algorithms (silent algorithms),
stabilization time linear in n. No move complexity analysis.

� [Devismes et al, TAAS 2009]: restricted class of self-stabilizing
algorithms (wave algorithms), stabilization time linear in n and
polynomial in moves.

Here, we restrict our study to silent spanning-tree-like data structure
(i.e., trees or forests).

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
14/33



Our contribution

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
15/33



Algorithm Scheme: a general scheme to compute
spanning-tree-like data structures

Theorem 1
Scheme is silent and self-stabilizing under the distributed unfair
daemon in any bidirectional weighted networks of arbitrary topology.∗

Theorem 2
The stabilization time in rounds of Scheme is at most 4nmaxCC, where
nmaxCC is the maximum number of processes in a connected component.

Theorem 3
When all weights are strictly positive integers bounded by Wmax, the
stabilization time of Scheme in moves is at
most (Wmax(nmaxCC − 1)2 + 5)(nmaxCC + 1)n.

∗n.b., the topologies are not necessarily connected. Disconnection may be due to
a transient fault.
Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions

16/33



Algorithm Scheme: a general scheme to compute
spanning-tree-like data structures

Theorem 1
Scheme is silent and self-stabilizing under the distributed unfair
daemon in any bidirectional weighted networks of arbitrary topology.∗

Theorem 2
The stabilization time in rounds of Scheme is at most 4nmaxCC, where
nmaxCC is the maximum number of processes in a connected component.

Theorem 3
When all weights are strictly positive integers bounded by Wmax, the
stabilization time of Scheme in moves is at
most (Wmax(nmaxCC − 1)2 + 5)(nmaxCC + 1)n.

∗n.b., the topologies are not necessarily connected. Disconnection may be due to
a transient fault.
Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions

16/33



Algorithm Scheme: a general scheme to compute
spanning-tree-like data structures

Theorem 1
Scheme is silent and self-stabilizing under the distributed unfair
daemon in any bidirectional weighted networks of arbitrary topology.∗

Theorem 2
The stabilization time in rounds of Scheme is at most 4nmaxCC, where
nmaxCC is the maximum number of processes in a connected component.

Theorem 3
When all weights are strictly positive integers bounded by Wmax, the
stabilization time of Scheme in moves is at
most (Wmax(nmaxCC − 1)2 + 5)(nmaxCC + 1)n.

∗n.b., the topologies are not necessarily connected. Disconnection may be due to
a transient fault.
Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions

16/33



Results on particular instances of Algorithm Scheme

� In an identified network, leader election in each connected component
(+ a spanning tree rooted at each leader): O(nmaxCC

2n) moves
≈ the best known move complexity [Durand et al, Inf & Comp 2017]

� Given an input, spanning forest with non-rooted components
detection†: O(nmaxCCn) moves
≈ the best known move complexity for spanning tree
construction [Cournier, SIROCCO 2009] ‡

� In assuming a rooted network, shortest-path spanning tree with
non-rooted components detection: O(WmaxnmaxCC

3n) moves (Wmax is
the maximum weight of an edge)
≈ the best known move complexity [Devismes et al, OPODIS 2016]

†Every process in a connected component that does not contain the root should
eventually take a special state notifying that it detects the absence of a root.

‡With explicit parent pointers.
Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions

17/33



Results on particular instances of Algorithm Scheme

� In an identified network, leader election in each connected component
(+ a spanning tree rooted at each leader): O(nmaxCC

2n) moves
≈ the best known move complexity [Durand et al, Inf & Comp 2017]

� Given an input, spanning forest with non-rooted components
detection†: O(nmaxCCn) moves
≈ the best known move complexity for spanning tree
construction [Cournier, SIROCCO 2009] ‡

� In assuming a rooted network, shortest-path spanning tree with
non-rooted components detection: O(WmaxnmaxCC

3n) moves (Wmax is
the maximum weight of an edge)
≈ the best known move complexity [Devismes et al, OPODIS 2016]

†Every process in a connected component that does not contain the root should
eventually take a special state notifying that it detects the absence of a root.

‡With explicit parent pointers.
Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions

17/33



Results on particular instances of Algorithm Scheme

� In an identified network, leader election in each connected component
(+ a spanning tree rooted at each leader): O(nmaxCC

2n) moves
≈ the best known move complexity [Durand et al, Inf & Comp 2017]

� Given an input, spanning forest with non-rooted components
detection†: O(nmaxCCn) moves
≈ the best known move complexity for spanning tree
construction [Cournier, SIROCCO 2009] ‡

� In assuming a rooted network, shortest-path spanning tree with
non-rooted components detection: O(WmaxnmaxCC

3n) moves (Wmax is
the maximum weight of an edge)
≈ the best known move complexity [Devismes et al, OPODIS 2016]

†Every process in a connected component that does not contain the root should
eventually take a special state notifying that it detects the absence of a root.

‡With explicit parent pointers.
Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions

17/33



The problem

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
18/33



Inputs (constants)

canBeRootu: true if u is candidate to be root.

pnameu: the name of u.

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
19/33



Inputs (constants)

canBeRootu: true if u is candidate to be root.

In a terminal configuration, every tree root satisfies
canBeRoot, but the converse is not necessarily true.

pnameu: the name of u.

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
19/33



Inputs (constants)

canBeRootu: true if u is candidate to be root.

For every connected component GC , if there is at least
one candidate u ∈ GC , then at least one process of GC
should be a tree root in a terminal configuration.

pnameu: the name of u.

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
19/33



Inputs (constants)

canBeRootu: true if u is candidate to be root.

If there is no candidate in a connected component, all
processes of the component should converge to a
particular terminal state notifying that it detects the
absence of candidate.
(non-rooted components detection)

pnameu: the name of u.

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
19/33



Inputs (constants)

canBeRootu: true if u is candidate to be root.

pnameu: the name of u.

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
19/33



Inputs (constants)

canBeRootu: true if u is candidate to be root.

pnameu: the name of u.

pnameu ∈ IDs, where IDs = N ∪ {⊥} is totally ordered
by < and min<(IDs) = ⊥.

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
19/33



Inputs (constants)

canBeRootu: true if u is candidate to be root.

pnameu: the name of u.

Two considered cases:
� ∀v ∈ V , pnamev = ⊥.
� ∀u, v ∈ V , pnameu 6= ⊥∧(u 6= v ⇒ pnameu 6= pnamev )

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
19/33



Weights

� ωu(v) ∈ DistSet denotes the weight of the arc (u, v)

� (DistSet,⊕,≺) is an ordered magma:
I ⊕ is a closed binary operation on DistSet
I ≺ is a total order on this set
I ∀(u, v), ∀d ∈ DistSet, d ≺ d ⊕ ωu(v)

� distRoot(u): the distance value of u is u is a root

� P_nodeImp(u) is a local predicate which is true is u should move to
improve the solution

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
20/33



Variables

stu ∈ {I,C ,EB,EF}

parentu ∈ {⊥} ∪ Lbl : parent in the tree

du ∈ DistSet: distance to the root

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
21/33



Variables

stu ∈ {I,C ,EB,EF}

Normal behavior
I : Isolated

C : Correct (belong to a tree)

parentu ∈ {⊥} ∪ Lbl : parent in the tree

du ∈ DistSet: distance to the root

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
21/33



Variables

stu ∈ {I,C ,EB,EF}

In a terminal configuration, if Vu contains a candidate,
then stu = C , otherwise stu = I.

parentu ∈ {⊥} ∪ Lbl : parent in the tree

du ∈ DistSet: distance to the root

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
21/33



Variables

stu ∈ {I,C ,EB,EF}

Correction mechanism
EB: Error Broadcast
EF : Error Feedback

parentu ∈ {⊥} ∪ Lbl : parent in the tree

du ∈ DistSet: distance to the root

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
21/33



Instances

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
22/33



Leader Election

Inputs:
� canBeRootu is true for any process,
� pnameu is the identifier of u (n.b., pnameu ∈ N)
� ωu(v) = (⊥, 1) for every v ∈ Γ(u)

Ordered Magma:
� DistSet = IDs ×N

for every d = (a, b) ∈ DistSet, we let d .id = a and
d .h = b.

� (id1, i1)⊕ (id2, i2) = (id1, i1 + i2);
� (id1, i1) ≺ (id2, i2) ≡

(id1 < id2) ∨ [(id1 = id2) ∧ (i1 < i2)]
� distRoot(u) = (pnameu, 0)

Predicate:
� P_nodeImp(u) ≡ ((∃v ∈ Γ(u) | stv = C ∧

dv .id < du.id)) ∨ (canBeRootu ∧ distRoot(u) ≺ du)

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
23/33



Shortest-Path Spanning Tree

Inputs:
� canBeRootu is false for any process except for u = r ,
� pnameu is ⊥, and
� ωu(v) = ωv (u) ∈ N∗, for every v ∈ Γ(u).

Ordered Magma:
� DistSet = N,
� i1⊕ i2 = i1 + i2,
� i1 ≺ i2 ≡ i1 < i2, and
� distRoot(u) = 0.

Predicate:
� P_nodeImp(u) ≡

(∃v ∈ Γ(u) | stv = C ∧ dv ⊕ ωu(v) ≺ du)
∨
canBeRootu ∧ distRoot(u) ≺ du

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
24/33



Our solution
in a nutshell

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
25/33



Typical Execution

I

I

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
26/33



Typical Execution

I

I

C

C

C

Any candidate u executes RR: stu ← C , du ← distRoot(u), parentu ←⊥

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
26/33



Typical Execution

I

I

C

C

C C

CC

C

Any non-candidate v executes RR when it finds a neighbor with status C :
stu ← C , select a parent, and dv ⊕ ωu(v) if it chooses v as a parent
Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions

26/33



Typical Execution

I

I

C

C

C C

CC

C

In parallel, rules RU are executed to reduce the weight of the trees: when a
process u with status C satisfies P_nodeImp(u), this means that u can reduce
du by selecting another neighbor with status C as parent.
Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions

26/33



Typical Execution

I

I

C

C

C C

CC

C

C C

A candidate can lose its tree root condition using RR, if it finds a
sufficiently good parent in its neighborhood.
Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions

26/33



Typical Execution

I

C

C

C C

CC

C

C C

C

C

C

C

Overall, within at most nmaxCC rounds, a terminal configuration is reached.

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
26/33



Abnormal Roots

Inconsistencies are detected by some processes called Abnormal Roots

A process u is an abnormal root if u is not a normal root§, stu 6= I, and
satisfies one of the following four conditions:
� its parent pointer does not designate a neighbor,
� its distance du is inconsistent with the distance of its parent, or
� its status is inconsistent with the status of its parent.

An abnormal root u is alive if stu 6= EF

An abnormal tree is a tree root at an abnormal root.
An abnormal tree is alive if it contains a node v such that stv 6= EF

Main result: No abnormal alive root (resp. tree) is created during the
execution.

§A normal root is any process v such that canBeRootv ∧ stv = C ∧ parentv =
⊥ ∧ dv = distRoot(v).
Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions

27/33



Abnormal Roots

Inconsistencies are detected by some processes called Abnormal Roots

A process u is an abnormal root if u is not a normal root§, stu 6= I, and
satisfies one of the following four conditions:
� its parent pointer does not designate a neighbor,
� its distance du is inconsistent with the distance of its parent, or
� its status is inconsistent with the status of its parent.
An abnormal root u is alive if stu 6= EF

An abnormal tree is a tree root at an abnormal root.
An abnormal tree is alive if it contains a node v such that stv 6= EF

Main result: No abnormal alive root (resp. tree) is created during the
execution.

§A normal root is any process v such that canBeRootv ∧ stv = C ∧ parentv =
⊥ ∧ dv = distRoot(v).
Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions

27/33



Abnormal Roots

Inconsistencies are detected by some processes called Abnormal Roots

A process u is an abnormal root if u is not a normal root§, stu 6= I, and
satisfies one of the following four conditions:
� its parent pointer does not designate a neighbor,
� its distance du is inconsistent with the distance of its parent, or
� its status is inconsistent with the status of its parent.
An abnormal root u is alive if stu 6= EF

An abnormal tree is a tree root at an abnormal root.
An abnormal tree is alive if it contains a node v such that stv 6= EF

Main result: No abnormal alive root (resp. tree) is created during the
execution.

§A normal root is any process v such that canBeRootv ∧ stv = C ∧ parentv =
⊥ ∧ dv = distRoot(v).
Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions

27/33



Abnormal trees removal

Freeze before Remove

Variable stu ∈ {I,C ,EB,EF}
� I means Isolated
I a process of status I can join a tree

� C means correct
I only processes of status C in a tree can modify their parent pointers and
I only by choosing a neighbor of status C as parent

� EB: Error Broadcast
� EF : Error Feedback

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
28/33



Freeze before remove

C

REB

EB

REF

EF

RR or RI

RR or RI

EF EF

C or I EB EF

The definition of abnormal root should take to possible inconsistencies
of variables st into account!

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
29/33



Freeze before remove

C

REB

EB

REF

EF

RR or RI

RR or RI

EF EF

C or I EB EF

The definition of abnormal root should take to possible inconsistencies
of variables st into account!

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
29/33



Freeze before remove

C

REB

EB

REF

EF

RR or RI

RR or RI

EF EF

C or I EB EF

The definition of abnormal root should take to possible inconsistencies
of variables st into account!

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
29/33



Freeze before remove

C

REB

EB

REF

EF

RR or RI

RR or RI

EF EF

C or I EB EF

The definition of abnormal root should take to possible inconsistencies
of variables st into account!

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
29/33



Freeze before remove

C

REB

EB

REF

EF

RR or RI

RR or RI

EF EF

C or I EB EF

The definition of abnormal root should take to possible inconsistencies
of variables st into account!

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
29/33



Freeze before remove

C

REB

EB

REF

EF

RR or RI

RR or RI

EF EF

C or I EB EF

The definition of abnormal root should take to possible inconsistencies
of variables st into account!

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
29/33



Freeze before remove

C

REB

EB

REF

EF

RR or RI

RR or RI

EF EF

C or I EB EF

The definition of abnormal root should take to possible inconsistencies
of variables st into account!

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
29/33



Freeze before remove

C

REB

EB

REF

EF

RR or RI

RR or RI

EF EF

C or I EB EF

The definition of abnormal root should take to possible inconsistencies
of variables st into account!
Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions

29/33



Stabilization Time in Rounds

� No alive abnormal tree created
� Height of an abnormal tree: at most nmaxCC

� Cleaning:
I EB-wave : nmaxCC
I EF-wave : nmaxCC
I R-wave : nmaxCC

� Building of the Spanning Tree: nmaxCC (like in the typical
execution)

O(4nmaxCC) rounds

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
30/33



Stabilization Time in Rounds

� No alive abnormal tree created
� Height of an abnormal tree: at most nmaxCC

� Cleaning:
I EB-wave : nmaxCC
I EF-wave : nmaxCC
I R-wave : nmaxCC

� Building of the Spanning Tree: nmaxCC (like in the typical
execution)

O(4nmaxCC) rounds

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
30/33



Stabilization Time in Rounds

� No alive abnormal tree created
� Height of an abnormal tree: at most nmaxCC

� Cleaning:
I EB-wave : nmaxCC
I EF-wave : nmaxCC
I R-wave : nmaxCC

� Building of the Spanning Tree: nmaxCC (like in the typical
execution)

O(4nmaxCC) rounds

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
30/33



Stabilization Time in Rounds

� No alive abnormal tree created
� Height of an abnormal tree: at most nmaxCC

� Cleaning:
I EB-wave : nmaxCC
I EF-wave : nmaxCC
I R-wave : nmaxCC

� Building of the Spanning Tree: nmaxCC (like in the typical
execution)

O(4nmaxCC) rounds

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
30/33



Stabilization Time in Moves (1/2)

Let GC be a connected component of G .

Let SL(γ,GC) be the set of processes u ∈ GC such that, in the
configuration γ, u is an alive abnormal root, or
canBeRootu ∧ distRoot(u) ≺ du ∧ stu = C holds.

Second case: u is candidate and can improve by becoming a root (RU)

If a process satisfies one of these two conditions, then it does so from
the beginning of the execution.

Let e = γ0, · · · , γi be an execution: SL(γi+1,GC) ⊆ SL(γi ,GC).

The size of SL decreases

1st GC -segment 2nd GC -segment

−→ At most nmaxCC + 1 GC -segments in GC

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
31/33



Stabilization Time in Moves (1/2)

Let GC be a connected component of G .

Let SL(γ,GC) be the set of processes u ∈ GC such that, in the
configuration γ, u is an alive abnormal root, or
canBeRootu ∧ distRoot(u) ≺ du ∧ stu = C holds.

Second case: u is candidate and can improve by becoming a root (RU)

If a process satisfies one of these two conditions, then it does so from
the beginning of the execution.

Let e = γ0, · · · , γi be an execution: SL(γi+1,GC) ⊆ SL(γi ,GC).

The size of SL decreases

1st GC -segment 2nd GC -segment

−→ At most nmaxCC + 1 GC -segments in GC

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
31/33



Stabilization Time in Moves (1/2)

Let GC be a connected component of G .

Let SL(γ,GC) be the set of processes u ∈ GC such that, in the
configuration γ, u is an alive abnormal root, or
canBeRootu ∧ distRoot(u) ≺ du ∧ stu = C holds.

Second case: u is candidate and can improve by becoming a root (RU)

If a process satisfies one of these two conditions, then it does so from
the beginning of the execution.

Let e = γ0, · · · , γi be an execution: SL(γi+1,GC) ⊆ SL(γi ,GC).

The size of SL decreases

1st GC -segment 2nd GC -segment

−→ At most nmaxCC + 1 GC -segments in GC

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
31/33



Stabilization Time in Moves (2/2)

Let u be any process of GC . We proved that the sequence of rules
executed by u during a GC -segment belongs to the following language:

(RI + ε)(RR + ε)(RU)∗(REB + ε)(REF + ε).

Theorem 4
If the number of RU executions during a GC-segment by any process of
GC is bounded by nb_UN, then the total number of moves in any
execution is bounded by (nb_UN + 4)(nmaxCC + 1)n.

nb_UN is necessarily defined because du decreases at each RU(u) in a
GC -segment.

Theorem 5
When all weights are strictly positive integers bounded by Wmax
nb_UN ≤ Wmax(nmaxCC − 1)2 + 1

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
32/33



Stabilization Time in Moves (2/2)

Let u be any process of GC . We proved that the sequence of rules
executed by u during a GC -segment belongs to the following language:

(RI + ε)(RR + ε)(RU)∗(REB + ε)(REF + ε).

Theorem 4
If the number of RU executions during a GC-segment by any process of
GC is bounded by nb_UN, then the total number of moves in any
execution is bounded by (nb_UN + 4)(nmaxCC + 1)n.

nb_UN is necessarily defined because du decreases at each RU(u) in a
GC -segment.

Theorem 5
When all weights are strictly positive integers bounded by Wmax
nb_UN ≤ Wmax(nmaxCC − 1)2 + 1

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
32/33



Thank you for your attention

� Stéphane Devismes, Colette Johnen, and David Ilcinkas. Silent
Self-Stabilizing Scheme for Spanning-Tree-like Constructions.
Submitted to PODC’2018.

Technical report available online:
https://hal.archives-ouvertes.fr/hal-01667863.

Devismes et al Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions
33/33

https://hal.archives-ouvertes.fr/hal-01667863

	Self-Stabilization
	Model
	General Schemes for Self-Stabilization
	Our contribution
	The problem
	Instances
	Our solution in a nutshell

