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Coloring with fewer colors
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c d ⇒ c 6= d

χ: Minimum number of colors to guarantee:

∆ : Maximum number of neighbors

χ ≤ ∆ + 1

Theorem (Brooks ’61)

If G is neither a clique nor an odd cycle, then χ(G ) ≤ ∆(G ).
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Changing the rules: The LOCAL Model

Every vertex is its own agent (but has ∞ computational
power).

Initially, vertices know nothing but their name (unique
identifier).
At each round, every vertex can exchange ∞ information with
its neighbors.

Objective: Minimize the number of rounds before a solution can be
computed.
Example of a long path (blackboard).

Information theory

Randomized/Deterministic.
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Palette reduction

n-coloring: Easy.

n-coloring to ∆ + 1-coloring?

Theorem
We can compute a (∆ + 1)-coloring in:

2O(
√

log n) rounds (Panconesi, Srinivasan ’92)
O(
√

∆polylog∆) + log∗ n rounds (Fraigniaud, Heinrich,
Kosowski ’15)
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Fewer colors

Theorem (Panconesi, Srinivasan ’95)

We can compute a ∆-coloring in O( ∆
log ∆ log3 n) rounds.

(Assuming ∆ ≥ 3 and the graph is not a clique.)

What about list coloring? G is degree-choosable iff it is colorable
for any list assignment L s.t. |L(v)| ≥ d(v) for any vertex v .

Theorem (Borodin ’77 / Erdős, Rubin, Taylor ’79)

A graph is degree-choosable unless every 2-connected component is
a clique or an odd cycle.

What about sparse graphs?
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Planar graphs

4-colorable!

Efficient 7-coloring. (Goldberg, Plotkin, Shannon ’86)

Theorem (Aboulker, B., Bousquet, Esperet ’18)

We can compute a 6-list-coloring in O(log3 n) rounds.

Theorem (Aboulker, B., Bousquet, Esperet ’18)

No distributed algorithm can 4-color every n-vertex planar graph in
o(n) rounds.

For triangle-free planar graphs: we can compute a 4-list-coloring in
O(log3 n) rounds, and no distributed algorithm can 3-color every
n-vertex triangle-free planar graph in o(n) rounds.
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The proof

Goal: shave off a linear fraction of the vertices.

In the case of 7 colors? All vertices of degree at most 6 can be
shaven off.

In the case of 6 colors? Almost all!
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Actual generalization: sparse graphs

Arboricity a(G ) of a graph G : minimum number of edge-disjoint
forests to cover the edges of G .

Theorem (Baremboim, Elkin ’10)

We can compute a (2a(G ) + 1)-coloring in O(a(G )2 log n) rounds.

mad(G ) ≤ 2a(G )

Every graph is dmad(G )e-colorable except in a few cases.

Theorem (Aboulker, B., Bousquet, Esperet ’18)

For d ≥ {3,mad(G )}, we can compute a d-list-coloring in
O(d4 log3 n) rounds.(Unless there is a clique on d + 1 vertices.)
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Actual generalization: local version

Theorem (Borodin ’77 / Erdős, Rubin, Taylor ’79)

For any nice list assignment L, there is an L-coloring unless every
2-connected component is a clique or an odd cycle.
Nice list assignment: ∀v , |L(v)| ≥ d(v).

Theorem (Aboulker, B., Bousquet, Esperet ’18)

For any very nice list assignment L, we can compute an L-coloring
in O(∆2 log3 n) rounds.
(Very nice list assignment: ∀v , |L(v)| ≥ d(v), with
|L(v)| ≥ d(v) + 1 if the neighborhood of v is a clique or
d(v) = 2.)
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Conclusion

5-coloring planar graphs?

Randomized setting?

Thanks!
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