
Consistency
in Distributed Systems

Achour Mostefaoui

ANR Descartes Fontainbleau 8-10 novembre 2021

Plan

● Distributed shared data structures

● Safety properties and progress conditions

● Strong consistency (linearizability and sequential consistency)

● Weak consistency

● Progress conditions

● Conclusion

Distributed Computation

● Processes and concurrency
○ Processes may interact directly through share data structures if there is a shared memory

○ Or through messages exchanged by the different processes

Distributed shared data structures

● The basic operations are read/write on registers and possibly special
instructions (C&S, T&S, ...)

● or, send/receive of messages through a communication network

● However shared data structures used by distributed applications may be
more sophisticated: stacks, queues, sets, logs, graphs, etc.

● These data structures are not offered natively by processors

● Each operation on a shared data structure corresponds to a code (a function)
that can be complex

Distributed shared data structures

● The push operation in Trieber/IBM’s Stack (from D. Hendler)

Distributed shared data structures

● The enqueue operation in Mickael & Scott’s Queue (from D. Hendler)

Distributed Shared Data Structures

The ABD simulation (Attiya, Bar-Noy and Dolev 1995)

● It has been proved in 1995 that a shared memory (shared registers) can be
emulated over a distributed system provided that there is a majority of
processes that do not crash

However special instructions
cannot be implemented
on a message-passing system
prone to process crashes

Consistency and Progress Conditions

● A data structure is defined by two properties:
○ A safety property

○ A progress condition

● Safety: It questions the meaningfulness of the results returned by
operations on shared objects

● Progress: will there be a returned value and when?

Consistency and Progress Conditions

Safety properties

Ideally: The best consistency for an implemented shared object is the one
that makes it indistinguishable from a physical object accessed concurrently

● One simple way to guarantee this property is to use locks: atomicity
○ Locks do not tolerate process crashes
○ 52% of bugs in Java concern the misuse of "synchronized"
○ false conflicts

● Otherwise
○ complex implementation of data structures
○ memory consuming

Consistency and Progress Conditions

Progress conditions

Ideally: Each operation terminates whatever is the behavior of the other
processes (contention, order, etc.)

● If one uses locks there are three progress conditions
○ deadlock-free (global progress)
○ starvation-free (local progress)
○ fifo

● Otherwise
○ wait-free (local progress)
○ lock-free (global progress)
○ obstruction-free (conditional progress - no contention)

Strong Consistency
(linearizability and sequential consistency)

● Linearizability and sequential consistency are usually called strong
consistency

● A process cannot distinguish a strongly consistent implementation of a data
structure with a physical data structure accesses concurrently
○ Wait-free linearizable shared data structures are desirable but sometimes complex or

inefficient

○ Lock-free implementations may enjoy enough strong progress and acceptable complexity

Strong Consistency
(linearizability and sequential consistency)

● Linearizability (from M. Raynal)

Strong Consistency
(linearizability and sequential consistency)

● Linearizability: a possible linearization

Strong Consistency
(linearizability and sequential consistency)

● Linearizability: a shared queue

Strong Consistency
(linearizability and sequential consistency)

● Linearizability

Strong Consistency
(linearizability and sequential consistency)

● Linearizability

Strong Consistency
(linearizability and sequential consistency)

● Linearizability

Strong Consistency
(linearizability and sequential consistency)

● Sequential consistency

Strong Consistency
(linearizability and sequential consistency)

● Sequential consistency: unfortunately, it does not compose!

Cycle

Strong Consistency
(linearizability and sequential consistency)

● Linearizability and sequential consistency cannot be distinguished in an
asynchronous system

● Sequential consistency is “cheaper” than linearizability

● However, linearizability is a local property: if all objects are linearizable, then the
whole computation is linearizable!

● A distribution computation is a partial order of events.

● A good consistency criterion consists in totally ordering all events

○ linearizability: total order on all events + causality + real-time order
○ sequential consistency: total order on all events + causality

Weak Consistency

● Strong consistency is usually costly in time and space

● In message-passing systems strong consistency is usually not possible and when it is possible,
operation has to last the latency of the communication network:
CAP Theorem (Consistency - Availability - Partition) Gilbert&Lynch 2002

● Attiya & Welch proved in 1994 that, when possible, strong consistency needs an operation
duration proportional with network latency

● This is practically impossible for many applications such as instant messaging, collaborative
editors, etc.

● In those situations, one can use weak consistency conditions:
○ Cache coherence
○ Causal consistency
○ Eventual consistency
○ PRAM consistency
○ Serializability ...

Weak Consistency

Weak consistency conditions let each process built its own total order

● Strong eventual consistency: same total order on all update operations

● Serializability (transactions in databases): not all operations terminate

● Causal consistency: all local linearization respect causal order

● PRAM consistency: local and fifo order

There is no total order on the strength of the different consistency conditions
=> which the strongest weak consistency condition ?

Weak Consistency

The world
of consistency conditions
(from M. Perrin PhD thesis)

There are 3 basic families
of consistency conditions

A consistency condition
that merges all of
the three families falls
into strong consistency

Weak Consistency

Weak consistency for which usage

● Serialisability: substitute for strong consistency
○ maximal security
○ simple to implement
○ failures are handled by the user

● Causal/PRAM consistency: distributed algorithms
○ predictable
○ not costly
○ no convergence

● Update consistency/strong eventual consistency: collaborative applications
○ close to self-stabilization
○ quite costly
○ inconsistencies visible to the user

Weak Consistency

Small experience with instant messaging:
Snapshat, Messenger, Whatsapp, Skype, Hangouts, etc.

● Hangouts: serializability
○ message sending can be aborted

● Whatsapp: PRAM consistency
○ local consistency (perhaps the least consistent instant messaging)

● Skype: strong eventual consistency
○ messages can be reordered afterwards (all users eventually see all messages in the same

order)

Progress Conditions

● If one considers message-passing systems, when strong consistency is not
possible, applications consider weak consistency as seen above.

○ Amazon’s Dynamo highly available key-value store

● When necessary, whatever is the cost, strong consistency is provided
○ Apache’s Zookeeper for maintaining configuration information

○ Google’s Chubbby system

● In multithreaded computing, strong consistency is not sacrificed, but instead
the progress condition is weakened: lock-free instead of wait-free

Progress Conditions

● The enqueue op. in Mickael & Scott’s lock-free Queue (from D. Hendler)

Conclusion

● Lock-free implementation are less complex than wait-free ones but they
offer weaker guarantees on progress

● In real settings, lock-free data structures statistically guarantee termination
for all operations

● Mickael & Scott’s lock-free linearizable queue is included in the Standard
Java Concurrency Package

● There are many ongoing research to find the best special instructions and
the most efficient distributed implementations of usual data structures

