Consistency
in Distributed Systems

Achour Mostefaoui

ANR Descartes Fontainbleau 8-10 novembre 2021

Plan

® Distributed shared data structures
® Safety properties and progress conditions

® Strong consistency (linearizability and sequential consistency)
® \Weak consistency
® Progress conditions

® Conclusion

Distributed Computation

® Processes and concurrency
O Processes may interact directly through share data structures if there is a shared memory
O Or through messages exchanged by the different processes

Adobe S*ck | #195759892

Distributed shared data structures

® The basic operations are read/write on registers and possibly special
instructions (C&S, T&S, ...)

® or, send/receive of messages through a communication network

® However shared data structures used by distributed applications may be
more sophisticated: stacks, queues, sets, logs, graphs, etc.

® These data structures are not offered natively by processors

® Each operation on a shared data structure corresponds to a code (a function)
that can be complex

Distributed shared data structures

® The push operation in Trieber/IBM’s Stack (from D. Hendler)

Push(int v, Stack S)
n := new NODE ;create node for new stack item
n.val := v :write item value
do forever .repeat until success
node top := S.top
n.next := top ;next points to current top (LIFO order)
if compare&swap(S, top, n) ; try to add new item
return . return if succeeded
end do

©®NO O A WN

Distributed shared data structures

® The enqueue operation in Mickael & Scott’s Queue (from D. Hendler)

public boolean enq(T value) {
Node node=new Node(value);
while (true) {
Node Tast = tail.get(Q;
Node next = last.next.get();
if (last == tail.get()) {
if (next == null) {
if (last.next.compareAndSet(null,node) {
tail.compareAndset(last,node);
return;
}
} else {
tail.compareAndset(last,next);
}
}

Distributed Shared Data Structures

The ABD simulation (Attiya, Bar-Noy and Dolev 1995)

® |t has been proved in 1995 that a shared memory (shared registers) can be
emulated over a distributed system provided that there is a majority of

processes that do not crash

However special instructions
cannot be implemented

on a message-passing system
prone to process crashes

Consistency and Progress Conditions

® A data structure is defined by two properties:
O Asafety property
O A progress condition

® Safety: It questions the meaningfulness of the results returned by
operations on shared objects

® Progress: will there be a returned value and when?

Consistency and Progress Conditions

Safety properties

Ideally: The best consistency for an implemented shared object is the one
that makes it indistinguishable from a physical object accessed concurrently

® One simple way to guarantee this property is to use locks: atomicity
O Locks do not tolerate process crashes
O 52% of bugs in Java concern the misuse of "synchronized"
O false conflicts

® Otherwise
O complex implementation of data structures
O memory consuming

Consistency and Progress Conditions

Progress conditions

|deally: Each operation terminates whatever is the behavior of the other
processes (contention, order, etc.)

® |[f one uses locks there are three progress conditions
O deadlock-free (global progress)
O starvation-free (local progress)
O fifo

® Otherwise
O wait-free (local progress)
O lock-free (global progress)
O obstruction-free (conditional progress - no contention)

Strong Consistency

(linearizability and sequential consistency)

® Linearizability and sequential consistency are usually called strong
consistency

® A process cannot distinguish a strongly consistent implementation of a data
structure with a physical data structure accesses concurrently

O Wait-free linearizable shared data structures are desirable but sometimes complex or
inefficient

O Lock-free implementations may enjoy enough strong progress and acceptable complexity

Strong Consistency

(linearizability and sequential consistency)

® Linearizability (from M. Raynal)

write(a) write(b) read(alblc) ?
Pl —= T - - S =
5 wiite(c) | read(alblc) ? |
P2 e ! ' = - — ! .

Strong Consistency

(linearizability and sequential consistency)

® Linearizability: a possible linearization

READ: 2
READ: 1 ’
WRITE: 1 '
o \WRITE' =) R /' READ: 2
y 2 . WRITE/ L
\\I/ \\‘l// [P vV i \‘*1/ \\\% -~

=
Real time line

Valueis1 | 3 2

Strong Consistency

(linearizability and sequential consistency)

® Linearizability: a shared queue
SEQUENTIAL.:

Eng (a) Eng (¢) Ena (b) Deq (a) Dea (c)

- C -

CONCURRENT:
Eng (a) Eng (b) Deq (alb|c) 7
P1 — = == - i

Eng (c) Deq (alblc) ?
—

Strong Consistency

(linearizability and sequential consistency)

® Linearizability Ena (a) Enq (b) Deq (altle) 7
p1 ' '
Ena (¢) 3 Deq (alblc) ?
Ly VR T S ; v !
________ R
History H Inv (Enq(b)) ! Sequences of events

A history defines a partial order on the operations

Strong Consistency

(linearizability and sequential consistency)

® Linearizability

End (a) Enqg (b) Deq (albl|c) 7

pl - - =
ng (¢) / Dedq (alblc) ? /

D2

Eng (a;) :Enq (c) Deq (b)
Eng (b) Deq (a)

Strong Consistency

(linearizability and sequential consistency)

® Linearizability

Enqg (a) Enqg (b) Deq (alblc) ?
b1 '
\ Enl (c) \ 7 Deq (alb|c) ? Z

D2

:Enq (a) D:eq (a)

Ena {e) Eng (5) Deq (c)

Strong Consistency

(linearizability and sequential consistency)

® Sequential consistency

Q.Enqa(a)
-

Q.Enq(b) Q.Deq(b)
- = - =

A "witness” seq history:

Q.Ena(b) Q.Ena(a) Q.Deq(d)

Strong Consistency

(linearizability and sequential consistency)

® Sequential consistency: unfortunately, it does not compose!

Q.End(a) Q.Enq(¥) Q'.Deq(¥)

_ = e - = =
><Cycle
Q'.Enq(a’) Q-Eth(b) Q.Deq(d)

- — . = - =

Strong Consistency

(linearizability and sequential consistency)

® Linearizability and sequential consistency cannot be distinguished in an
asynchronous system

® Sequential consistency is “cheaper” than linearizability

® However, linearizability is a local property: if all objects are linearizable, then the
whole computation is linearizable!

® A distribution computation is a partial order of events.

® A good consistency criterion consists in totally ordering all events

O linearizability: total order on all events + causality + real-time order
O sequential consistency: total order on all events + causality

Weak Consistency

® Strong consistency is usually costly in time and space

® |n message-passing systems strong consistency is usually not possible and when it is possible,
operation has to last the latency of the communication network:
CAP Theorem (Consistency - Availability - Partition) Gilbert&Lynch 2002

® Attiya & Welch proved in 1994 that, when possible, strong consistency needs an operation
duration proportional with network latency

® This is practically impossible for many applications such as instant messaging, collaborative
editors, etc.

® |n those situations, one can use weak consistency conditions:
O -Zachecsherenese——o
O Causal consistency
O Eventual consistency
O PRAM consistency
O Serializability ...

Weak Consistency

Weak consistency conditions let each process built its own total order

® Strong eventual consistency: same total order on all update operations
® Serializability (transactions in databases): not all operations terminate

® Causal consistency: all local linearization respect causal order

® PRAM consistency: local and fifo order

There is no total order on the strength of the different consistency conditions
=> which the strongest weak consistency condition ?

Weak Consistency

The world
of consistency conditions
(from M. Perrin PhD thesis)

There are 3 basic families
of consistency conditions

A consistency condition
that merges all of

the three families falls
into strong consistency

..........

SC PC SEC suc CCv WCC SCC LC

Cohérence Cohérence ~ Convergence Cohérence Convergence Cohérence Cohérence Cohérence
séquentielle pipeline forte d’écritures forte causale causale faible causale forte locale

sC* SL EC uc Ser 1% cc C. Cy

Cohérence Localité Cohérence ode gl -2 Cohérence Criteres
de cache d’état Gonvergene d’écritures Serializabilite Validitg causale limites

Weak Consistency

Weak consistency for which usage

® Serialisability: substitute for strong consistency
O maximal security
O simple to implement
O failures are handled by the user

® Causal/PRAM consistency: distributed algorithms
O predictable
O not costly
O no convergence

® Update consistency/strong eventual consistency: collaborative applications
O close to self-stabilization
O quite costly
O inconsistencies visible to the user

Weak Consistency

Small experience with instant messaging:
Snapshat, Messenger, Whatsapp, Skype, Hangouts, etc.

® Hangouts: serializability
O message sending can be aborted

® \Whatsapp: PRAM consistency

O local consistency (perhaps the least consistent instant messaging)

® Skype: strong eventual consistency

O messages can be reordered afterwards (all users eventually see all messages in the same
order)

Progress Conditions

® |[f one considers message-passing systems, when strong consistency is not
possible, applications consider weak consistency as seen above.
O Amazon’s Dynamo highly available key-value store

® \When necessary, whatever is the cost, strong consistency is provided
O Apache’s Zookeeper for maintaining configuration information
O Google’s Chubbby system

® |In multithreaded computing, strong consistency is not sacrificed, but instead
the progress condition is weakened: lock-free instead of wait-free

Progress Conditions

® The enqueue op. in Mickael & Scott’s lock-free Queue (from D. Hendler)

public boolean enq(T value) {
Node node=new Node(value);
while (true) {
Node Tlast = tail.getQ);
Node next = last.next.get();
if (last == tail.get()) {
if (next == null) {
if (last.next.compareAndSet(null,node) {
tail.compareAndset(last,node);
return;

}
} else {
tail.compareAndset(last,next);
}

}
} 46

Conclusion

® Lock-free implementation are less complex than wait-free ones but they
offer weaker guarantees on progress

® In real settings, lock-free data structures statistically guarantee termination
for all operations

® Mickael & Scott’s lock-free linearizable queue is included in the Standard
Java Concurrency Package

® There are many ongoing research to find the best special instructions and
the most efficient distributed implementations of usual data structures

