Causal Total order broadcast algorithm with bounded message size for dynamic systems

Colette Johnen
Luciana Arantes
Pierre Sens
FIFO broadcast when all processes are correct

Reliable broadcast:
Every broadcast message is eventually delivered once by all processes
Any delivered message was broadcast by a process

FIFO order: delivering order of the messages sent by a process \(p \) is the sending order

If \(p \) broadcasts \(m1 \) before broadcasting \(m2 \) then every process delivers \(m1 \) before \(m2 \)
Total order broadcast when all processes are correct

FIFO order: delivering order of the messages sent by a process p is the sending order

A process may deliver m' before or after m if these two messages are sent by distinct processes

Total order (atomic broadcast): all processes deliver all messages in the same order

If a process delivers m before m' then every process delivers m before m'
Total order broadcast primitives – interest

Total order broadcast primitives is a fundamental building block, used to implement

• consensus (they are equivalent problem)
 [Chandra, Toueg, 1996]

• state machine replication
 [Rajsbaum, Raynal 2020]

• Database replication

• sequential consistency
 [Baldoni et al, 2012] [Perrin et al 2016]
Around 60 total order broadcast algorithms were presented.

Algorithms are classified according to the mechanism used to order messages:

- communication history
- privilege-based
- sequencer
- destination agreement
Challenge

• Total causal order broadcast in highly dynamic message passing systems

• Dynamics modeled as Dynamic graph [Charron-Bost, Moran 2018]
 a particular topology is not required at a given time
 dynamicity does not follow a probabilistic law

To bound data in transit at any point of time:
1. message size has to be bounded
2. the number of messages in transit has to be bounded
Dynamic Graph [Charron-Bost, Moran 2018]

An infinitely sequence of direct loopless graphs having the same vertex set, $V : G_1, G_2, G_3$

G_1

$IN^1(b) = \{a\}$

G_2

$IN^2(a) = \{b, c\}$

$IN^3(a) = \{b, c\}$

$IN^3(b) = \{c\}$

G_3

$IN^4(c) = \{b\}$

$IN^5(d) = \{c\}$
Computation in Synchronous rounds

During the round i, a process p executes 3 steps:

1. p sends a message consisting of all or a part of its local state at the beginning of the round i by calling the primitive `SEND()`
 p also sends messages of others processes in transit at i

2. using Primitive `RECEIVE()`, p receives all messages sent by processes in $IN(p)^i = \{q \in V : (q, p) \in G_i\}$

3. p computes its state according its local algorithm – local state of p at the beginning of the round $i+1$
 p also defines the received messages it keeps in transit
Journey

Journey from p₁ to p_{k+1} starting at t₁

\[J = (e₁, t₁), (e₂, t₂), \ldots, (eₖ, tₖ) \]

such that \(\forall i \in \{1, \ldots, k\} \)

\[e_i = (p_i, p_{i+1}) \in G_i \]

\[i < k \Rightarrow t_i < t_{i+1} \]

Temporal length: \(t_k - t₁ + 1 \)

Example:

\[((a, b), 1), ((b, c), 4), ((c, d), 5) \]

is a journey of length 5

from a to d
Broadcast algorithms in Dynamic Graphs

• At any point in time, the graph is connected
 [O’Dell, Wattenhofer 2005] [Kuhn et al. 2010] [Ahmadi et al. 2020]

• If an edge appears once, it appears infinitely often
 [Casteigts et al. 2010] [Raynal et al. 2014] [Casteigts et al. 2015]

• At any point in time, every node can reach all the others through a journey of temporal length at most Δ
 [Gómez-Calzado et al. 2015]

- No study of the delivery order
- Stronger requirement on DG than Recurrent Connectivity

Class \mathcal{TC}^R (Recurrent Connectivity): At any point in time, every process can reach all the others through a journey
Causal Total order Broadcast algorithm using FIFO broadcast

Communication between processes is performed via FIFO broadcast primitives:

- FD-broadcast(m) and
- FD-deliver(id(q),m)
Total order Broadcast algorithm

Communication between processes is performed via **FIFO broadcast** primitives: FD-broadcast(m) and FD-deliver(id(q),m)

When \(p \) has received a message from each process, via FD-deliver, then \(p \) handles the first message received from each process (i.e. \(p \) delivers this message if it is not **atomic\(\perp \)**)

the delivery order of the messages is the order of senders identifier

Each process permanently performs a Total order broadcast (i.e. a FD-broadcast) If \(p \) has not data to broadcast, it broadcasts the neutral data: **atomic\(\perp \)**
Total order Broadcast algorithm properties

\(data(s,i)\) is the i-th data atomically broadcast by process \(s\)

Lemma: Let \(data(p,i)\) and \(data(q,j)\) be two messages distinct of \(atomic \perp\).
\(data(p,i)\) is delivered before \(data(q,j)\) by a process if and only if
\[i < j \text{ or } (i = j \text{ and } id(p) < id(q))\]

Every process delivers the messages in the same order that is a FIFO order
Total order Broadcast algorithm properties

\(data(s,i) \) is the ith data atomically broadcast by process \(s \)

Local order property: if a process \(s \) atomically delivers \(data(q,j) \) before atomically broadcasts \(data(s,i) \) then every process delivers \(data(q,j) \) before \(data(s,i) \).

[Hadzilacos and Toueg 1994] fifo order + local order \(\Rightarrow \) causal order

Every process delivers the messages in the same order: a causal order.
FIFO broadcast
FIFO broadcast

Each broadcast data by p_1 has a sequential number (unbounded value)
Each broadcast data by \(p1 \) has a sequential number (unbounded value), each process keeps in transit a single message from \(p1 \) - the most recent message one
FIFO broadcast with termination detection

Each broadcast data by $p1$ has a sequential number (bounded value), each process keeps in transit a single message from $p1$ - the most recent message one
Overview of FIFO Broadcast with termination detection

$m(p,i)$ is the ith data broadcast by process p – its size is bounded by msgSize.

A message of p containing $m(p,i)$ contains also its label: $i \mod 3$.

A message from p contains the acknowledgment of a last received message from q (its label).

A message from p contains:

- $id(p)$: sender identifier – $O(\log(N))$ bits
- $m(p, -)$: data – msgSize bits
- $TS[p]$: data label - 2 bits
- $TS[q]$ with $q \neq p$: message acknowledgments - $N-1.2$ bits
- updtCnt: counter of TS updates – $\log(N)+1$ bits
Overview of FIFO Broadcast with termination detection

$m(s,i)$ is the ith data broadcast by process s – its size is bounded by msgSize

A message of s containing $m(s,i)$ contains also its label: $i \mod 3$

Detection of termination of ith broadcast by s:

Since the beginning of its ith broadcast, s has received acknowledgments from N distinct processes of $m(s,i)$ (i.e. $\text{TS}[s]=i \mod 3$)

Difficulties as $m(s,i)$, $m(s,i+3)$, and $m(s,i+6)$ have the same label

- Acknowledgement of $m(s,i)$ is identical to the one of $m(s,i+3k)$
- A process r cannot distinguish a message containing $m(s,i)$ of a message containing $m(s,i+3k)$
Overview of FIFO Broadcast with termination detection

$m(s,i)$ is the ith data broadcast by process s – its size is bounded by msgSize

A message of s containing $m(s,i)$ contains also its label: $i \mod 3$

Detection of termination of ith broadcast by s

Since the beginning of its ith broadcast, s has received acknowledgments from N distinct processes of a data labeled $i \mod 3$ (ie $\text{TS}[s]=i \mod 3$)

Requirements to ensure correct broadcasts with termination detection:

at the beginning of the ith broadcast from s

1. every process is ready to deliver a data of s labeled $i \mod 3$
2. every message from s in transit has the label $i-1 \mod 3$
3. every message in transit verifies $\text{TS}[s] \neq i \mod 3$
Overview of FIFO Broadcast with termination detection

\(m(s,i) \) is the \(i \)th data broadcast by process \(s \) – its size is bounded by \(\text{msgSize} \)

A message of \(s \) containing \(m(s,i) \) contains also its label: \(i \ mod \ 3 \)

Requirements to ensure correct broadcasts with termination detection:

1. every process is ready to deliver a data labeled \(i \ mod \ 3 \) from \(s \)
2. every message from \(s \) in transit has the label \(i-1 \mod 3 \)
3. every message in transit verifies \(TS[s] \neq i \mod 3 \)

Each process \(q \) keeps in transit a single message of \(p \), the most recent one sent

\[\Rightarrow \text{the messages of } p \text{ sent during its } i \text{th broadcast has to be dated} \]

The field \(\text{updtCnt} \) contains the number of times \(p \) updates its message during its current broadcast
Overview of FIFO Broadcast with termination detection

$m(s,i)$ is the ith data broadcast by process s – its size is bounded by msgSize

A message of s containing $m(s,i)$ contains also its label: $i \mod 3$

The field updtCnt contains the number of message updates done during the current broadcast

updtCnt value must be bounded

As soon as a process p detects the termination of a broadcast, it starts a new one

If p has not data to broadcast, it broadcasts the empty data: $\text{brdcst}\bot$
Correctness of FIFO Broadcast with termination detection

Message size: during a broadcast of s, $TS[q]$ is updated at most 2 times – in Class \mathcal{TC}^R, $updtCnt \leq 2N$

Safety: during the ith broadcast of s, every process delivers once $m(s,i)$ if $m(s,i) \neq \text{brdcst} \bot$

Liveness: in Class \mathcal{TC}^R, every broadcast terminates in Class \mathcal{TC}^R: at any point in time, every process can reach all the others through a journey
FIFO Broadcast with termination detection

Process have identifier, \(\forall \ p \in V, \text{id}(p) \) is the unique identifier of \(p \)

[Casteigts et al 2015] : FIFO broadcast with termination detection cannot be solved in \(\mathcal{TC}^R \) if the number of processes is unknown

\[\Rightarrow \] Each process knows the number of processes : \(N \)

Properties of our FIFO-BTD algo : The size of a message is \(2N + O(\log(N)) + \text{msgSize} \) bits where \(\text{msgSize} \) is the size of messages to broadcast

A process has at most \(N \) messages in transit
Conclusion

Causal Total order broadcast primitives in dynamic systems

Future direction ??? : Fault-tolerant broadcasts (process crashes, byzantines processes or transient faults, ...) in dynamic graph

Pour plus de détail :
• Dépôt hal : https://hal.inria.fr/hal-03332423
• Présentation à SRDS 2021
Atomic Broadcast using FIFO broadcast with termination Detection

Communication between processes is performed via fifo broadcast with termination detection: FD-broadcast(m) and FD-deliver(id(q),m).

When p has received a message from each process, via FD-deliver, then p handles the first message received from each process (i.e. p atomically delivers this message if it is not \(\text{atomic}_⊥\)).

the delivery order of the messages is the order of senders identifier

Each process permanently performs an atomic broadcast (i.e. a FD-broadcast)
If \(p\) has not data to atomically broadcast, it broadcasts the neutral data: \(\text{atomic}_⊥\)
Atomic Broadcast properties

\(\text{data}(s,i)\) is the \(i\)th data atomically broadcast by process \(s\)

Lemma: Let \(\text{data}(p,i)\) and \(\text{data}(q,j)\) be two messages distinct of \(\text{atomic}_\bot\). \(\text{data}(p,i)\) is delivered before \(\text{data}(q,j)\) by a process if and only if

\[i < j \text{ or } (i = j \text{ and } id(p) < id(q)) \]

Every process delivers the messages in the same order that is a FIFO order
Atomic Broadcast properties

\(data(s,i)\) is the \(i\)th data atomically broadcast by process \(s\)

Local order property: if a process \(s\) atomically delivers \(data(q,j)\) before atomically broadcasts \(data(s,i)\) then every process delivers \(data(q,j)\) before \(data(s,i)\)

[Hadzilacos and Toueg 1994] fifo order + local order \(\Rightarrow\) causal order

Every process delivers the messages in the same order: a causal order
Conclusion

- Causal Total order broadcast primitives in dynamic systems

- Dynamics modeled as Dynamic graph [Charron-Bost, Moran 2018]
 Class $\mathcal{T}C^R$ - recurrent connectivity
 a particular topology is not required at a given time
 dynamicity does not follow a probabilistic law

- The size of a message is $2N + O(\log(N)) + \text{msgSize}$ bits where
 msgSize is the size of messages to broadcast

Future direction: Fault-tolerant algorithms (process crashes, byzantines fault or transient fault, ...)
Survey on Total order broadcast algorithms
[Delfago et al 2004]

Around 60 total order broadcast algorithms were presented

algorithms are classified according to the mechanism used to order messages:

- communication history
- privilege-based
- sequencer
- destination agreement
Total order broadcast primitives block

Total order broadcast primitives is a fundamental building block, used to implement

- consensus (they are equivalent problem) [Chandra, Toueg, 1996]
- state machine replication [Rajsbaum, Raynal 2020]
Considered Class of dynamic graphs

Class \mathcal{TC}^R (Recurrent Temporal Connectivity): At any point in time, every node can reach all the others through a journey.