Self-Stabilizing Leader Election in Highly Dynamic Networks

Karine Altisen1 Stéphane Devismes2 Anaïs Durand 3 Colette Johnen4 Franck Petit5

1 VERIMAG, UGA, Grenoble
2 MIS, UPJV, Amiens
3 LIMOS, Univ. Clermont, Clermont Ferrand
4 LaBRI, Univ. Bordeaux
5 LIP6, Sorbonne Université, Paris

November 9th 2021, Fontainebleau
Challenge

Self-stabilization in Highly Dynamic Networks?

where topological changes are not:

\[
\begin{align*}
\text{transient} & \quad \text{an anomaly} \\
\text{but} & \quad \left\{ \begin{array}{l}
\text{intermittent} \\
\text{inherent}
\end{array} \right.
\end{align*}
\]

To tolerate both transient faults and high dynamics

Case Study: Leader Election
Objectives

Self-stabilizing leader election in highly dynamic message-passing systems

- Finding **conditions** under which **self-stabilizing leader election** can be achieved.

 We look for
 self-stabilizing algorithm for
 general classes of dynamic networks

 (e.g., we do not enforce the network to be in a particular topology at a given time)

- Finding the **limits** where self-stabilizing leader election becomes impossible?

- Studying **lower bounds** on the convergence time
Leader Election

\(n \) identified processes: \(\forall p \in V, id(p) \) is the unique identifier of \(p \)
Leader Election

n identified processes: $\forall p \in V$, $id(p)$ is the unique identifier of p

Let $IDSET$ be the definition domain of identifiers ($|IDSET| > n$)

$\forall v \in IDSET$,

- v is a real ID if $\exists p \in V$, $id(p) = v$
- v is a fake ID otherwise
Leader Election

n identified processes: $\forall p \in V$, $id(p)$ is the unique identifier of p

Let $IDSET$ be the definition domain of identifiers ($|IDSET| > n$)

$\forall v \in IDSET$,
- v is a real ID if $\exists p \in V$, $id(p) = v$
- v is a fake ID otherwise

Every process p computes the identifier of the leader in $lid(p)$
Initially, $lid(p)$ may contain a fake ID

GOAL: converge to a configuration from which all lid variables constantly designates the same real ID
Computation Model

- **Synchronous Rounds:**

- **Dynamics** modeled with a **Dynamic Graph (DG)**

[Xuan et. al., 03], [Casteigts et. al., 13]
Can d transmit information to a?
Can \(d\) transmit information to \(a\)?
Can \(d\) transmit information to \(a\) ?

1, \((d, c)\); 2, \((c, b)\)
Can \(d\) transmit information to \(a\) ?

\[1, (d, c); 2, (c, b)\]
Journey

Can d transmit information to a?

$G_1 \xrightarrow{\sim \sim} G_2 \xrightarrow{\sim \sim} G_3 \xrightarrow{\sim \sim} G_4 \xrightarrow{\sim \sim} \ldots$

1, (d, c); 2, (c, b); 4, $(b, a) = \text{Journey from } d \text{ to } a \text{ of length 4}.$
Sources and Sinks

Source: can infinitely often reach any other through a journey

Sink: can infinitely often be reached by any other through a journey
Sources and Sinks

Source: can infinitely often reach any other through a journey

Quasi-Timely Source: can infinitely often reach any other through a journey of length $\leq \Delta$

Timely Source: can always reach any other through a journey of length $\leq \Delta$
Sources and Sinks

Source: can infinitely often reach any other through a journey

Quasi-Timely Source: can infinitely often reach any other through a journey of length $\leq \Delta$

Timely Source: can always reach any other through a journey of length $\leq \Delta$
Sources and Sinks

Source: can infinitely often reach any other through a journey

Quasi-Timely Source: can infinitely often reach any other through a journey of length $\leq \Delta$

Timely Source: can always reach any other through a journey of length $\leq \Delta$

Sink: can infinitely often be reached by any other through a journey

Quasi-Timely Sink: can infinitely often be reached by any other through a journey of length $\leq \Delta$

Timely Sink: can always be reached by any other through a journey of length $\leq \Delta$
Classes where All processes are Sources (and so Sinks)

\[\mathcal{I}_{*,*} : \text{All processes are sources} \]
\[\mathcal{I}_{*,*}^Q(\Delta) : \text{All processes are quasi-timely sources} \]
\[\mathcal{I}_{*,*}^B(\Delta) : \text{All processes are timely sources} \]
Generalization: Classes with at least One Source or One Sink

$\mathcal{I}_{1,*}$: At least one Source

$\mathcal{I}_{1,*}^{Q}(\Delta)$: At least one Quasi-Timely Source

$\mathcal{I}_{1,*}^{B}(\Delta)$: At least one Timely Source

$\mathcal{I}_{*,1}$: At least one Sink

$\mathcal{I}_{*,1}^{Q}(\Delta)$: At least one Quasi-Timely Sink

$\mathcal{I}_{*,1}^{B}(\Delta)$: At least one Timely Sink
Hierarchy

\[\mathcal{J}_1, \ast \rightarrow \mathcal{J}_1, \ast \rightarrow \mathcal{J}_1, \ast \]

\[\mathcal{J}_1, \ast \rightarrow \mathcal{J}_Q, \ast \rightarrow \mathcal{J}_1, \ast \]

\[\mathcal{J}_Q, \ast \rightarrow \mathcal{J}_1, \ast \rightarrow \mathcal{J}_1, \ast \]

\[\mathcal{J}_1, \ast \rightarrow \mathcal{J}_Q, \ast \rightarrow \mathcal{J}_1, \ast \]

\[\mathcal{J}_Q, \ast \rightarrow \mathcal{J}_1, \ast \rightarrow \mathcal{J}_1, \ast \]

\[\mathcal{J}_1, \ast \rightarrow \mathcal{J}_Q, \ast \rightarrow \mathcal{J}_1, \ast \]

\[A \rightarrow B \text{ means that } A \subset B \]
Main Results

Self-stabilization
Convergence Time Boundable only in \(J^{B}_*, * \)

Pseudo-stabilization

Convergence Time Unboundable

Self-stabilization

Pseudo-stabilization

Self-stabilization
Convergence Time Boundable only in \(J^{B}_*, * \)
Self- vs. Pseudo-stabilization: "cannot" vs. "does not"

- **Self-stabilization:**

 - arbitrary initial config.
 - legitimate config.

- **Pseudo-stabilization:**

 - arbitrary initial config.
Classes where All Processes are Sources

$\mathcal{T}C^B(\Delta) \subseteq \mathcal{T}C^Q(\Delta) \subseteq \mathcal{T}C^R$
Class $\mathcal{TC}^B(\Delta)$ with $\Delta \in \mathbb{N}^*$ (Bounded Temporal Diameter):

- Δ known
- Stabilization Time: at most 3Δ rounds
- Memory Requirement: $O(\log n + \log \Delta)$ bits per node

Class $\mathcal{TC}^Q(\Delta)$ with $\Delta \in \mathbb{N}^*$ (Quasi Bounded Temporal Diameter):

- Δ and n known
- Memory Requirement: $O(n(\log n + \log \Delta))$ bits per node

Class \mathcal{TC}^R (Recurrent Temporal Connectivity):

- n known
- Memory Requirement: infinite

For $\mathcal{TC}^Q(\Delta)$ and \mathcal{TC}^R, the convergence time cannot be bounded and knowledge of n is mandatory!
Let $p_1, p_2, p_3, p_4, p_5,$ and p_6 be a set of processes. The identifier of p_i is i.
Let $p_1, p_2, p_3, p_4, p_5,$ and p_6 be a set of processes. The identifier of p_i is i.

Assume an algorithm \mathcal{A} that “knows” the number of processes n in the system.
Let p_1, p_2, p_3, p_4, p_5, and p_6 be a set of processes. The identifier of p_i is i.

Assume an algorithm A that “knows” the number of processes n in the system.

If A runs on p_1, p_2, p_3, p_4, p_5, and p_6:
Let $p_1, p_2, p_3, p_4, p_5,$ and p_6 be a set of processes. The identifier of p_i is i.

Assume an algorithm A that "knows" the number of processes n in the system.

If A runs on $p_1, p_2, p_3, p_4, p_5,$ and p_6:

If A runs on $p_1, p_2, p_3,$ and p_4:

$$\text{size-ambiguity (1/3)}$$
Let $p_1, p_2, p_3, p_4, p_5,$ and p_6 be a set of processes. The identifier of p_i is i.

Assume an algorithm A that "knows" the number of processes n in the system.

If A runs on $p_1, p_2, p_3, p_4, p_5,$ and p_6:

It is not size-ambiguous!

If A runs on $p_1, p_2, p_3,$ and p_4:
Let $p_1, p_2, p_3, p_4, p_5, \text{ and } p_6$ be a set of processes. The identifier of p_i is i.

Assume an algorithm \mathcal{A} that “knows” the parity of number of processes n in the system.
Let $p_1, p_2, p_3, p_4, p_5,$ and p_6 be a set of processes. The identifier of p_i is i.

Assume an algorithm \mathcal{A} that “knows” the parity of number of processes n in the system.

If \mathcal{A} runs on $p_1, p_2, p_3, p_4, p_5,$ and p_6:
Let $p_1, p_2, p_3, p_4, p_5,$ and p_6 be a set of processes. The identifier of p_i is i.

Assume an algorithm A that “knows” the parity of number of processes n in the system.

If A runs on $p_1, p_2, p_3, p_4, p_5,$ and p_6:

<table>
<thead>
<tr>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
<th>p_4</th>
<th>p_5</th>
<th>p_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

If A runs on $p_1, p_2, p_3,$ and p_4:

<table>
<thead>
<tr>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
<th>p_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

It is size-ambiguous!
Let p_1, p_2, p_3, p_4, p_5, and p_6 be a set of processes. The identifier of p_i is i.

Assume an algorithm A that “knows” the parity of number of processes n in the system.

If A runs on p_1, p_2, p_3, p_4, p_5, and p_6:

It is size-ambiguous!

If A runs on p_1, p_2, p_3, and p_4:
Let \(p_1, p_2, p_3, p_4, p_5, \) and \(p_6 \) be a set of processes. The identifier of \(p_i \) is \(i \).

Assume an algorithm \(A \) that “knows” the bound \(K = 9 \) of number of processes \(n \) in the system.
Let p_1, p_2, p_3, p_4, p_5, and p_6 be a set of processes. The identifier of p_i is i.

Assume an algorithm A that “knows” the bound $K = 9$ of number of processes n in the system.

If A runs on p_1, p_2, p_3, p_4, p_5, and p_6:

1. p_1^9
2. p_2^9
3. p_3^9
4. p_4^9
5. p_5^9
6. p_6^9
Let $p_1, p_2, p_3, p_4, p_5,$ and p_6 be a set of processes. The identifier of p_i is i.

Assume an algorithm A that “knows” the bound $K = 9$ of number of processes n in the system.

If A runs on $p_1, p_2, p_3, p_4, p_5,$ and p_6:

If A runs on $p_1, p_2, p_3,$ and p_4:
Let $p_1, p_2, p_3, p_4, p_5,$ and p_6 be a set of processes. The identifier of p_i is i.

Assume an algorithm A that “knows” the bound $K = 9$ of number of processes n in the system.

If A runs on $p_1, p_2, p_3, p_4, p_5,$ and p_6:

![Diagram](Diagram1)

If A runs on $p_1, p_2, p_3,$ and p_4:

![Diagram](Diagram2)

It is size-ambiguous!

Size-ambiguity (definition)

Let V be a set of processes and $k \in \mathbb{N}$.

\mathcal{A} is (k, V)-ambiguous if $0 < k < |V|$ and for every $U \subset V$ such that $|U| = k$, \mathcal{A} can be run on U and for every $p \in U$, p has the same set of states whether \mathcal{A} runs on U or V.

\mathcal{A} is size-ambiguous if there exists V and k such that \mathcal{A} is (k, V)-ambiguous.
Let V be a set of processes and $k \in \mathbb{N}$.

\mathcal{A} is (k, V)-ambiguous if $0 < k < |V|$ and for every $U \subseteq V$ such that $|U| = k$, \mathcal{A} can be run on U and for every $p \in U$, p has the same set of states whether \mathcal{A} runs on U or V.

\mathcal{A} is size-ambiguous if there exists V and k such that \mathcal{A} is (k, V)-ambiguous.

\mathcal{A} is size-ambiguous \approx “\mathcal{A} has a partial knowledge of n”
Let \mathcal{A} be any self-stabilizing leader election algorithm for $\mathcal{TC}^Q(\Delta)$ ($\Delta \geq 2$), V be a set of processes, \mathcal{L} be a set of legitimate configurations of \mathcal{A} for V, and $k \in \mathbb{N}$.

\mathcal{L} is closed in $\mathcal{TC}^Q(\Delta)$: if γ' reachable from $\gamma \in \mathcal{L}$ by \mathcal{A} in $\mathcal{TC}^Q(\Delta)$, $\gamma' \in \mathcal{L}$ too.

- If \mathcal{A} is (k, V)-ambiguous, then \mathcal{L} is not closed in $\mathcal{TC}^Q(\Delta)$. (also holds for $\mathcal{TC}^B(\Delta)$)
- \exists a set of legitimate configurations of \mathcal{A} for V which is closed in $\mathcal{TC}^Q(\Delta)$.
Let \mathcal{A} be any self-stabilizing leader election algorithm for $\mathcal{T}C^Q(\Delta)$ ($\Delta \geq 2$), V be a set of processes, \mathcal{L} be a set of legitimate configurations of \mathcal{A} for V, and $k \in \mathbb{N}$.

\mathcal{L} is closed in $\mathcal{T}C^Q(\Delta)$: if γ' reachable from $\gamma \in \mathcal{L}$ by \mathcal{A} in $\mathcal{T}C^Q(\Delta)$, $\gamma' \in \mathcal{L}$ too.

- If \mathcal{A} is (k, V)-ambiguous, then \mathcal{L} is not closed in $\mathcal{T}C^Q(\Delta)$. (also holds for $\mathcal{T}C^B(\Delta)$)
- \exists a set of legitimate configurations of \mathcal{A} for V which is closed in $\mathcal{T}C^Q(\Delta)$.

Theorem 1

No self-stabilizing leader election algorithm for $\mathcal{T}C^Q(\Delta)$, with $\Delta \geq 2$, can be size-ambiguous.

Corollary 2

No self-stabilizing leader election algorithm for $\mathcal{T}C^R$ can be size-ambiguous.
Other Classes: Focus on $\mathcal{J}_{1,*}^B(\Delta)$

At least one a priori unknown process (a timely source) can always reach any other through a journey of length $\leq \Delta$
Impossibility of Self-stabilizing Leader Election in $\mathcal{J}_{1,*}^B(\Delta)$

Preliminary Result

In situation \mathcal{A}, one process eventually changes its leader output.

![Diagram](image)

Proof:

- All processes except p_i (resp. p_x) are connected to any other at any time $\Rightarrow \in \mathcal{J}_{1,*}^B(\Delta)$

- $\forall j \notin \{i, x\}$, the executions of p_j in \mathcal{A} and \mathcal{B} are **indistinguishable**

 \Rightarrow if p_j elects p_i in \mathcal{A}, then p_j elects p_i in $\mathcal{B} \Rightarrow \times$

 $\Rightarrow p_j$ eventually changes its leader
Assume a self-stabilizing algorithm exists

1. Starting from any legitimate configuration, \(\text{lid} \) variables should be constant
2. Now, from any legitimate configuration, situation \(\mathcal{A} \) is possible

 Preliminary result \(\Rightarrow \) one process eventually changes its leader

Contradiction
Assume a self-stabilizing algorithm exists

Starting from any legitimate configuration, \(\text{lid} \) variables should be constant.

Now, from any legitimate configuration, situation \(\mathcal{A} \) is possible.

Preliminary result \(\Rightarrow \) one process eventually changes its leader

Contradiction
Goal: Electing a "stable" process

Stable Process: eventually, all other processes receive (maybe indirectly) information about it at least every Δ rounds
Pseudo-stabilizing Leader Election Algorithm for $\mathcal{J}_{1,*}^B(\Delta)$

Goal: Electing a "stable" process

Stable Process: eventually, all other processes receive (maybe indirectly) information about it at least every Δ rounds

At each round, each process initiates a **flooding** (relayed Δ times)

→ ∃ **stable processes**: each source is stable!
Pseudo-stabilizing Leader Election Algorithm for $\mathcal{J}_{1,*}^B(\Delta)$

Goal: Electing a "stable" process

Stable Process: eventually, all other processes receive (maybe indirectly) information about it at least every Δ rounds

At each round, each process initiates a *flooding* (relayed Δ times)

\implies *stable processes*: each source is stable!

How to evaluate stability?
Pseudo-stabilizing Leader Election Algorithm for $\mathcal{J}_{1,*}^B(\Delta)$

Goal: Electing a "stable" process

Stable Process: eventually, all other processes receive (maybe indirectly) information about it at least every Δ rounds

At each round, each process initiates a **flooding** (relayed Δ times)

$\rightarrow \exists$ **stable processes**: each source is stable!

How to evaluate stability? **suspicion counter**

A process increments its suspicion counter each time it is accused to be NOT stable by some process

After the 1st round, suspicion counters are **monotonically non-decreasing**

(a counter may be reset during the first round due to initial inconsistency)
Pseudo-stabilizing Leader Election Algorithm for $\mathcal{J}_{1,\ast}^B(\Delta)$

Goal: Electing a "stable" process

Stable Process: eventually, all other processes receive (maybe indirectly) information about it at least every Δ rounds

At each round, each process initiates a *flooding* (relayed Δ times)

$\rightarrow \exists$ stable processes: each source is stable!

How to evaluate stability? **suspicion counter**

A process increments its suspicion counter each time it is accused to be NOT stable by some process

After the 1st round, suspicion counters are *monotonically non-decreasing*

(a counter may be reset during the first round due to initial inconsistency)

Elected Leader: a process with the minimum suspicion counter value

(we use identifiers to break ties)
Each process p maintains two maps:

- **$LStable(p)$**: Map of *locally stable* processes at p
 \Rightarrow p itself and processes from which p (directly) receives information at most Δ rounds ago.

- **$GStable(p)$**: Map of *globally stable* processes
 $=$ locally stable at any process (p included)
 \Rightarrow must eventually contain at least every stable process.
Locally and Globally Stable Processes

Each process p maintains two maps:

- **$LStable(p)$**: Map of *locally stable* processes at p
 \Rightarrow p itself and processes from which p (directly) receives information at most Δ rounds ago.

- **$GStable(p)$**: Map of *globally stable* processes
 $=\text{locally stable at any process (}p\text{ included)}$
 \Rightarrow must eventually contain at least every stable process

p always considers *itself* locally & globally stable
Pseudo-stabilizing Leader Election Algorithm for $\mathcal{F}_{1,*}^{B}(\Delta)$

Locally and Globally Stable Processes

Values inside $LStable(p)$ and $GStable(p)$: triplet $< id, susp, ttl >$

- id: identifier
- $susp$: the suspicion value of id
- ttl: time to live
Pseudo-stabilizing Leader Election Algorithm for $\mathcal{J}_{1,*}^B(\Delta)$

Locally and Globally Stable Processes

Values inside $LStable(p)$ and $GStable(p)$: triplet $<id, susp, ttl>$

- id: identifier
- $susp$: the suspicion value of id
- ttl: time to live

$LStable(p)$ and $GStable(p)$ are appended/updated with received information

- update in $LStable(p)$: information with the highest ttl is considered as the freshest one
- update in $GStable(p)$: received information is considered as fresher and inserted with $ttl = \Delta$
Pseudo-stabilizing Leader Election Algorithm for $J_{1,*}^B(\Delta)$

Locally and Globally Stable Processes

Values inside $LStable(p)$ and $GStable(p)$: triplet $< id, susp, ttl >$

- id: identifier
- $susp$: the suspicion value of id
- ttl: time to live

$LStable(p)$ and $GStable(p)$ are appended/updated with received information

- update in $LStable(p)$: information with the highest ttl is considered as the freshest one
- update in $GStable(p)$: received information is considered as fresher and inserted with $ttl = \Delta$

A triplet is removed from a map when its ttl reaches 0
At Every Round

1. \(p \) initiates a flooding of the triplet
 \(< id(p), LSP = LStable(p), ttl = \Delta >\)
Pseudo-stabilizing Leader Election Algorithm for $\mathcal{J}^B_{1,*}(\Delta)$

At Every Round

1. p initiates a flooding of the triplet
 \[< id(p), LSP = LStable(p), ttl = \Delta >\]

2. p updates $LStable(p)$ and $GStable(p)$ according to received triplets
Pseudo-stabilizing Leader Election Algorithm for $\mathcal{J}_{1,*}^{B}(\Delta)$

At Every Round

1. p initiates a flooding of the triplet $< id(p), LSP = LStable(p), ttl = \Delta >$

2. p updates $LStable(p)$ and $GStable(p)$ according to received triplets

3. ttl variables (except those associated to p) are decremented and expired triplets are deleted
At Every Round

1. p initiates a flooding of the triplet $< id(p), LSP = LStable(p), ttl = \Delta >$

2. p updates $LStable(p)$ and $GStable(p)$ according to received triplets

3. ttl variables (except those associated to p) are decremented and expired triplets are deleted

4. For each received LSP map, if $id(p)$ is absent from LSP, p increments its suspicion counter
Pseudo-stabilizing Leader Election Algorithm for $\mathcal{J}^{B}_{1,*}(\Delta)$

At Every Round

1. p initiates a flooding of the triplet $< id(p), LSP = LStable(p), ttl = \Delta >$

2. p updates $LStable(p)$ and $GStable(p)$ according to received triplets

3. ttl variables (except those associated to p) are decremented and expired triplets are deleted

4. For each received LSP map, if $id(p)$ is absent from LSP, p increments its suspicion counter

5. p elects $q \in GStable(p)$ with lowest suspicion counter
Pseudo-stabilizing Leader Election Algorithm for $\mathcal{J}_{1,*}^{B}(\Delta)$

Pseudo-stabilization

1. "Time To Live" allow to delete fake IDs.
Pseudo-stabilizing Leader Election Algorithm for $\mathcal{I}_{1,*}^B(\Delta)$

Pseudo-stabilization

1. "Time To Live" allow to delete fake IDs.

2. Let s be a source.

 $p \neq s$ receives $< id(s), LSP, ttl >$ at least every Δ rounds

 \rightarrow eventually $id(s) \in LStable(p)$ forever, $\forall p \in V$

 \Rightarrow the suspicion counter of s is eventually forever constant

 $\rightarrow id(s) \in LSP$

 \Rightarrow eventually $id(s) \in GStable(p)$ forever, $\forall p \in V$
Pseudo-stabilizing Leader Election Algorithm for $J_{1,1}^B(\Delta)$

Pseudo-stabilization

1. **"Time To Live"** allow to delete fake IDs.

2. Let s be a source.

 $p \neq s$ receives $< id(s), LSP, ttl >$ at least every Δ rounds

 → eventually $id(s) \in LStable(p)$ forever, $\forall p \in V$

 ⇒ the suspicion counter of s is eventually forever constant

 → $id(s) \in LSP$

 ⇒ eventually $id(s) \in GStable(p)$ forever, $\forall p \in V$

3. Let x be a process whose suspicion counter is eventually constant

 Eventually $id(x) \in LStable(s)$ forever, for every source s

 → $id(x) \in GStable(p), \forall p \in V$
Pseudo-stabilizing Leader Election Algorithm for $J^B_{1,*}(\Delta)$

Pseudo-stabilization

4. x infinitely often absent of $GStable(p)$
 \implies infinitely often, during Δ consecutive rounds,
 p only receives $<-, LSP, ->$ with $id(x) \notin LSP$

Some of those triplets were initiated by sources
 $\rightarrow x$ also receives these latter
 $\rightarrow x$ increments its counter infinitely often
Pseudo-stabilizing Leader Election Algorithm for $J_{1,*}^B(\Delta)$

Pseudo-stabilization

4. x infinitely often absent of $GStable(p)$
 \implies infinitely often, during Δ consecutive rounds,
 p only receives $<-, LSP, ->$ with $id(x) \notin LSP$

Some of those triplets were initiated by sources
 $\rightarrow x$ also receives these latter
 $\rightarrow x$ increments its counter infinitely often

5. Eventually:
 Processes with **eventually const.** susp. counter (at least 1) $\in GStable(p)$ forever
 Suspicion counter of other processes $> constant$ suspicion counters
Pseudo-stabilizing Leader Election Algorithm for $\mathcal{J}_{1,*}^B(\Delta)$

Pseudo-stabilization

4. x infinitely often absent of $GStable(p)$

\implies infinitely often, during Δ consecutive rounds,

p only receives $< -, LSP, -$ with $id(x) \notin LSP$

Some of those triplets were initiated by sources

$\implies x$ also receives these latter

$\implies x$ increments its counter infinitely often

5. Eventually:

Processes with eventually const. susp. counter (at least 1) $\in GStable(p)$ forever

Suspicion counter of other processes $> constant$ suspicion counters

6. Eventually, $\ell \in GStable(p)$ with lowest suspicion counter is the same at every p

\implies every process elects ℓ, a stable process.
Conclusion
When stabilization is possible, \textit{convergence time} is, most of the time, unboundable ...

Notable exception: $\mathcal{J}_{*,*}^{(\Delta)}$
When stabilization is possible, *convergence time* is, most of the time, unboundable ...

Notable exception: $J_{*,*}^{B}(\Delta)$

However, to mitigate this issue, we have *speculation*
Speculation [Kotla et al., ACM Trans. Comput. Syst., 2009]:

- the system satisfies its requirements for all executions,
- but also exhibits significantly better performances in a subset of more probable executions.

Idea: worst possible scenarios are often rare in practice.

When the stabilization time cannot be bounded in a class, we exhibit an important subclass where it can be bounded.
Speculation [Kotla et al., ACM Trans. Comput. Syst., 2009]:
- the system satisfies its requirements for all executions,
- but also exhibits significantly better performances in a subset of more probable executions.

Idea: worst possible scenarios are often rare in practice.

When the stabilization time cannot be bounded in a class, we exhibit an important subclass where it can be bounded.

In all cases where stabilization is possible but the convergence time is unboundable, our algorithms are speculative: when deployed in the subclass $J^{B}_\star,\star(\Delta)$, the convergence time is in $O(\Delta)$ rounds.
Important open questions:

- Can we solve pseudo-stabilizing leader election in $J_{1,*}^B$ with a bounded memory?

- Can we solve self-stabilizing leader election in $J_{*,*}$ with a bounded memory?
Thank You for Your Attention

Publications:

- Karine Altisen, Stéphane Devismes, and Anaïs Durand, Colette Johnen, and Franck Petit. On Implementing Stabilizing Leader Election with Weak Assumptions on Network Dynamics. *PODC’21*.