
Compact and Distributed
Data Structures

Cyril Gavoille
(LaBRI, University of Bordeaux)

44th Ecole de Printemps en Informatique Théorique (EPIT)
- Distributed Computing -

Île de Porquerolles, May 15-19, 2017

Understanding what information are needed to
achieve a computational task is a central
question not only in DC (eg., data structure
theory, communication complexity,…)

The ultimate goal in Labeling Schemes is to
understand how localized and how much
information are required to solve a given task on
a network.

Information & Locality

Routing query: next hop to go from x to y?

x

y

Task1: Routing in a physical network

• pre-processing to compute routing information
• a node x stores only routing information involving x

⇒ distributed data structure

Task2: Ancestry in rooted trees

Motivation: [Abiteboul,Kaplan,Milo ’01]

The <TAG> … </TAG> structure of a huge XML data-base is a
rooted tree. Some queries are ancestry relations in this tree.

Use compact index for fast query XML search engine. Here the
constants do matter. Saving 1 byte of fast memory on each entry
of the index table is important. Here n is large, ~ 109.

Ex: Is <“distributed computing”> descendant of <booktitle>?

[a,b] ⊆ [c,d]?

⇒ 2logn bit labels

1

L(x)=[2,18]

3

4 5 6

7

8

9
10

L(y)=[13,18]

18

L(w)=[22,27]

24

27

1211
14

16

23

2625

17

15

2120

19

Folklore solution: DFS labelling

[Alstrup,Rauhe – Siam J.Comp. ’06]
[Fraigniaud,Korman – STOC’10]

Best solution:
logn + θ(loglogn) bit labels

A distributed data structure

• Get the labels of nodes involved in the query
• Compute/decode the answer from the labels
• No other source of information is required

Some labelling schemes

• Adjacency
• Distance (exact or approximate)
• First edge on a (near) shortest path
• Ancestry, parent, nca, sibling relations in trees
• Edge/vertex connectivity, flow
• Proof labelling systems
• …

Agenda

1. Distance Labelling in General Graphs
2. Distance Labelling in Trees
3. Routing in Trees
4. Nearest Common Ancestor Labelling
5. Forbidden-Set Labelling
6. Distance in Planar Graphs
7. Distance in Minor-Free Graphs

Agenda

1. Distance Labelling in General Graphs
2. Distance Labelling in Trees
3. Routing in Trees
4. Nearest Common Ancestor Labelling
5. Forbidden-Set Labelling
6. Distance in Planar Graphs
7. Distance in Minor-Free Graphs

The Distance Labelling Problem
Given a graph, find a labelling of its nodes such that the
distance between any two nodes can be computed by
inspecting only their labels.

Subject to:
•label the nodes of every graph of a family (scheme),
•using short labels (size measured in bits), and
•with a fast distance decoder (algorithm)

0000

1111

0001

0011

0111

Motivation  
[Peleg ’99]

If a short label (say of poly-logarithmic size) can be
added to the address of the destination, then routing to
any destination can be done without routing tables and
with a “limited” number of messages.

dist(x,y)x

message header=hop-count

Motivation  
[Peleg ’99]

If a short label (say of poly-logarithmic size) can be
added to the address of the destination, then routing to
any destination can be done without routing tables and
with a “limited” number of messages.

dist(x,y)x

message header=hop-count

Motivation  
[Peleg ’99]

If a short label (say of poly-logarithmic size) can be
added to the address of the destination, then routing to
any destination can be done without routing tables and
with a “limited” number of messages.

dist(x,y)x

message header=hop-count

Motivation  
[Peleg ’99]

If a short label (say of poly-logarithmic size) can be
added to the address of the destination, then routing to
any destination can be done without routing tables and
with a “limited” number of messages.

dist(x,y)x

message header=hop-count

Motivation  
[Peleg ’99]

If a short label (say of poly-logarithmic size) can be
added to the address of the destination, then routing to
any destination can be done without routing tables and
with a “limited” number of messages.

dist(x,y)x

message header=hop-count

Motivation  
[Peleg ’99]

If a short label (say of poly-logarithmic size) can be
added to the address of the destination, then routing to
any destination can be done without routing tables and
with a “limited” number of messages.

dist(x,y)x

message header=hop-count

y

Label Size: 
a trivial upper bound

There is a labelling scheme using labels of O(nlogn) bits for
every (unweighted) graph G with n nodes, and constant time
decoding.

LG(i)=(i, [dist(i,1),…,dist(i,j),…,dist(i,n)])

➟ distance vector

Label Size: 
a trivial lower bound

No labelling scheme can guarantee labels of less than 0.5n
bits for all n-node graphs (whatever the distance decoder
complexity is)

Proof. The sequence ⟨LG(1),…,LG(n)⟩ and the decoder
δ(.,.) is a representation of G on n.k+O(1) bits if each
label has size k: i adjacent to j iff δ(LG(i),LG(j))=1.

n.k + O(1) ≥ log2(#graphs(n))=n.(n-1)/2	

■

Squashed Cube Dimension 
[Graham,Pollack ’71]

Labeling: word over {0,1,*}
Decoder: Hamming distance

 (where *=don’t care)
(graphs must be connected)

SCdim(G)≥max{n+,n-}

n+/-=#positive/negative eigen-
values of the distance matrix of G	

SCdim(Kn)=n-1

Squashed Cube Dimension 
[Winkler ’83]

Theorem. Every connected n-node graph has squashed
cube dimension at most n-1.

Therefore, for the family of all connected n-node graphs:

Label size: O(n) bits, in fact nlog23 ~ 1.58n bits

Decoding time: O(n/logn) in the RAM model

Rem: all graphs = connected graphs + O(logn) bits

Current best solution
Label size: n(log23)/2 ~ 0.793n bits

Decoding time: O(1)

Agenda

1. Distance Labelling in General Graphs
2. Distance Labelling in Trees
3. Routing in Trees
4. Nearest Common Ancestor Labelling
5. Forbidden-Set Labelling
6. Distance in Planar Graphs
7. Distance in Minor-Free Graphs

Un oracle simple pour les arbres

Idée générale : compresser et « localiser » les informations

1. Choisir un nœud r arbitraire comme racine de T
2. Prendre un chemin P qui « coupe en deux » T
3. Le nœud x stocke (r, d, h) où d = dT (x, a) et h = dT (r, a)

4. Recommencer avec les nœuds restant de T \ P

Un oracle simple pour les arbres

Idée générale : compresser et « localiser » les informations

r

1. Choisir un nœud r arbitraire comme racine de T

2. Prendre un chemin P qui « coupe en deux » T
3. Le nœud x stocke (r, d, h) où d = dT (x, a) et h = dT (r, a)

4. Recommencer avec les nœuds restant de T \ P

Un oracle simple pour les arbres

Idée générale : compresser et « localiser » les informations

P
r

1. Choisir un nœud r arbitraire comme racine de T
2. Prendre un chemin P qui « coupe en deux » T

3. Le nœud x stocke (r, d, h) où d = dT (x, a) et h = dT (r, a)

4. Recommencer avec les nœuds restant de T \ P

Un oracle simple pour les arbres

Idée générale : compresser et « localiser » les informations

P

x : (r, 4, 5)

ar

1. Choisir un nœud r arbitraire comme racine de T
2. Prendre un chemin P qui « coupe en deux » T
3. Le nœud x stocke (r, d, h) où d = dT (x, a) et h = dT (r, a)

4. Recommencer avec les nœuds restant de T \ P

Un oracle simple pour les arbres

Idée générale : compresser et « localiser » les informations

x : (r, 4, 5)

1. Choisir un nœud r arbitraire comme racine de T
2. Prendre un chemin P qui « coupe en deux » T
3. Le nœud x stocke (r, d, h) où d = dT (x, a) et h = dT (r, a)

4. Recommencer avec les nœuds restant de T \ P

Décodage de la distance et analyse

Le nœud x stocke : (r1, d1, h1), . . . , (rk, dk, hk) où dk = 0

Distance entre x et y :
1. Calculer le plus grand i tq ri(x) = ri(y)

2. renvoyer di(x) + di(y) + |hi(x)� hi(y)|

ri

yx

Complexité : O(k) = O(log n) [O(1) possible]

Pré-calcul : O(nk) = O(n log n) [O(n) possible]

Décodage de la distance et analyse

Le nœud x stocke : (r1, d1, h1), . . . , (rk, dk, hk) où dk = 0

Distance entre x et y :
1. Calculer le plus grand i tq ri(x) = ri(y)

2. renvoyer di(x) + di(y) + |hi(x)� hi(y)|

ri

yx

Complexité : O(k) = O(log n) [O(1) possible]

Pré-calcul : O(nk) = O(n log n) [O(n) possible]

Agenda

1. Distance Labelling in General Graphs
2. Distance Labelling in Trees
3. Routing in Trees
4. Nearest Common Ancestor Labelling
5. Forbidden-Set Labelling
6. Distance in Planar Graphs
7. Distance in Minor-Free Graphs

u

v

1

2

3

5

6

7

8
9

10

11

12

13

14

15

16

[7,9] 2
1

3
[10,3]

4

[5,6]

4:([5,6]:1,[7,9]:2,[10,3]:3)

4:
 #1 #2 #3

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0

..........

1

2

3

5

6

7

8
9

10

11

12

13

14

15

16

2
1

3

3

4

2 4:(2,3)

2

2

1

1
1

9

5
6

10

15

16

14
13

12

11

7

8

1

3

4
1

1
3

12

1

1
1

2
3

1

1

1

2

1

2

2

1
1
3

2
32

3 2

<3,6,3,0>
<12,2,1,1>

r=1

Cyril Gavoille

Agenda

1. Distance Labelling in General Graphs
2. Distance Labelling in Trees
3. Routing in Trees
4. Nearest Common Ancestor Labelling
5. Forbidden-Set Labelling
6. Distance in Planar Graphs
7. Distance in Minor-Free Graphs

Cyril Gavoille

=light
=heavy

Cyril Gavoille

Cyril Gavoille

Cyril Gavoille

3

Cyril Gavoille

Cyril Gavoille

Cyril Gavoille

Cyril Gavoille

Cyril Gavoille

Cyril Gavoille

3

0. 0. 0. 0. 0.

3 4 5 8 9 10 11 12 13 14 15210 76

3

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0. 0. 0. 0. 0.

3

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0. 0. 0. 0. 0.

3

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0.0 01 1 11 11110. 0. 0. 0.

3

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0.0 01 1 11 11110. 0. 0. 0.

3b (field delimiter)
(mask for light label test)

4b 2b 5b
bits

3b
bits bits bits bits

100 (field delimiter)1000 10 100 10000
000 1111 00 111 00000 (mask for light label test)

100 1000 10 100 10000
00000111001111000

100 1000 10 100 10000
00000111001111000

100 1000 10 100 10000
00000111001111000

Agenda

1. Distance Labelling in General Graphs
2. Distance Labelling in Trees
3. Routing in Trees
4. Nearest Common Ancestor Labelling
5. Forbidden-Set Labelling
6. Distance in Planar Graphs
7. Distance in Minor-Free Graphs

Forbidden-set labelling scheme 
(extension of labelling scheme)

◆ Goal: to treat more elaborated queries

 Given (u,v,w): is there a path from u to v in G\{w}?

Forbidden-set labelling scheme 
(extension of labelling scheme)

◆ Goal: to treat more elaborated queries

 Given (u,v,w): is there a path from u to v in G\{w}?

 [this particular task reduces to classical nca-labelling scheme
for the bicomponent/cut-vertex tree: ⇒ O(logn) bit labels]

Forbidden-set labelling scheme 
(extension of labelling scheme)

◆ Goal: to treat more elaborated queries

 Given (u,v,w): is there a path from u to v in G\{w}?

 [this particular task reduces to classical nca-labelling scheme
for the bicomponent/cut-vertex tree: ⇒ O(logn) bit labels]

◆ Challenge: Given (u,v,w1,…,wk): is there a path from
u to v in G\{w1,…,wk}?

u

v

Emergency planning for connectivity

◆ Motivation: parallel attack (link/node failure in IP
black-bone, earthquake on road networks, malicious
attack from worms or viruses,…)

[Patrascu,Thorup - FOCS’07]

Emergency planning for connectivity

◆ Motivation: parallel attack (link/node failure in IP
black-bone, earthquake on road networks, malicious
attack from worms or viruses,…)

◆ conn(u,v) ⇒ constant time (after pre-processing G)
◆ conn(u,v,w) ⇒ constant time (after pre-proc. G)

[Patrascu,Thorup - FOCS’07]

Emergency planning for connectivity

◆ Motivation: parallel attack (link/node failure in IP
black-bone, earthquake on road networks, malicious
attack from worms or viruses,…)

◆ conn(u,v) ⇒ constant time (after pre-processing G)
◆ conn(u,v,w) ⇒ constant time (after pre-proc. G)

◆ conn(u,v,w1,…,wk) ⇒ O(k) or Õ(k) time? (after pre-
proc. G), and constant time? (after pre-proc. w1…wk)

[Patrascu,Thorup - FOCS’07]

Emergency planning for connectivity

◆ Motivation: parallel attack (link/node failure in IP
black-bone, earthquake on road networks, malicious
attack from worms or viruses,…)

◆ conn(u,v) ⇒ constant time (after pre-processing G)
◆ conn(u,v,w) ⇒ constant time (after pre-proc. G)

◆ conn(u,v,w1,…,wk) ⇒ O(k) or Õ(k) time? (after pre-
proc. G), and constant time? (after pre-proc. w1…wk)

◆ Note: O(n+m) time is too much. Need a query time
depending only on the #nodes involved in the query.

[Patrascu,Thorup - FOCS’07]

Assume there is a failure x
(node or edge) due to:
flooding, earthquake, damage,
attack …

Assume there is a failure x
(node or edge) due to:
flooding, earthquake, damage,
attack …

How to find efficiently the connected component of any node u in G\{x}?

➟ Update all the component labels with a linear time traversal of G\{x},
and then answer in O(1) for each query node u.

Main issue: G is extremely large, and even linear time is too much in
case of emergency! We would like the answer immediately.

If we pre-process G accordingly, can we then quickly answer queries “is
there a path from u to v in G\{x}”?

Yes we can!

Pre-process G in a more clever way. Identify cut-vertices, the component-
tree and design an efficient NCA data structure (all take linear time).

u,v are not connected in G\{x} iff x is a cut-vertex on the path from c(u) to c(v) in the
component-tree.

Forbidden-set labelling scheme
[Courcelle,Twigg - STACS’07]

A P –forbidden-set labeling scheme for F is a
pair ‹L,f› s.t. ∀ G ∈F, ∀u,v ∈ G, ∀ X ⊆ G:

• L(u,G) is a binary string
• f(L(u,G),L(v,G),L(X,G)) = P (u,v,X,G)

where L(X,G):={L(w,G):w ∈ X}

Let P be a graph property defined on pairs of vertices, and let F be a
graph family.

FS connectivity labelling

[Courcelle,G.,Kanté,Twigg – TGGT’08]
[Borradaile,Pettie,Wulff-Nilsen – SWAT’12]
 Connectivity in planar graphs: O(logn) bit labels
 [O(loglogn) query time after O(klogk) time for query pre-processing]

FS connectivity labelling

[Courcelle,G.,Kanté,Twigg – TGGT’08]
[Borradaile,Pettie,Wulff-Nilsen – SWAT’12]
 Connectivity in planar graphs: O(logn) bit labels
 [O(loglogn) query time after O(klogk) time for query pre-processing]

Meta-Theorem: [Courcelle,Twigg – STACS’07]
 If G has “clique-width” at most cw (generalization of
tree-width) and if predicate P is expressed in MSO-logic
(like distances, connectivity, …), then labels of O(cw2
log2n)-bit suffice.

 Notes: same (optimal) bounds for distances in trees
for the static case, but do not include planar …

Routing with forbidden-sets

Design a routing scheme for G s.t. for every subset X
of “forbidden” nodes (crashes, malicious, …) routing
tables can be updated efficiently provided X.

 ⇒ This capture routing policies

@(y)

router: x

L(w1)
…
L(wk)

next-hop to y
in G\{w1…wk}

Some results for FS routing

[Courcelle,Twigg – STACS’07]
 Clique-width cw: O(cw2log2n) bit labels and routing

tables for shortest path routing.

[Abraham,Chechik,G.,Peleg – PODC’10]
 Doubling dimension-α: O(1+ε−1)2α log2n bit labels and

routing tables for stretch 1+ε routing (wrt. shortest
path)

[Abraham,Chechik,G. – STOC’12]
 Planar: O(ε−1 log3n) bit routing tables and O(ε−2 log5n)

bit labels for stretch 1+ε routing

(1) [Courcelle,G.,Kanté,Twigg – TGGT’08]
(2) [Borradaile,Pettie,Wulff-Nilsen – SWAT’12]

Pre-processing time: O(n)
Query pre-processing time: O(|X|log|X|)
(2) Space: O(n) & Q. Time: O(loglogn)
(1) Space: O(logn) bit labels & Q. time: O(√logn)

(2) can be generalized to H-minor free graphs

Focus on Connectivity 
(in planar graphs)

[Here X subset of edges only ... much more tricky otherwise]

Main Idea (1)

[Here X subset of edges only ... much more tricky otherwise]

Main Idea (1)

[Here X subset of edges only ... much more tricky otherwise]

Main Idea (1)

[Here X subset of edges only ... much more tricky otherwise]

Main Idea (1)

[Here X subset of edges only ... much more tricky otherwise]

Main Idea (1)

[Here X subset of edges only ... much more tricky otherwise]

Main Idea (1)

Query = PLANAR POINT LOCATION in O(√logn) time (polynomial
coordinates)
Note: space does NOT depend on |X|.

FindG\X(u)?
(find some identifier of the component of u in G\X)

A Simple Solution for Trees

u

FindG\X(u)?
(find some identifier of the component of u in G\X)

1.Find the closest failure x ancestor of u

A Simple Solution for Trees

u

FindG\X(u)?
(find some identifier of the component of u in G\X)

1.Find the closest failure x ancestor of u

A Simple Solution for Trees

u

FindG\X(u)?
(find some identifier of the component of u in G\X)

1.Find the closest failure x ancestor of u
2.Next-hop when routing from x to u in the tree

A Simple Solution for Trees

u

Label(z):=<[a(z),b(z)],@(z)>
[a(z),b(z)]=first/last visit time in Euler tour
@(z)=routing label for routing to/from z

x0:[1,72]

x1:[3,46]

x2:[29,43]

x3:[60,66]

S=[1 [3 [29 43] 46] [60 66] 72]
A= x0 x1 x2 x1 x0 x3 x0 -

x0:[1,72]

x1:[3,46]

x2:[29,43]

x3:[60,66]

FindG\X(u):=(x,route(@(x),@(u)))

 x=A[p] (closest ancestor failure)
 p=PREDS(a(u))=max{s∈S:s≤a(u)} (predecessor)

S=[1 [3 [29 43] 46] [60 66] 72]
A= x0 x1 x2 x1 x0 x3 x0 -

x0:[1,72]

x1:[3,46]

x2:[29,43]

x3:[60,66]

a(u)=23

FindG\X(u):=(x,route(@(x),@(u)))

 x=A[p] (closest ancestor failure)
 p=PREDS(a(u))=max{s∈S:s≤a(u)} (predecessor)

S=[1 [3 [29 43] 46] [60 66] 72]
A= x0 x1 x2 x1 x0 x3 x0 -

x0:[1,72]

x1:[3,46]

x2:[29,43]

x3:[60,66]

➟ Space: O(logn) bit labels
 Query pre-processing: O(SORT(|X|,n))
 Query time: O(min{log|X|,loglogn})

a(u)=23

Query Time Lower Bound 
Why Ω(loglogn) is required? (for large |X|)

Given X and FindPath\X we construct an associative table
Tab[FindPath\X(xi+1)]=xi in time O(|X|log|X|).

Path

➟ PREDX(u)=Tab[FindPath\X(u)]

➟ Query-time(PREDX) ≤ Query-time(FindPath\X)+O(1)

1 2 … x1 x2 … xk n

Query Time Lower Bound 
Why Ω(loglogn) is required? (for large |X|)

[Patrascu,Thorup – STOC’06]

Any data structure with space Õ(|X|) and supporting PREDX queries
requires query time Ω(loglogn) provided |X|∈[nε,n1-ε].

Given X and FindPath\X we construct an associative table
Tab[FindPath\X(xi+1)]=xi in time O(|X|log|X|).

Path

➟ PREDX(u)=Tab[FindPath\X(u)]

➟ Query-time(PREDX) ≤ Query-time(FindPath\X)+O(1)

1 2 … x1 x2 … xk n

Agenda

1. Distance Labelling in General Graphs
2. Distance Labelling in Trees
3. Routing in Trees
4. Nearest Common Ancestor Labelling
5. Forbidden-Set Labelling
6. Distance in Planar Graphs
7. Distance in Minor-Free Graphs

Distance labeling in planar networks

Shortest path metrics of planar graphs are di�cult to capture

Planars are 6= Euclidian networks (TSP, `p embedding, ...)

Planars have no tree structure, treewidth can be ⌦(

p
n)

Distance labeling in planar networks

Shortest path metrics of planar graphs are di�cult to capture

Planars are 6= Euclidian networks (TSP, `p embedding, ...)

Planars have no tree structure, treewidth can be ⌦(

p
n)

Some history

stretch label size (bits) reference

1 n1/3... n1/2
log� G., Peleg et al . [SODA ’01]

3 n1/3
log� G., Peleg et al. [ESA ’01]

3 log n log� Gupta et al. [SICOMP ’05]

1 + " "�1
log n log� Thorup [JACM ’04]

Distance labeling in planar networks

Shortest path metrics of planar graphs are di�cult to capture

Planars are 6= Euclidian networks (TSP, `p embedding, ...)

Planars have no tree structure, treewidth can be ⌦(

p
n)

Some history

stretch label size (bits) reference

1 n1/3... n1/2
log� G., Peleg et al . [SODA ’01]

3 n1/3
log� G., Peleg et al. [ESA ’01]

3 log n log� Gupta et al. [SICOMP ’05]

1 + " "�1
log n log� Thorup [JACM ’04]

Distance labeling in planar networks

Shortest path metrics of planar graphs are di�cult to capture

Planars are 6= Euclidian networks (TSP, `p embedding, ...)

Planars have no tree structure, treewidth can be ⌦(

p
n)

Some history

stretch label size (bits) reference

1 n1/3... n1/2
log� G., Peleg et al . [SODA ’01]

3 n1/3
log� G., Peleg et al. [ESA ’01]

3 log n log� Gupta et al. [SICOMP ’05]

1 + " "�1
log n log� Thorup [JACM ’04]

Distance labeling in planar networks

Shortest path metrics of planar graphs are di�cult to capture

Planars are 6= Euclidian networks (TSP, `p embedding, ...)

Planars have no tree structure, treewidth can be ⌦(

p
n)

Some history

stretch label size (bits) reference

1 n1/3... n1/2
log� G., Peleg et al . [SODA ’01]

3 n1/3
log� G., Peleg et al. [ESA ’01]

3 log n log� Gupta et al. [SICOMP ’05]

1 + " "�1
log n log� Thorup [JACM ’04]

Shortest-path separator

Lemma

Every n-node planar graph G has a shortest-path tree T with

at most 3 leaves such that each component of G \ T has

6 n/2 nodes.

w(R) =#nodes in region R

w(A), w(B), w(C) 6 n/2: done

or w(C) > n/2

w(A) + w(B) 6 n/2

merge & repeat

w(C 0) < w(C)

Shortest-path separator

Lemma

Every n-node planar graph G has a shortest-path tree T with

at most 3 leaves such that each component of G \ T has

6 n/2 nodes.

C

A
B

w(R) =#nodes in region R

w(A), w(B), w(C) 6 n/2: done

or w(C) > n/2

w(A) + w(B) 6 n/2

merge & repeat

w(C 0) < w(C)

Shortest-path separator

Lemma

Every n-node planar graph G has a shortest-path tree T with

at most 3 leaves such that each component of G \ T has

6 n/2 nodes.

C

A
B

w(R) =#nodes in region R

w(A), w(B), w(C) 6 n/2: done

or w(C) > n/2

w(A) + w(B) 6 n/2

merge & repeat

w(C 0) < w(C)

Shortest-path separator

Lemma

Every n-node planar graph G has a shortest-path tree T with

at most 3 leaves such that each component of G \ T has

6 n/2 nodes.

C

A
B

w(R) =#nodes in region R

w(A), w(B), w(C) 6 n/2: done

or w(C) > n/2

w(A) + w(B) 6 n/2

merge & repeat

w(C 0) < w(C)

Shortest-path separator

Lemma

Every n-node planar graph G has a shortest-path tree T with

at most 3 leaves such that each component of G \ T has

6 n/2 nodes.

C

A
B

w(R) =#nodes in region R

w(A), w(B), w(C) 6 n/2: done

or w(C) > n/2

w(A) + w(B) 6 n/2

merge & repeat

w(C 0) < w(C)

Shortest-path separator

Lemma

Every n-node planar graph G has a shortest-path tree T with

at most 3 leaves such that each component of G \ T has

6 n/2 nodes.

C

A
B

w(R) =#nodes in region R

w(A), w(B), w(C) 6 n/2: done

or w(C) > n/2

w(A) + w(B) 6 n/2

merge & repeat

w(C 0) < w(C)

Shortest-path separator

Lemma

Every n-node planar graph G has a shortest-path tree T with

at most 3 leaves such that each component of G \ T has

6 n/2 nodes.

C 0

B0
A0

w(R) =#nodes in region R

w(A), w(B), w(C) 6 n/2: done

or w(C) > n/2

w(A) + w(B) 6 n/2

merge & repeat

w(C 0) < w(C)

Shortest-path tree-decomposition

log n

Xt

s

Xs

t

Xu = highest separator where node u belongs to

Shortest-path tree-decomposition

log n

Xt

s

Xs

t

Let P be any path s ! t.

Property 1. 9Q 2 ancestor(Xs) \ ancestor(Xt), Q \ P 6= ?.

Landmark and "-cover

s2

Qs

s0
s1

s3

s01
s02

s03

Property 2. For every s and Q, at most 1 + 4/" landmarks

su�ces to "-cover every x 2 Q, i.e.,

dG(s, si) + dQ(si, x) 6 (1 + ") · dG(s, x) for some landmark si.

Landmark and "-cover

x

Qs

s0
s1

s3

s01
s02

s03

s2

Property 2. For every s and Q, at most 1 + 4/" landmarks

su�ces to "-cover every x 2 Q, i.e.,

dG(s, si) + dQ(si, x) 6 (1 + ") · dG(s, x) for some landmark si.

Landmark and "-cover

t0
Qs

t

P
s0

Property 3. If Q intersects P , then there are landmarks si, tj
st. dG(s, si) + dQ(si, tj) + dG(tj, t) 6 (1 + ") · dG(s, t).

Conclusion

Properties 1, 2 & 3 show that each node only needs to store

at most (1 + 4/")⇥ 3 log n distances informations, that is

O("�1
log n log�) bits per node label, to (1 + ")-approximate

any s, t-distance in the graph. ⇤

Agenda

1. Distance Labelling in General Graphs
2. Distance Labelling in Trees
3. Routing in Trees
4. Nearest Common Ancestor Labelling
5. Forbidden-Set Labelling
6. Distance in Planar Graphs
7. Distance in Minor-Free Graphs
 (what is a minor?)

What is a minor?

A minor of G is a subgraph of a graph obtained from G by
edge contraction.

A H-minor free graph is a graph without minor H.

What is a minor?

A minor of G is a subgraph of a graph obtained from G by
edge contraction.

A H-minor free graph is a graph without minor H.

What is a minor?

A minor of G is a subgraph of a graph obtained from G by
edge contraction.

A H-minor free graph is a graph without minor H.

Some H-minor free graph families

Trees are K
3

-minor free

Outerplanar graphs are K
2,3-minor free

Series-Parallel graphs are K
4

-minor free

Planar are K
5

-minor free (and also K
3,3-minor free)

Genus-g graphs are K
5+b2

p
3g c-minor free

Treewidth-t graphs are Kt+2

-minor free

The graphs of any minor closed families F are H-minor
free for some H = H(F).

Excercise: is there a K2,4-minor?

Excercise: is there a K2,4-minor?

Excercise: is there a K2,4-minor?

Excercise: is there a K2,4-minor?

Excercise: is there a K2,4-minor?

K5-minor free graphs

Theorem (Wagner - 1937)
Every K

5

-minor free graph has a tree-decomposition whose

bags intersect in at most 3 vertices, and induced a planar

graph or a V
8

.

Corollary: 4-coloring of K
5

-minor free graphs , 4CC.

H-minor free graphs

Theorem (Robertson & Seymour - Graph Minor 16)
Every H-minor free graph has a tree-decomposition whose

bags intersect in 6 k vertices, and induced graphs that either

have 6 k vertices, or are k-almost embeddable on a surface ⌃
on which H has no embedding.

Wagner’s Theorem : H = K
5

, k = 3, ⌃ = S
0

.

H-minor free graphs

Theorem (Robertson & Seymour - Graph Minor 16)
Every H-minor free graph has a tree-decomposition whose

bags intersect in 6 k vertices, and induced graphs that either

have 6 k vertices, or are k-almost embeddable on a surface ⌃
on which H has no embedding.

Wagner’s Theorem : H = K
5

, k = 3, ⌃ = S
0

.

H-minor free graphs

Theorem (Robertson & Seymour - Graph Minor 16)
Every H-minor free graph has a tree-decomposition whose

bags intersect in 6 k vertices, and induced graphs that either

have 6 k vertices, or are k-almost embeddable on a surface ⌃
on which H has no embedding.

Wagner’s Theorem : H = K
5

, k = 3, ⌃ = S
0

.

Problem: the constant!

The structure given by [RS] Theorem is not fine enough for
practical use. No bounds on k = k(H) is known!

Bounds if H is planar [RST ’94]: the tree-decomposition has
width k = k(H), and thus has a (k + 1)-coloring.

Problem: k 6 202(|V (H)|+4|E(H)|)5 ...

So excluding H = K
4

leads to treewidth of at most 40028

5

.
In fact this is 2, such graphs are series-parallel. They have a
3-coloring.

Problem: the constant!

The structure given by [RS] Theorem is not fine enough for
practical use. No bounds on k = k(H) is known!

Bounds if H is planar [RST ’94]: the tree-decomposition has
width k = k(H), and thus has a (k + 1)-coloring.

Problem: k 6 202(|V (H)|+4|E(H)|)5 ...

So excluding H = K
4

leads to treewidth of at most 40028

5

.
In fact this is 2, such graphs are series-parallel. They have a
3-coloring.

Problem: the constant!

The structure given by [RS] Theorem is not fine enough for
practical use. No bounds on k = k(H) is known!

Bounds if H is planar [RST ’94]: the tree-decomposition has
width k = k(H), and thus has a (k + 1)-coloring.

Problem: k 6 202(|V (H)|+4|E(H)|)5 ...

So excluding H = K
4

leads to treewidth of at most 40028

5

.
In fact this is 2, such graphs are series-parallel. They have a
3-coloring.

K6-minor free: conjectures

Conjecture (Hadwiger - 1943)
Every Kr+1

-minor free graph has a r-coloring.

Proved for r 2 {1, . . . , 5}.

[Robertson et al. - 1993] (r = 5)

5-coloring of K
6

-minor free graphs , 4CC

[Every minimal counter-example is
a planar plus one vertex (83 pages)]

However, the structure of K
6

-minor free graph is still
unknown. Ken-ichi Kawarabayashi explains in SODA ’07 why
the problem is important and di�cult.

K6-minor free: conjectures

Conjecture (Hadwiger - 1943)
Every Kr+1

-minor free graph has a r-coloring.

Proved for r 2 {1, . . . , 5}.
[Robertson et al. - 1993] (r = 5)

5-coloring of K
6

-minor free graphs , 4CC

[Every minimal counter-example is
a planar plus one vertex (83 pages)]

However, the structure of K
6

-minor free graph is still
unknown. Ken-ichi Kawarabayashi explains in SODA ’07 why
the problem is important and di�cult.

K6-minor free: conjectures

Conjecture (Jørgensen - 2001)
Every K

6

-minor free graph has a arboricity at most 3.

Conjecture (Jørgensen - 1994)
Every 6-connected K

6

-minor free graph has a vertex u such

that G \ {u} is planar.

DeVos, Hegde, Kawarabayashi, Norine, Thomas, and Wollan
have announced that [J94] is true if the graph has many
vertices ...

Problem: replace “6” by “r” in [J94].

K6-minor free: conjectures

Conjecture (Jørgensen - 2001)
Every K

6

-minor free graph has a arboricity at most 3.

Conjecture (Jørgensen - 1994)
Every 6-connected K

6

-minor free graph has a vertex u such

that G \ {u} is planar.

DeVos, Hegde, Kawarabayashi, Norine, Thomas, and Wollan
have announced that [J94] is true if the graph has many
vertices ...

Problem: replace “6” by “r” in [J94].

Agenda

1. Distance Labelling in General Graphs
2. Distance Labelling in Trees
3. Routing in Trees
4. Nearest Common Ancestor Labelling
5. Forbidden-Set Labelling
6. Distance in Planar Graphs
7. Distance in Minor-Free Graphs
 (what is a minor?)

Our approach: path separator technique

Definition (Main)

A weighted graph G with n nodes is k-path separable if there
exists a subgraph S, called k-path separator, such that:

1 S = P0 [P1 [· · · , where each subgraph Pi is the union
of ki shortest paths in G \

S
j<i Pj;

2
P

i ki 6 k; and

3 each connected component of G \ S is k-path separable
and has at most n/2 nodes.

If Q is a path forming Pi, then:

Q is not necessarily of bounded size

Q is not necessarily a shortest path in G

Our approach: path separator technique

Definition (Main)

A weighted graph G with n nodes is k-path separable if there
exists a subgraph S, called k-path separator, such that:

1 S = P0 [P1 [· · · , where each subgraph Pi is the union
of ki shortest paths in G \

S
j<i Pj;

2
P

i ki 6 k; and

3 each connected component of G \ S is k-path separable
and has at most n/2 nodes.

If Q is a path forming Pi, then:

Q is not necessarily of bounded size

Q is not necessarily a shortest path in G

Our approach: path separator technique

Definition (Main)

A weighted graph G with n nodes is k-path separable if there
exists a subgraph S, called k-path separator, such that:

1 S = P0 [P1 [· · · , where each subgraph Pi is the union
of ki shortest paths in G \

S
j<i Pj;

2
P

i ki 6 k; and

3 each connected component of G \ S is k-path separable
and has at most n/2 nodes.

If Q is a path forming Pi, then:

Q is not necessarily of bounded size

Q is not necessarily a shortest path in G

Our approach: path separator technique

Definition (Main)

A weighted graph G with n nodes is k-path separable if there
exists a subgraph S, called k-path separator, such that:

1 S = P0 [P1 [· · · , where each subgraph Pi is the union
of ki shortest paths in G \

S
j<i Pj;

2
P

i ki 6 k; and

3 each connected component of G \ S is k-path separable
and has at most n/2 nodes.

If Q is a path forming Pi, then:

Q is not necessarily of bounded size

Q is not necessarily a shortest path in G

Our approach: path separator technique

Definition (Main)

A weighted graph G with n nodes is k-path separable if there
exists a subgraph S, called k-path separator, such that:

1 S = P0 [P1 [· · · , where each subgraph Pi is the union
of ki shortest paths in G \

S
j<i Pj;

2
P

i ki 6 k; and

3 each connected component of G \ S is k-path separable
and has at most n/2 nodes.

If Q is a path forming Pi, then:

Q is not necessarily of bounded size

Q is not necessarily a shortest path in G

Some basic examples

Unweighted meshes are 1-path separable

Unweighted meshes are 1-path separable

Trees are 1-path separable

Lemma (Thorup [JACM ’04])

Every n-node planar graph G has a shortest-path tree T with
at most 3 leaves such that each component of G \ T has
6 n/2 nodes.

) planars are 3-path separable

Some basic examples

Unweighted meshes are 1-path separable

Unweighted meshes are 1-path separable

Trees are 1-path separable

Lemma (Thorup [JACM ’04])

Every n-node planar graph G has a shortest-path tree T with
at most 3 leaves such that each component of G \ T has
6 n/2 nodes.

) planars are 3-path separable

Some basic examples

Unweighted meshes are 1-path separable

Trees are 1-path separable

Unweighted meshes are 1-path separable

Trees are 1-path separable

Lemma (Thorup [JACM ’04])

Every n-node planar graph G has a shortest-path tree T with
at most 3 leaves such that each component of G \ T has
6 n/2 nodes.

) planars are 3-path separable

Some basic examples

Unweighted meshes are 1-path separable

Trees are 1-path separable

Unweighted meshes are 1-path separable

Trees are 1-path separable

Lemma (Thorup [JACM ’04])

Every n-node planar graph G has a shortest-path tree T with
at most 3 leaves such that each component of G \ T has
6 n/2 nodes.

) planars are 3-path separable

Some basic examples

Unweighted meshes are 1-path separable

Trees are 1-path separable

Lemma (Thorup [JACM ’04])

Every n-node planar graph G has a shortest-path tree T with
at most 3 leaves such that each component of G \ T has
6 n/2 nodes.

) planars are 3-path separable

Conjecture (Thorup)

Every n-node H-minor-free graph has a shortest-path tree T
with at most ` = `(H) leaves such that each component of
G \ T has 6 n/2 nodes.

True for H = K2, K3, K4, K5, also true if H is planar

Wrong for K6! There are K6-minor-free graphs for which a
sequence of unions of shortest paths is required!

Conjecture (Thorup)

Every n-node H-minor-free graph has a shortest-path tree T
with at most ` = `(H) leaves such that each component of
G \ T has 6 n/2 nodes.

True for H = K2, K3, K4, K5, also true if H is planar

Wrong for K6! There are K6-minor-free graphs for which a
sequence of unions of shortest paths is required!

Conjecture (Thorup)

Every n-node H-minor-free graph has a shortest-path tree T
with at most ` = `(H) leaves such that each component of
G \ T has 6 n/2 nodes.

True for H = K2, K3, K4, K5, also true if H is planar

Wrong for K6! There are K6-minor-free graphs for which a
sequence of unions of shortest paths is required!

Conjecture (Thorup)

Every n-node H-minor-free graph has a shortest-path tree T
with at most ` = `(H) leaves such that each component of
G \ T has 6 n/2 nodes.

True for H = K2, K3, K4, K5, also true if H is planar

Wrong for K6! There are K6-minor-free graphs for which a
sequence of unions of shortest paths is required!

genus ⌦(n)

tree-width ⌦(
p

n)

no K6 minor

⌦(
p

n) shortest paths to halve

... but is 2-path separable

Conjecture (Thorup)

Every n-node H-minor-free graph has a shortest-path tree T
with at most ` = `(H) leaves such that each component of
G \ T has 6 n/2 nodes.

True for H = K2, K3, K4, K5, also true if H is planar

Wrong for K6! There are K6-minor-free graphs for which a
sequence of unions of shortest paths is required!

Theorem (Main)

Every H-minor-free graph is k-path separable for k = k(H).

A k-path separator can be find in nO(k) time

Consequences of the Main Theorem

Theorem (Object Location)

Let G be a weighted k-path separable graph of aspect ratio �

1 stretch-(1 + ") distance labeling with
O(k"�1 log n log("�1 log �))-bit labels

2 stretch-(1 + ") labeled routing scheme with
O(k"�1 log3 n/ log log n)-bit headers and routing tables

3 One can augment G with 1 directed edge per node such
that greedy routing performs in O(k2 log2 n log2 �)
expected number of hops

4 And others: reachability, distance oracles in digraphs, ...

Proving the Object Location Theorem
(⇡ extension of Thorup’s data-structures)

8 s, t-shortest path R in G there exist:

a subgraph G0 in the separator decomposition of G;

a k-path separator S 0 of G0; and

a path Q that composes S 0 such that

Q and R intersect and both are shortest paths in G0.

Rs
t

G

Node s can select, independently of t, few “landmarks” on
Q so that one of these landmarks is close to R \Q

Proving the Object Location Theorem
(⇡ extension of Thorup’s data-structures)

8 s, t-shortest path R in G there exist:

a subgraph G0 in the separator decomposition of G;

a k-path separator S 0 of G0; and

a path Q that composes S 0 such that

Q and R intersect and both are shortest paths in G0.

Rs
t

G0 G

Node s can select, independently of t, few “landmarks” on
Q so that one of these landmarks is close to R \Q

Proving the Object Location Theorem
(⇡ extension of Thorup’s data-structures)

8 s, t-shortest path R in G there exist:

a subgraph G0 in the separator decomposition of G;

a k-path separator S 0 of G0; and

a path Q that composes S 0 such that

Q and R intersect and both are shortest paths in G0.

G
G0

s
tS 0

Node s can select, independently of t, few “landmarks” on
Q so that one of these landmarks is close to R \Q

Proving the Object Location Theorem
(⇡ extension of Thorup’s data-structures)

8 s, t-shortest path R in G there exist:

a subgraph G0 in the separator decomposition of G;

a k-path separator S 0 of G0; and

a path Q that composes S 0 such that

Q and R intersect and both are shortest paths in G0.

G
G0

s
tS 0

Node s can select, independently of t, few “landmarks” on
Q so that one of these landmarks is close to R \Q

Proving the Object Location Theorem
(⇡ extension of Thorup’s data-structures)

8 s, t-shortest path R in G there exist:

a subgraph G0 in the separator decomposition of G;

a k-path separator S 0 of G0; and

a path Q that composes S 0 such that

Q and R intersect and both are shortest paths in G0.

G0

S 0

s
t

G

Node s can select, independently of t, few “landmarks” on
Q so that one of these landmarks is close to R \Q

Proving the Main Theorem

Theorem (Main)

Every H-minor-free graph is k-path separable for k = k(H).

The full proof is technical (needs long preliminaries), based on
the recent decomposition theorem of Robertson & Seymour:

Proving the Main Theorem

Theorem (Main)

Every H-minor-free graph is k-path separable for k = k(H).

The full proof is technical (needs long preliminaries), based on
the recent decomposition theorem of Robertson & Seymour:

Proving the Main Theorem

Theorem (Main)

Every H-minor-free graph is k-path separable for k = k(H).

The full proof is technical (needs long preliminaries), based on
the recent decomposition theorem of Robertson & Seymour:

Roughly speaking,

Theorem (Graph Minor-16, 2003)

Every graph excluding a fixed minor has a tree-decomposition
in subgraphs that are h-almost embeddable on a surface of
bounded Euler genus.

Proving the Main Theorem

Theorem (Main)

Every H-minor-free graph is k-path separable for k = k(H).

The full proof is technical (needs long preliminaries), based on
the recent decomposition theorem of Robertson & Seymour:

Actually,

Theorem (Graph Minor-16, 2003)

Every graph excluding a minor H has a tree-decomposition
whose the “torso” of its bags are h-almost embeddable on a
surface on which H cannot be embedded.

h-almost embeddable graphs

⌃

h-almost embeddable graphs

⌃

Vortices

h-almost embeddable graphs

⌃

Vortices

Apices

A tree of h-almost embeddable graphs

A tree of h-almost embeddable graphs

Finding a k-path separator with this?

Finding a k-path separator with this?

Some remarks:

shortest paths go everywhere

⌃ can be non-orientable

Jordan curve Theorem does not work (vortices!)

Finding a k-path separator with this?

Some remarks:

shortest paths go everywhere

⌃ can be non-orientable

Jordan curve Theorem does not work (vortices!)

⌃

P

Finding a k-path separator with this?

Some remarks:

shortest paths go everywhere

⌃ can be non-orientable

Jordan curve Theorem does not work (vortices!)

⌃
Vortex-path

⌃
Vortex-path

Note: a vortex-path can be covered by a constant number of
shortest paths if segments are shortest paths

Lemma
If the center subgraph is “nearly-planar” (= no apices and
⌃ = R2), there are three vortex-paths whose segments are
shortest paths, and whose deletions leave components of size
6 n/2.

Q.E.D.

⌃
Vortex-path

Note: a vortex-path can be covered by a constant number of
shortest paths if segments are shortest paths

Lemma
If the center subgraph is “nearly-planar” (= no apices and
⌃ = R2), there are three vortex-paths whose segments are
shortest paths, and whose deletions leave components of size
6 n/2.

Q.E.D.

