1. Routing with Succinct Tables
2. Constructing Sparse Spanners
3. Routing v.s. Spanners
Routing v.s. Spanners
Outline

The Question and the Answer

A Naive Approach

The Proof
Outline

The Question and the Answer

A Naive Approach

The Proof
<table>
<thead>
<tr>
<th>stretch</th>
<th>size</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2k - 1$</td>
<td>$O(n^{1+1/k})$</td>
<td>Greedy Algorithm</td>
</tr>
<tr>
<td>$2k - 1$</td>
<td>$O(kn^{1+1/k})$</td>
<td>Tree Cover</td>
</tr>
<tr>
<td>$4k - 5$</td>
<td>$\tilde{O}(kn^{1/k})$</td>
<td>Routing (using T.C.)</td>
</tr>
<tr>
<td>+ 2</td>
<td>$O(n^{3/2})$</td>
<td>Tree Cover</td>
</tr>
<tr>
<td>+ 6</td>
<td>$O(n^{4/3})$</td>
<td>Spanner (T.C.?)</td>
</tr>
<tr>
<td>+ $f(k)$</td>
<td>$O(n^{1+1/k})^{??}$</td>
<td>for $k > 3$</td>
</tr>
</tbody>
</table>

Recall: a tree cover has stretch s if, for all nodes x, y of G, there exists a T in the cover such that $d_T(x, y) \leq s \cdot d_G(x, y)$. Its size is the number of edges in the subgraph induces by all its trees.
The Question

Question:

Can we make additively stretched spanners routable?
The Question

Question:

Can we make additively stretched spanners routable?

!!! It might be the wrong question !!!
The Question

Question:

Can we make additively stretched spanners routable?

*** It might be the wrong question ***

Question (v2):

Is there a universal routing scheme with sublinear space and additive stretch?
Yes or No?

PRO:

Numerology!

Spanner: stretch-$\frac{n^3}{2}$ for size

Routing: stretch-$\frac{n}{1/2}$ for size $\sim\frac{n}{1/2}$

Spanner: stretch-$O(k)$ for size $O(n^{1+1/k})$

Routing: stretch-$O(k)$ for size $\sim O(n^{1/k})$

Is it really just a coincidence?

There exist spanners of size $o(n^2)$ with constant additive stretch (ex: size $n^{3/2}$ or $n^{4/3}$ for stretch +2 or +6).

It should exist sublinear compact routing scheme with constant additive stretch!!
Yes or No?

PRO: Numerology!

Spanner: stretch-3 for size $O(n^{3/2})$
Routing: stretch-3 for size $\tilde{O}(n^{1/2})$

Spanner: stretch-$O(k)$ for size $O(n^{1+1/k})$
Routing: stretch-$O(k)$ for size $\tilde{O}(n^{1/k})$

Is it really just a coincidence?
Yes or No?

PRO: Numerology!

Spanner: stretch-3 for size $O(n^{3/2})$
Routing: stretch-3 for size $\widetilde{O}(n^{1/2})$

Spanner: stretch-$O(k)$ for size $O(n^{1+1/k})$
Routing: stretch-$O(k)$ for size $\widetilde{O}(n^{1/k})$

Is it really just a coincidence?

- There exist spanners of size $o(n^2)$ with constant additive stretch (ex: size $n^{3/2}$ or $n^{4/3}$ for stretch $+2$ or $+6$).
- It should exist sublinear compact routing scheme with constant additive stretch!!!
CON: spanners do not tell us how to route on sparse graphs.

The problem is:

- **Spanner:** prove \exists a short path
- **Routing:** construct a short path
An Impossibility Result

Theorem (2009)

Every routing strategy providing, for each unweighted connected n-node graph, a labeled routing scheme with tables and addresses $\leq \mu$ bits, produces, for some graph, an additive stretch $\Omega(\sqrt[n]{n^{1/3}}/\mu^{2/3})$.

Corollary: The additive stretch of every universal routing strategy with tables and addresses in $o(\sqrt{n})$ is unbounded. In particular, the stretch-7 routing scheme with $\tilde{O}(n^{1/3})$-bit tables must have an additive stretch of $\Omega(1)$.
An Impossibility Result

Theorem (2009)

Every routing strategy providing, for each unweighted connected \(n \)-node graph, a labeled routing scheme with tables and addresses \(\leq \mu \) bits, produces, for some graph, an additive stretch \(\Omega(n^{1/3}/\mu^{2/3}) \).

Corollary: The additive stretch of every universal routing strategy with tables and addresses in \(o(\sqrt{n}) \) is unbounded.

In particular, the stretch-7 routing scheme with \(\tilde{O}(n^{1/3}) \)-bit tables must have an additive stretch of \(n^{\Omega(1)} \).
Outline

The Question and the Answer

A Naive Approach

The Proof
Consider a graph G for which every stretch-s routing scheme requires tables of size $\geq \mu$.

[if $|\text{tables}| < \mu$, then the additive stretch is $> s - 1$]
Idea: Amplify Detours

1. Consider a graph G for which every stretch-s routing scheme requires tables of size $\geq \mu$.
 [if $|\text{tables}| < \mu$, then the additive stretch is $> s - 1$]

2. Construct G' from G by replacing each edge by a path of length δ.
Idea: Amplify Detours

1. Consider a graph G for which every stretch-s routing scheme requires tables of size $\geq \mu$.
 [if $|\text{tables}| < \mu$, then the additive stretch is $> s - 1$]

2. Construct G' from G by replacing each edge by a path of length δ.

Our Guess: Every stretch-s routing scheme on G' with tables of size $< \mu$ must have an additive stretch $> \delta(s - 1)$.
Example: Lower Bound for Stars

Restriction: addresses are fixed by an adversary, and cannot be changed/optimized by the designer of the routing scheme (name-independent).
Example: Lower Bound for Stars

Restriction: addresses are fixed by an adversary, and cannot be changed/optimized by the designer of the routing scheme (name-independent).

Claim: if $\mu < n \log n$, then stretch ≥ 2.

Proof: if stretch < 2, then the number of distinct routing tables at the root must be $\geq n!$. \Rightarrow a star needs at its root $\mu \geq \log(n!) \sim n \log n$.

[Diagram of a star graph with labels $\pi(1)$, $\pi(2)$, $\pi(3)$, $\pi(i)$, $\pi(n)$, and nodes labeled 1, 2, 3, i, n, connected to the root.]
Example: Lower Bound for Stars

Restriction: addresses are fixed by an adversary, and cannot be changed/optimized by the designer of the routing scheme (name-independent).

Claim: if $\mu < n \log n$, then stretch $\geq +2$.

Proof: if stretch $< +2$, then the number of distinct routing tables at the root must be $\geq n!$. \Rightarrow a star needs at its root $\mu \geq \log(n!) \sim n \log n$.

\[
\pi(1) \quad \pi(2) \quad \pi(3) \quad \ldots \quad \pi(i) \quad \ldots \quad \pi(n)
\]
Longer Detour

Let us show that for some small enough constant $c > 0$: if $\mu < cn \log n$, then stretch $> +2$.

Proof #1: Consider routing from root to any leaf $y = \pi(i)$. If $\mu < \log((n/2)!) \sim \frac{1}{2} n \log n$, then stretch $\geq +4$???
Let us show that for some small enough constant $c > 0$: if $\mu < cn \log n$, then stretch $\geq +2$.

Proof #1: Consider routing from root to any leaf $y = \pi(i)$. If $\mu < \log((n/2)!) \sim \frac{1}{2} n \log n$, then stretch $\geq +4$??

No! because we traverse new nodes (possibly two) before selecting the right branch. These nodes have μ bits of information and might change the decision at the root.
Proof #2: Set μ low enough: $2\mu < \log((n/2)!)$, or $\mu \sim \frac{1}{4} n \log n$. If stretch $\leq +2$ for all y, then the route to y has to traverse a new node w not on the y’s branch. By the choice of μ,

$$\mu(w) + \mu(\text{root}) \leq 2\mu < \log((n/2)!).$$

We know that, after a detour of $+2$, the root has not enough information yet to correctly route to all y. So, the route requires a second detour of $+2$.

\Rightarrow If $\mu < \frac{1}{4} n \log n - O(n)$, then stretch $\geq +4$.
Routing scheme with $O(\log n)$-bit tables and stretch $+2$:

Middle node w_i in the branch of $\pi(i)$ stores integer p such that $\pi(p) = i$. If we arrive at w_i, it means we want to route to the leaf named “i”.

Routing from root $\rightarrow i \in [1, n/2]$: 1) Route to port i; 2) Read p at w_i; 3) Come back to the root; 4) use port p. Stretch is $+2$.
Conclusion of this Story

One cannot design lower bounds on Information Theory based on arguments like:

“\(I \) know that node \(x \) does not know information \(I \), so it has to store it. Thus node \(x \) must store \(|I|\) bits.”

Proving that \(x \) stores at least \(|I|\) bits requires a proof.
The Question and the Answer

A Naive Approach

The Proof
Let R be a routing scheme on G, i.e.,

$$R : (x_i, h_i, q_i) \mapsto (p_i, h_{i+1})$$
Let R be a routing scheme on G, i.e.,

$$R : (x_i, h_i, q_i) \mapsto (p_i, h_{i+1})$$

Definition

The “memory requirements” of R at x is the size in bits of the smallest program (say in C) implementing function $R(x, \cdot, \cdot)$.
The Graph Family $\mathcal{F} = \mathcal{F}(p, \delta)$

Graphs of \mathcal{F} are constructed from all $p \times p$ boolean matrices. Sets of p nodes: $S = \{s_i\}$, $A = \{a_i\}$, $B = \{b_i\}$, and $T = \{t_j\}$.

Connect a path of length δ between: $s_i \leadsto a_i$, $s_i \leadsto b_i$, and $t_j \leadsto a_i$ if $M[i, j] = 1$, and $t_j \leadsto b_i$ if $M[i, j] = 0$.

$$M = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
Properties

Consider any $G = G(M) \in \mathcal{F}$.

Property

Every walk in G from s_i to t_j of length $\rho < d_G(s_i, t_j) + 2\delta$ contains node a_i if and only if $M[i, j] = 1$.

$M = \begin{bmatrix}
0 & 0 & 1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$
Consider any routing strategy for \mathcal{F} producing, for each $G \in \mathcal{F}$, a routing scheme R with addresses and tables of size $\leq \mu$ and additive stretch $\beta < 2\delta$.

Observation: Property applies to the route length of R from s_i to t_j.

Let $K(M)$ be the length of the shortest program that outputs M and that stops (Kolmogorov Complexity). There must exist M with $K(M) \geq p/2$.

Consider any routing strategy for \mathcal{F} producing, for each $G \in \mathcal{F}$, a routing scheme R with addresses and tables of size $\leq \mu$ and additive stretch $\beta < 2\delta$.

Observation: Property applies to the route length of R from s_i to t_j.

Let $K(M)$ be the length of the shortest program that outputs M and that stops (Kolmogorov Complexity).

There must exist M with $K(M) \geq p^2$.
Consider the program P that simulates, for all (s_i, t_j), the first routing decisions from s_i to t_j until a_i or b_i is left for ever.
Consider the program P that simulates, for all (s_i, t_j), the first routing decisions from s_i to t_j until a_i or b_i is left for ever.

1. P outputs M [because of the Property, as $\beta < 2\delta$]
2. $|P| \leq 3\delta \rho \mu$ [because P uses addresses of t_j's, algorithms $R(x, \cdot, \cdot)$ for all x of the paths from s_i to a_i and b_i.]
Since P outputs M, we must have $|P| \geq K(M)$. Choose M such that $K(M)$ is maximal, $K(M) \geq p^2$. So,

$$3\delta p \mu \geq |P| \geq K(M) \geq p^2.$$

So, if $\beta < 2\delta$ (i.e., Property holds), then $3\delta \mu \geq p$.
Choose, \(\delta = \frac{1}{4} p/\mu \).

Then, \(3\delta \mu < p \), and thus we have that \(\beta \geq 2\delta = \frac{1}{2} p/\mu \).

Number of nodes in \(G \):
\[n = \delta(2p + p^2) \leq 3\delta p^2 \leq \frac{3}{4} p^3/\mu. \]

And thus \(p \geq (\mu n)^{1/3} \).

We have therefore proved that:

\[
\beta \geq \frac{1}{2} (\mu n)^{1/3}/\mu = \frac{1}{2} n^{1/3}/\mu^{2/3}
\]

QED
THANK YOU!