Localized Data Structures

Cyril Gavoille

(LaBRI, University of Bordeaux)

LOCALITY 2007

Portland, Oregon

Contents

- 1. Efficient data structures
- Localized data structures
- 3. Informative labeling schemes
- 4. Conclusion

1. Efficient data structures (Tarjan's like)

Example 1:

A tree (static) T with n vertices

Question: nearest common ancestor

nca(x,y) for some vertices x,y?

Note: queries (x,y) are not known in advance

(on-line queries on a static tree)

[Harel-Tarjan '84]

Each tree with n vertices has a data structure of O(n) space (computable in linear time) such that nca queries can be answered in constant time.

Example 2:

A weighted graph G with n vertices, and a parameter k≥1

Question: a k-approximation δ(x,y) on dist(x,y) in G for some vertices x,y?

with $dist(x,y) \le \delta(x,y) \le k \cdot dist(x,y)$

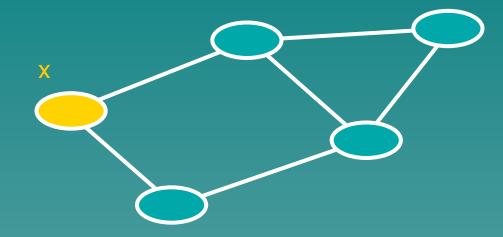
[Thorup-Zwick - J.ACM '05]

Each undirected weighted graph G with n vertices, and each integer $k \ge 1$, has a data structure of $O(k \cdot n^{1+1/k})$ space (computable in $O(km \cdot n^{1/k})$ expected time) such that (2k-1)-approximated distance queries can be answered in O(k) time.

Essentially optimal, related to an Erdös Conjecture.

2. Localized data structures

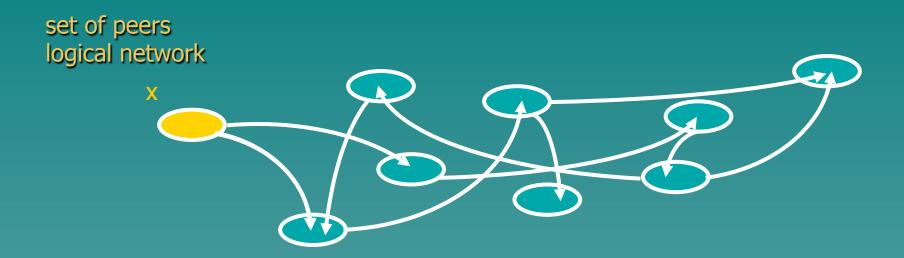
A network



Typical questions are:

Answer to query Q with the local knowledge of x (or its vicinity), so without any access to a global data structure.

Example 1: Distributed Hash Tables (DHT)

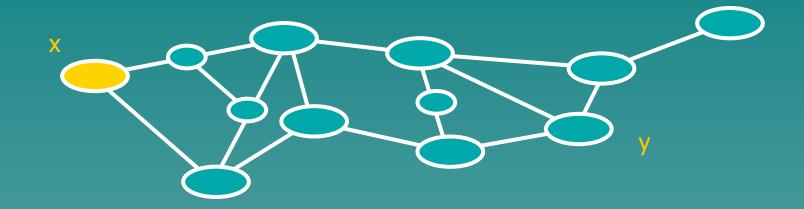


Query at x: who has any mpeg file named
'Sta*Wa*''?

Answer: go to w and ask it.

x does not know, but w certainly knows ... at least a pointer

Example 2: Routing in a physical network



Query at x: next hop to go to y?

Example 3: in a dynamic setting

A growing rooted tree

Query at x: the number of descents of x (or a constant approximation of it)

[Afek,Awerbuch,Plokin,Saks — J.ACM '96]

It is possible to maintain a 2-approximation on the number of descendants with O(log²n) amortized messages of O(loglogn) bits each, n number of inserted vertices.

Goals are:

- The same as for global data structures:
 - Low preprocessing time
 - Small size data structure
 - Fast query time
 - Efficient updates
- + Smaller and balanced local data structures
- Low communication cost (tradeoffs), for multiple hops answers

3. Informative Labeling Schemes

For the talk

- A static network/graph
- Queries: involve only vertices
- Answers: do not require any communication (direct data structures)

Question: dist(x,y) in a graph G? (with localized data structure)

data structure for graph **G**

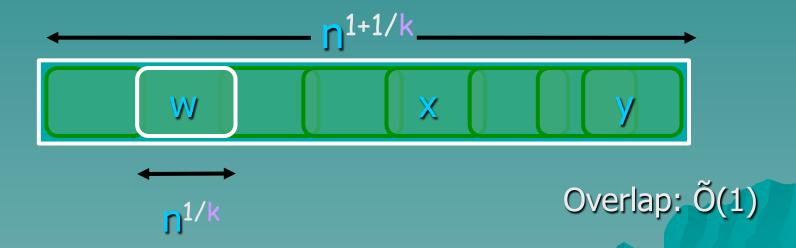
Answering to dist(x,y) consists only in inspecting the local data structure of x and of y.

Main goal: minimize the maximal size of a local data structure. Wish: $|DS(x,G)| \ll |DS(G)|$, ideally

$$|DS(x,G)| \approx (1/n) \cdot |DS(G)|$$

[Thorup-Zwick - J.ACM '05]

... Moreover, each vertex $w \to L(w)$ of $\tilde{O}(n^{1/k})$ bits such that a (2k-1)-approximation on dist(x,y) can be answered from L(x) and L(y) only.



Informative Labeling Schemes (more formally) [Peleg '00]

Let P be a graph property defined on pairs of vertices (can be extended to any tuple), and let F be a graph family.

A P-labeling scheme for F is a pair $\langle L,f \rangle$ such that: $\forall G \in F$, $\forall u,v \in G$:

- (labeling) L(u,G) is a binary string
- (decoder) f(L(u,G),L(v,G)) = P(u,v,G)

Some P-labeling schemes

- Adjacency
- Distance (exact or approximate)
- First edge on a (near) shortest path (compact routing, labeled-based routing)
- Ancestry, parent, nca, sibling relation in trees
- Edge/vertex connectivity, flow
- Proof labeling systems [Korman, Kutten, Peleg]
- Small-world & navigability
- Forbidden set [Courcelle, Twigg]

Ancestry in rooted trees

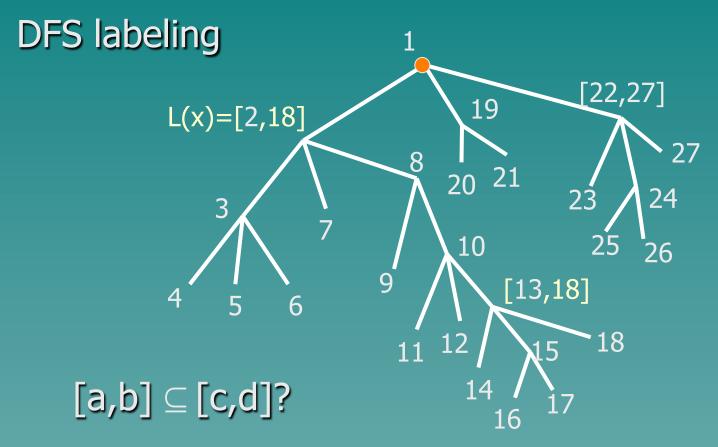
Motivation: [Abiteboul, Kaplan, Milo '01]

The <TAG> ... </TAG> structure of a huge XML data-base is a rooted tree. Some queries are ancestry relations in this tree.

Use compact index for fast query XML search engine. Here the constants do matter. Saving 1 byte on each entry of the index table is important. Here n is very large, $\sim 10^9$.

Ex: Is <"distributed computing"> descendant of <book_title>?

Folklore? [Santoro, Khatib '85]

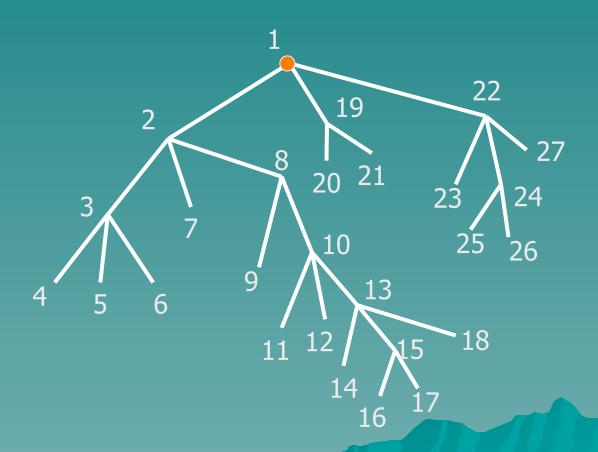


⇒ 2logn bit labels

[Alstrup, Rauhe - Siam J. Comp. '06]

Upper bound: logn + O(√logn) bits

Lower bound: $logn + \Omega(loglogn)$ bits



Adjacency Labeling / Implicit Representation

P(x,y,G)=1 iff xy in E(G)

[Kanan, Naor, Rudich - STOC '92]

O(logn) bit labels for:

- trees (and forests)
- bounded arboricity graphs (planar, ...)
- bounded treewidth graphs

In particular:

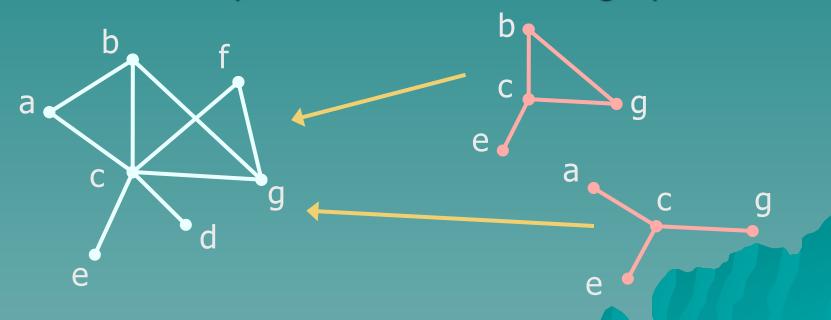
- 2logn bits for trees
- 4logn bits for planar

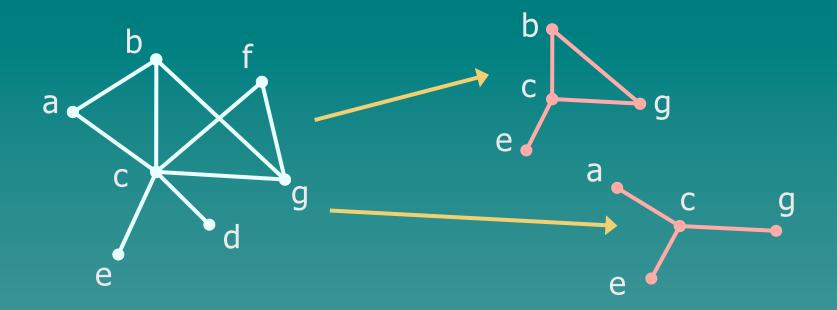
Acutally, the problem is equivalent to an old combinatorial problem:

[Babai, Chung, Erdös, Graham, Spencer'82]

Small Universal Induced Graph

U is an universal graph for the family F if every graph of F is isomorphic to an induced subgraph of U





Universal graph U (fixed for F)

Graph G of F

$$|L(x,G)| = \lceil \log_2 |V(U)| \rceil$$

Best known results/Open questions

Bounded degree graphs: 1.867 logn
 [Alon, Asodi – J. Comp. App. Math '02]

```
    ◆ Trees: logn + O(log*n)
        [Alstrup,Rauhe - FOCS '02]
        ⇒ Planar: 3logn + O(log*n)
```

Planar: 2logn + O(loglogn) [Gavoille,Labourel - ESA '07]

```
\log^* n = \min\{ i \ge 0 \mid \log^{(i)} n \le 1 \}
```

Lower bounds?: $logn + \Omega(1)$ for planar

logn + O(1) bits for this family?

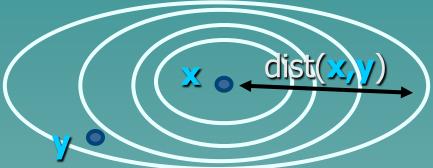
No hereditary family with $n!2^{O(n)}$ labeled graphs (trees, planar, bounded genus, bounded treewidth,...) is known to require labels of logn + $\omega(1)$ bits.

Distance

P(x,y,G)=dist(x,y) in G

Motivation: [Peleg '99]

If a short label (say of polylogarithmic size) can be added to the address of the destination, then routing to any destination can be done without routing tables and with a "limited" number of messages.



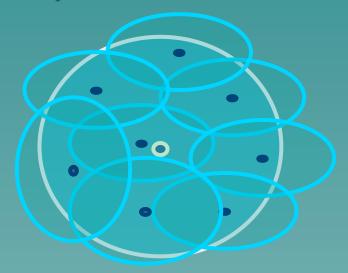
message header=hop-count

A selection results

- \bullet $\Theta(n)$ bits for general graphs
 - 1.56n bits, but with O(n) time decoder!
 [Winkler '83 (Squashed Cube Conjecture)]
 - 11n bits and O(loglogn) time decoder
 [Gavoille,Peleg,Pérennès,Raz '01]
- Θ(log²n) bits for trees and bounded treewidth graphs, ... [Peleg '99, GPPR '01]
- O(logn) bits and O(1) time decoder for interval, permutation graphs, ... [ESA '03]:
 ⇒ O(n) space O(1) time data structure, even for m=Ω(n²)

Results (cont'd)

- ◆ Θ(logn·loglogn) bits and (1+o(1))approximation for trees and bounded treewidth graphs
 [GKKPP - ESA '01]
- ♦ More recently: doubling dimension-α graphs Every radius-2r ball can be covered by $≤ 2^α$ radius-r balls



- Euclidean graphs have $\alpha = O(1)$
- Include bounded growing graphs
- Robust notion

Distance labeling for doubling dimension-α graphs

```
O(\epsilon^{-O(\alpha)} \log n \cdot \log \log n) bits (1+\epsilon)-approximation for doubling dimension-\alpha graphs
```

```
[Gupta,Krauthgamer,Lee - FOCS '03]

[Talwar - STOC '04]

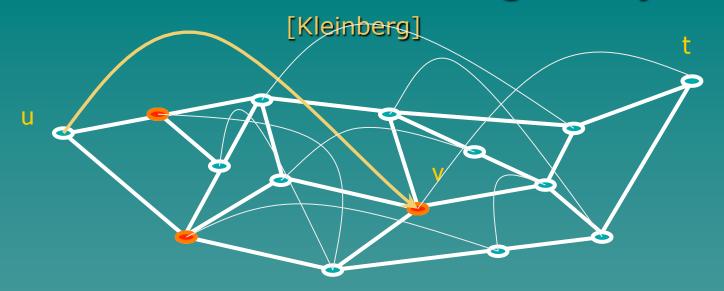
[Mendel,Har-Peled - SoCG '05]

[Slivkins - PODC '05]
```

Distance labeling for planar

- O(log²n) bits for 3-approximation
 [Gupta,Kumar,Rastogi Siam J.Comp '05]
- $O(\epsilon^{-1}\log^2 n)$ bits for $(1+\epsilon)$ -approximation [Thorup *J.ACM* '04]
- \bullet Ω(n^{1/3}) ≤ ? ≤ Õ(\sqrt{n}) for exact distance
- O(ε⁻¹log²n) bits for (1+ε)-approximation for graphs excluding a fixed minor (K₅,K₆,...)
 [Abraham,Gavoille PODC '06]

Small-World & Navigability



- Augmented graph: (G,P) [base graph,distributions]
 P(u,v) = Pr(u has v as long range contact)
- Greedy Routing: closest neighbor (in G)
- Expected number of hops (according to P)

Small-World & Navigability



- \rightarrow Uniform distribution: P(u,v)=1/n
- → r-harmonic distribution: P(u,v)

 ∞ 1/d(u,v)^r

Note: for harmonic need to know distances in **G** in order to compute P

Small-World & Navigability

- How much complicated is P?
- Design a "simple" distribution with a low expected number of hops for G

k-navigability labeling scheme

is a labeling scheme <L,f> st: ∀u,v of G

- P(u,v)=f(L(u,G),L(v,G))
- Expected #hops ≤ k

Navigability: Results

- ♦ All graphs [uniform]: $O(\sqrt{n})$ -navigability with [logn]-bit labels
- ◆ Grids [in DISC '05]:
 O(logn)-navigability with [logn]-bit labels
- ◆ Trees [Fraigniaud et al.]:
 O(log²n)-navigability with O(log²n) bits
 O(log³n)-navigability with [logn] bits

Navigability: Results (cont'd)

◆ Bounded path-shape graphs [SPAA '07]: O(ps(G)·log²n)-navigability with [logn] bits [bounded tree-width, bounded path-length, AT-free, permutation, interval graphs ... have ps=O(logn)]

All graphs:

 $\tilde{O}(n^{1/3})$ -navigability, but with O(n) bits!

Questions:

- smallest k=k(n) for k-navigability $\forall graphs$ currently: $c^{\sqrt{\log n}} \le k \le \tilde{O}(n^{1/3})$
- $o(\sqrt{n})$ -navigability with polylog(n) labels

Forbidden-Set Labeling

[Courcelle, Twigg '07]

Problem:

Design a routing scheme for **G** st for every subset **X** of "forbidden" nodes (crashes, malicious, ...) routing tables can be updated efficiently provided **X**.

⇒ This capture routing policies

◆ Extension: Forbidden-set P-labeling

<L,f> st ∀X, P(u,v,G\X)=f(L(u,G),L(u,G),L(X,G))

Forbidden-Set Labeling: Results

Example:

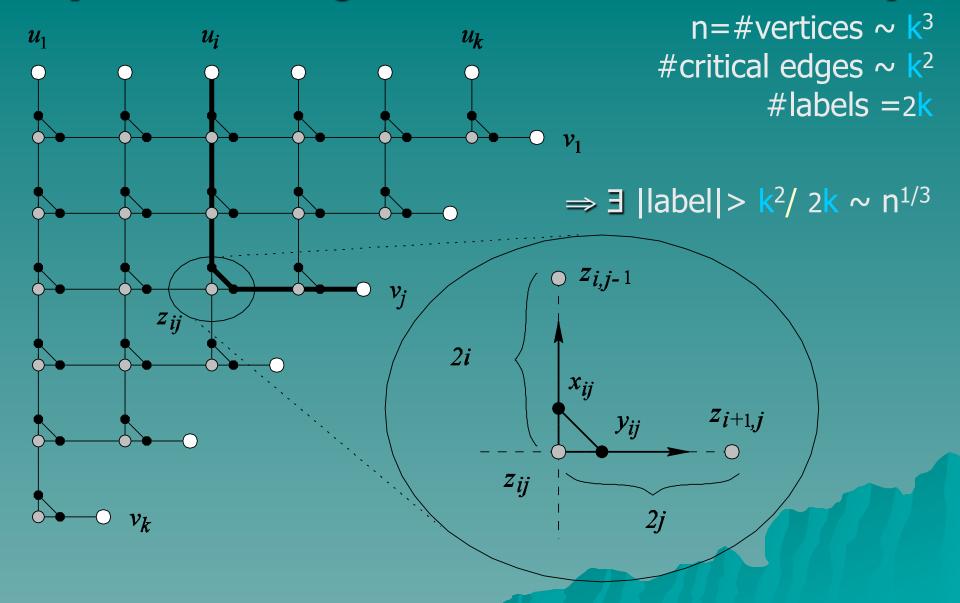
Connectivity in trees: $P(u,v,T\setminus X)=TRUE$ iff u and v are in the same connected component of $T\setminus X$. \Rightarrow can be done with O(logn)-bit labels.

- ◆ [Courcelle, Twigg STACS '07] If G has bounded "clique-width" (generalization of tree-width) and every monadic second order predicate P (distances, connectivity, ...) then labels of O(log²n)-bit suffice.
- Note: same (optimal) bounds for distances in trees as the static case, but do not include planar ...

Conclusion

- Labeling scheme for distributed computing is a rich concept.
- Many things remain to do, specially lower bounds

Lower bounds for planar [Gavoille,Peleg,Pérennès,Raz – SODA '01]



Proof Labeling Systems [Korman, Kutten, Peleg – PODC '05]

- ◆ A graph G with a state S_u at each vertex u: (G,S)
- A global property P (MST, 3-coloring, ...)
- A marker algorithm applied on (G,S) that returns
 a label L(u) for u S₁
- A binary decoder (checker) for u applied on N(u) $f_{u} = f(S_{u},L(u),L(v_{1})...L(v_{k})) \in \{0,1\}_{3}$ $G \text{ has property } P \Rightarrow f_{u}=1 \text{ } \forall u \text{ } S_{3}$
 - G hasn't prop. $P \Rightarrow \exists w, f \neq 0$ whatever the bels are

What is the knowledge needed for local verifications of global properties?

