Minor-Universal Graph for Graphs on Surfaces

Claire Hilaire - Cyril Gavoille

e L

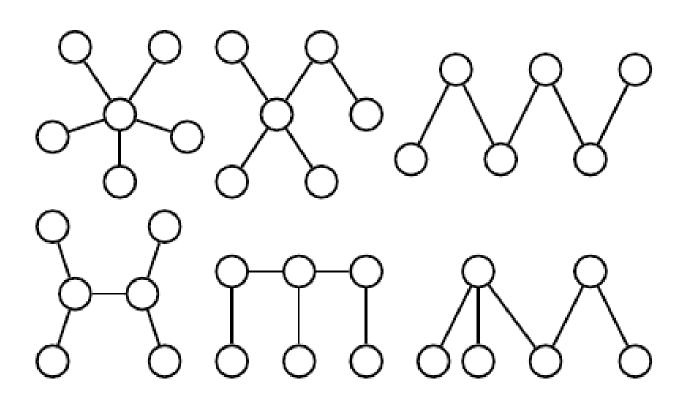
Graphes et Optimisation - Univ. Bordeaux, LaBRI, France

Let \mathcal{F} be a family of finite graphs, and \mathcal{F}_n the family of n-graphs of \mathcal{F} . U is **minor-universal** for \mathcal{F}_n if any $G \in \mathcal{F}_n$, G is a minor of U.

Question

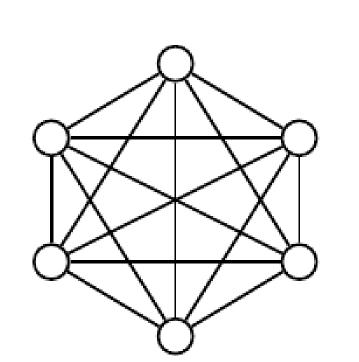
For every n, what is the smallest number of vertices of a graph of \mathcal{F} minor-universal for \mathcal{F}_n ?

The 6-vertex trees:

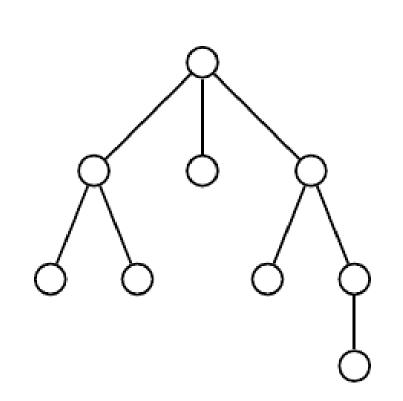


Example

Minor-universal with no constraint:



Minor-universal that is a tree:



For Trees [GKLPS18]

For every n, a tree minor-universal for the n-vertex trees has size $\Omega(n^{1.724...})$ and $O(n^{1.895...})$.

For Planar graphs [RST94]

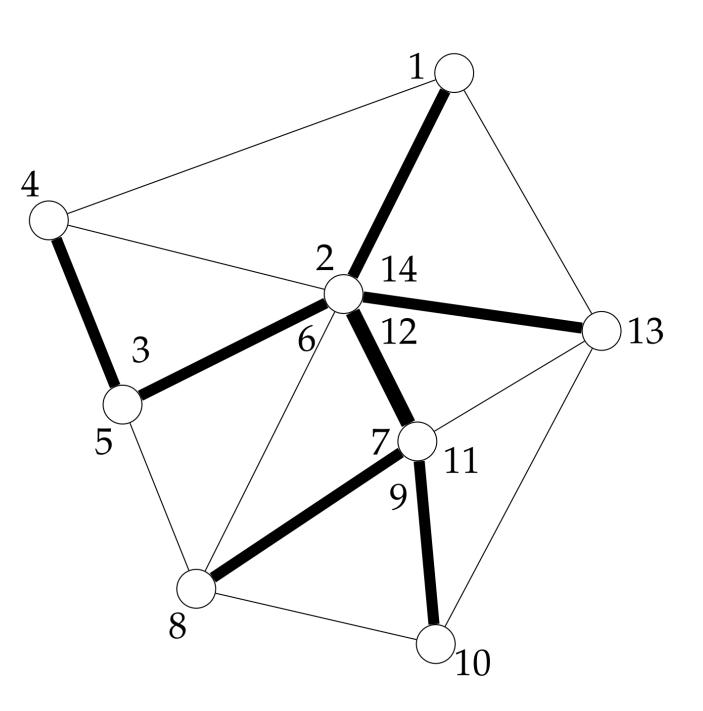
For every n, there is a planar graph on $O(n^2)$ vertices that is minor-universal for the planar n-vertex graphs.

For graphs on surfaces [Gavoille and H 2023+]

For every n and every surface Σ of Euler genus $g \ge 0$, there is a graph embedded on Σ with $O(g^2(n+g)^2)$ vertices minor-universal for the n-vertex graphs embeddable on Σ .

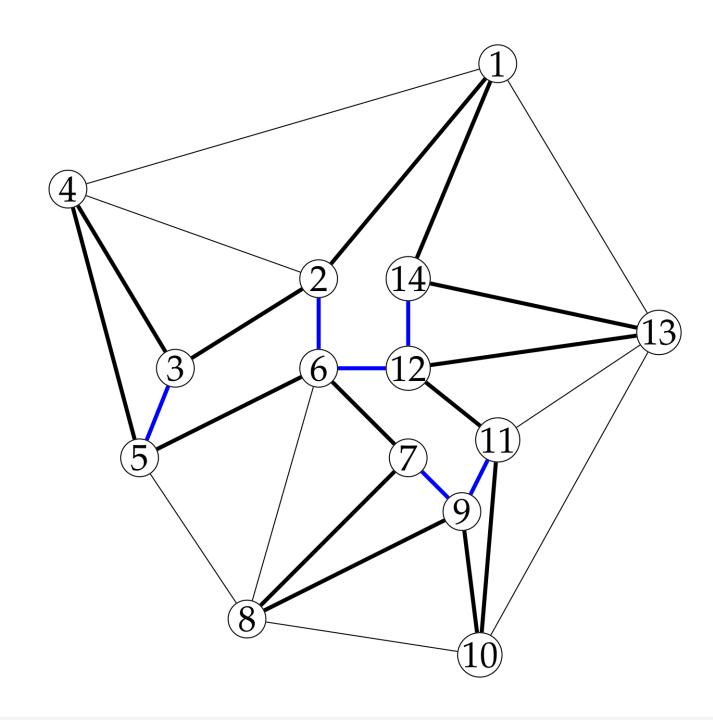
Sketch of the proof for planar graphs

Every planar *n*-vertex graph is a minor of...



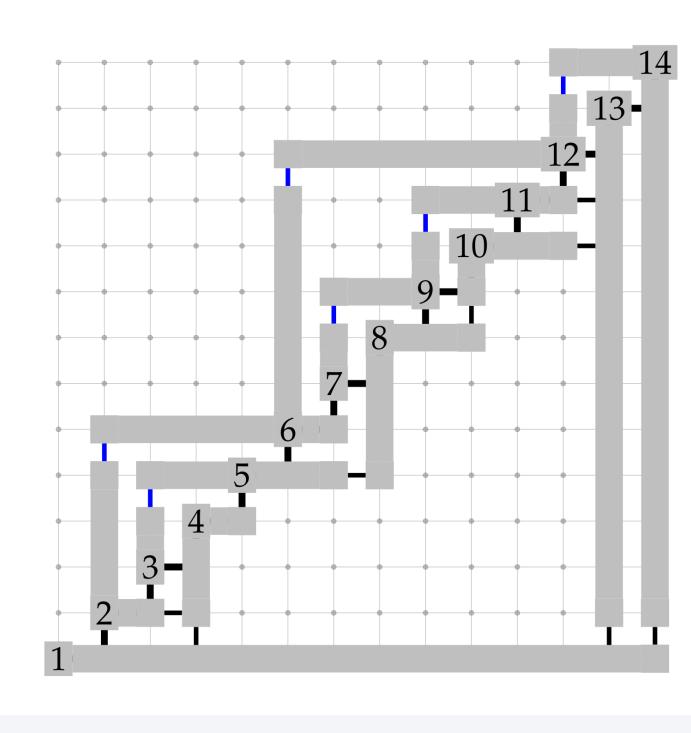
Step 1

...a Hamiltonian planar 2*n*-vertex graph...



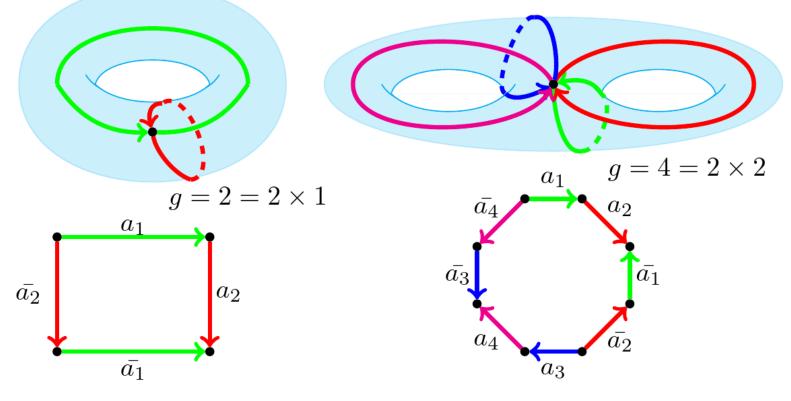
Step 2

... which is a minor of the $2n \times 2n$ -grid.

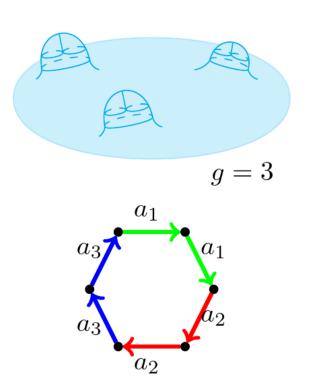


Surfaces & Euler genus

Orientable:

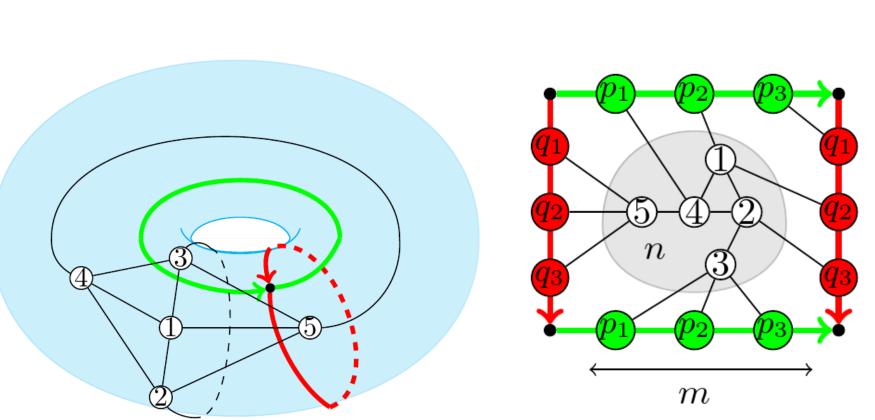


Non-orientable:



A surface is characterized by its **orientability** and **Euler genus**, and can be represented with a **polygonal schema**.

Polygonal embedding

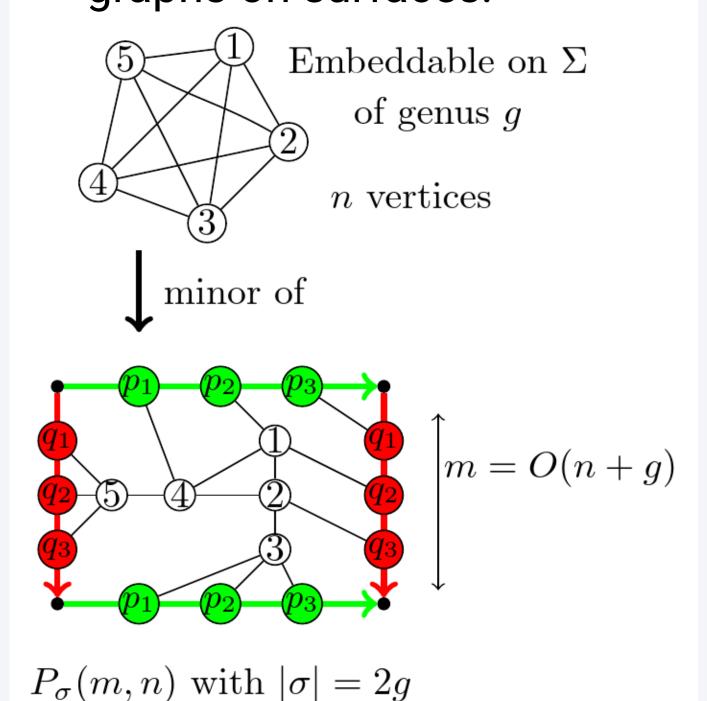


Polygonal embedding $P_{\sigma}(m, n)$:

- ▶ $|\sigma|$: signature of the polygonal schema $(\rightarrow, \rightarrow)$;
- at most *n* internal vertices (1,2,3,4,5);
- at most m vertices on each side $(p_1, p_2, p_3, q_1, q_2, q_3)$. m = O(n + g)[LPVV01,FHdM22]

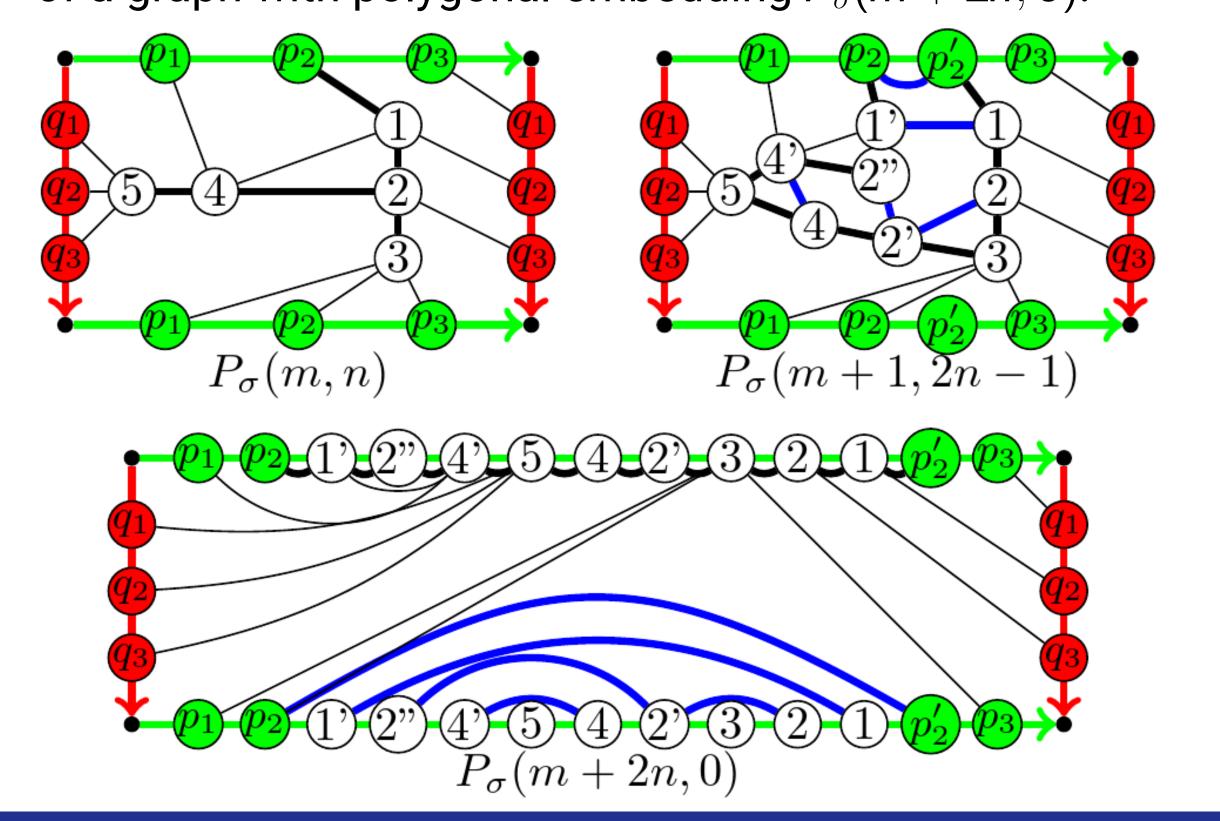
Sketch of the proof:

Consider polygonal embedding instead of graphs on surfaces:



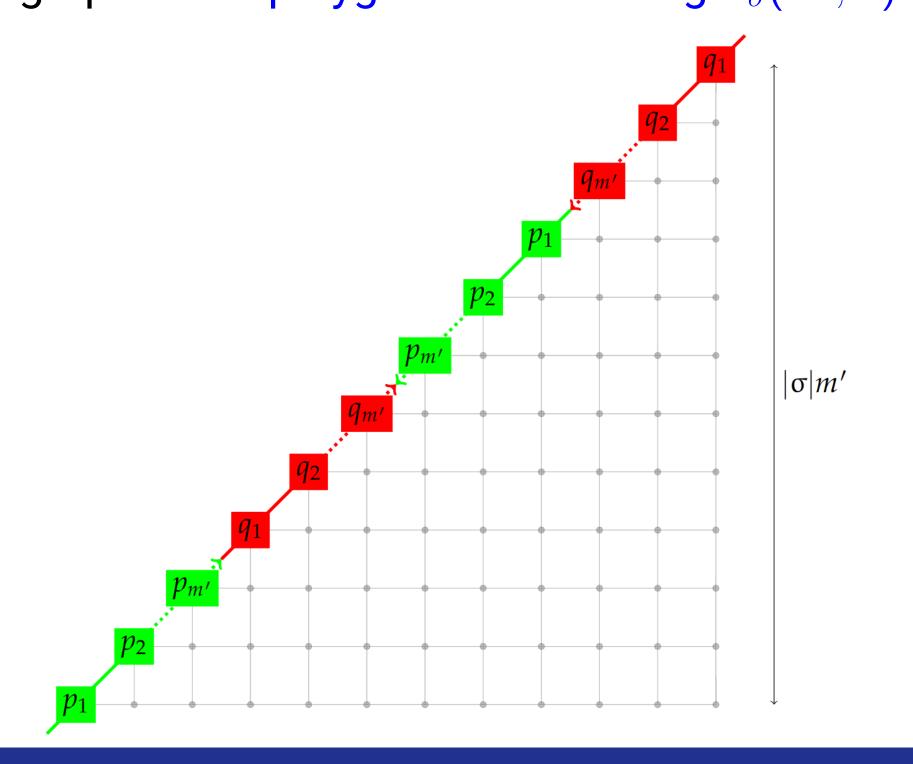
Step 1: getting an outerplanar-like embedding

Every graph with a polygonal embedding $P_{\sigma}(m, n)$ is minor of a graph with polygonal embedding $P_{\sigma}(m + 2n, 0)$.



Step 2: the minor-universal graph

This graph with polygonal embedding $P_{\sigma}(m', \frac{(|\sigma|m')^2}{2})$ is minor-universal for the graphs with polygonal embedding $P_{\sigma}(m', 0)$.



https://www.labri.fr/perso/chilaire/

August 2023

claire.hilaire@gmail.com

