A Quick Overview on Name-Independent Compact Routing Schemes

Cyril Gavoille

University of Bordeaux
LaBRI – IUF

7 November 2011 - Euler Meeting - UPC Barcelona
The Compact Routing Problem

Input: a network G (an edge-weighted connected graph)
Output: a routing scheme for G

A routing scheme is a distributed algorithm that allows any source node to route messages to any destination node, given the destination’s network identifier

Space = size (in bits) of the largest local routing tables
Stretch = ratio between length of the route and distance
Goals

What we expect for a good routing scheme:

- Universal
- Low Space & Low Stretch
- Name-Independent

The destination enters the network with its name, which is either determined by the designer of the routing scheme (labeled), or set arbitrarily (name-independent).
For each integer \(k \geq 1 \), and every weighted graph, there is a name-independent routing scheme with stretch linear in \(k \) and space \(n^{1/k} \cdot \text{polylog}(n) \) space.

\(k = 1 \Rightarrow \text{BGP}: \) stretch 1, space \(n \cdot \text{polylog}(n) \)
\(k = 2 \Rightarrow [\text{AGMNT}]: \) stretch 3, space \(\sqrt{n} \cdot \text{polylog}(n) \)
\(k \geq 3: \) stretch \(\sim 64k \), optimal stretch for \(k = 3 \) is open
For each integer \(k \geq 1 \), there are weighted trees for which every name-independent routing scheme with space \(< n^{1/k} \) requires stretch \(\geq 2k + 1 \) and average stretch \(\geq k/4 \).
For each integer $k \geq 1$, there are weighted trees for which every name-independent routing scheme with space $< n^{1/k}$ requires stretch $\geq 2k + 1$ and average stretch $\geq k/4$.

For \textit{unweighted} trees, there is a name-independent routing scheme with space \text{polylog}(n) and stretch 17.
For each integer $k \geq 1$, there are weighted trees for which every name-independent routing scheme with space $< n^{1/k}$ requires stretch $\geq 2k + 1$ and average stretch $\geq k/4$.

For unweighted trees, there is a name-independent routing scheme with space $\text{polylog}(n)$ and stretch 17.

Main differences with labeled routing schemes:
- stretch 1 with space $\text{polylog}(n)$ for weighted trees
- average stretch $O(1)$ with $\text{polylog}(n)$ for weighted graphs
- no difference between weighted/unweighted case
- general lower bound depends on the Girth Conjecture
Parameterized Bounds
(graph parameter dependent)

<table>
<thead>
<tr>
<th>parameter</th>
<th>stretch</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>growth α</td>
<td>$1 + \varepsilon$</td>
<td>$\varepsilon^{-O(\log \alpha)} \cdot \text{polylog}(n)$</td>
</tr>
<tr>
<td>doubling dimension d</td>
<td>$9 + \varepsilon$</td>
<td>$\varepsilon^{-O(d)} \cdot \text{polylog}(n)$</td>
</tr>
<tr>
<td>minor-free size r</td>
<td>$4r^2$</td>
<td>$r!2^{O(r)} \cdot \text{polylog}(n)$</td>
</tr>
</tbody>
</table>

Note: these schemes do not depend on any specific pre-decomposition or structure driven by the parameter. It always works! If the parameter is small, stretch & space are low.

\implies run the algorithm and see.
A Relevant Structure: Sparse Cover

An (s, δ)-sparse cover for a graph G is a set of clusters $\mathcal{C} \subset 2^V(G)$ such that for every $r \geq 0$:
A Relevant Structure: Sparse Cover

An \((s, \delta)\)-sparse cover for a graph \(G\) is a set of clusters \(\mathcal{C} \subset 2^{V(G)}\) such that for every \(r \geq 0\):

\[(\text{Cover}) \quad \forall u \in V(G), \exists C \in \mathcal{C} \text{ such that } B(u, r) \subseteq C\]
A Relevant Structure: Sparse Cover

An \((s, \delta)\)-sparse cover for a graph \(G\) is a set of clusters \(\mathcal{C} \subseteq 2^{V(G)}\) such that for every \(r \geq 0\):

\[
\text{(Cover)} \quad \forall u \in V(G), \exists C \in \mathcal{C} \text{ such that } B(u, r) \subseteq C
\]

\[
\text{(Diameter)} \quad \forall C \in \mathcal{C}, \text{ diam}(G[C]) \leq s \cdot r
\]
A Relevant Structure: Sparse Cover

An \((s, \delta)\)-sparse cover for a graph \(G\) is a set of clusters \(\mathcal{C} \subset 2^{V(G)}\) such that for every \(r \geq 0\):

\[
\begin{align*}
\text{(Cover)} & \quad \forall u \in V(G), \exists C \in \mathcal{C} \text{ such that } B(u, r) \subseteq C \\
\text{(Diameter)} & \quad \forall C \in \mathcal{C}, \; \text{diam}(G[C]) \leq s \cdot r \\
\text{(Density)} & \quad \forall u \in V(G), \; |\{C \in \mathcal{C} : u \in C\}| \leq \delta
\end{align*}
\]
An \((s, \delta)\)-sparse cover for a graph \(G\) is a set of clusters \(\mathcal{C} \subset 2^{\mathcal{V}(G)}\) such that for every \(r \geq 0\):

\[
\text{(Cover)} \quad \forall u \in \mathcal{V}(G), \exists C \in \mathcal{C} \text{ such that } B(u, r) \subseteq C
\]

\[
\text{(Diameter)} \quad \forall C \in \mathcal{C}, \text{ diam}(G[C]) \leq s \cdot r
\]

\[
\text{(Density)} \quad \forall u \in \mathcal{V}(G), |\{C \in \mathcal{C} : u \in C\}| \leq \delta
\]

If \(G\) has a \((s, \delta)\)-sparse cover, then it has name-independent routing scheme with space \(\delta \log D \cdot \text{polylog}(n)\) and stretch \(O(s)\).
Known Sparse Covers

<table>
<thead>
<tr>
<th>networks</th>
<th>stretch</th>
<th>density</th>
</tr>
</thead>
<tbody>
<tr>
<td>any graph, $k \geq 1$</td>
<td>$2k - 1$</td>
<td>$2kn^{1/k}$</td>
</tr>
<tr>
<td>growth α</td>
<td>$1 + \varepsilon$</td>
<td>$\varepsilon^{-O(\log \alpha)}$</td>
</tr>
<tr>
<td>doubling dimension d</td>
<td>$1 + \varepsilon$</td>
<td>$\varepsilon^{-O(d)}$</td>
</tr>
<tr>
<td>minor-free size r</td>
<td>$4r^2$</td>
<td>$r!2^{O(r)}$</td>
</tr>
<tr>
<td>k-path separable</td>
<td>4</td>
<td>$O(k \log n)$</td>
</tr>
</tbody>
</table>

Note: the space bound depends on $\log D$. So, for weighted graphs the sparse cover based routing scheme may produce non-polynomial space.
Thank you!