Spanner, Distance Oracle, and Compact Routing for Unweighted Graphs

Cyril Gavoille
(Joint work with Ittai Abraham,
Microsoft, Mountview, CA)

University of Bordeaux

ALADDIN Meeting - Arcachon
May 2011
Given a graph G with n nodes compute an **efficient** data structure supporting **approximate** distance and/or routing queries in G.

- **Efficient**: polynomial time pre-processing, constant or poly-log(n) query time
- **Approximate**: guarantees on the distance \hat{d} or route length returned w.r.t. the shortest path in G.
 Ex: $d_G(u, v) \leq \hat{d}(u, v) \leq f(d_G(u, v))$
For instance

Distance Oracles Beyond the Thorup–Zwick Bound

Mihai Pătraşcu

Liam Roditty

Theorem 1. For any unweighted graph, there exists a distance oracle of size $O(n^{5/3})$ that, given any nodes u and v at distance d, returns a distance of at most $2d + 1$ in constant time. A path of this length can be listed in $O(1)$ time per hop.
Targets

Ideal/realistic:

- data structures of linear size? \(o(n^2) \) space?
- constant time query? poly-log time?
- linear pre-processing time? polynomial time?
Targets

Ideal/realistic:

- data structures of linear size? \(o(n^2) \) space?
- constant time query? poly-log time?
- linear pre-processing time? polynomial time?

Extra:

- data structure can be split into \(n \) balanced labels?
Compression
(to get $o(n^2)$ space data structures)

Hints: sparsify the graph!

Compute a spanning subgraph (spanner) preserving distances.
Compression
(to get $o(n^2)$ space data structures)

Hints: sparsify the graph!

Compute a spanning subgraph (spanner) preserving distances.

Good news: Every graph G has a spanner H of $O(n^{1+1/k})$ edges with stretch function $(2k - 1)d$.

(i.e., $d_H(u, v) \leq (2k - 1)d_G(u, v)$ for all u, v)
Compression: stretch $d + 2$ spanner of size $O(n^{3/2})$

Proof:

1. $H := \emptyset$
2. While $\exists u \in V, \deg(u) \geq \sqrt{n}$:
 - $H := H \cup \text{BFS}(u, G)$
 - $G := G \setminus N(u)$
3. $H := H \cup G$
Compression: stretch $d + 2$ spanner of size $O(n^{3/2})$

Proof:

1. $H := \emptyset$
2. While $\exists u \in V$, $\deg(u) \geq \sqrt{n}$:
 1. $H := H \cup \text{BFS}(u, G)$
 2. $G := G \setminus N(u)$
3. $H := H \cup G$

Size: $O(n\sqrt{n})$
Compression: stretch \(d + 2 \) spanner of size \(O(n^{3/2}) \)

Proof:

1. \(H := \emptyset \)
2. While \(\exists u \in V, \deg(u) \geq \sqrt{n} \):
 1. \(H := H \cup \text{BFS}(u, G) \)
 2. \(G := G \setminus N(u) \)
3. \(H := H \cup G \)

Size: \(O(n\sqrt{n}) \)

Stretch: if an \(xy \)-shortest path does not intersect a neighbor of any selected node \(u \) (or cuts \(u \)), then stretch is \(d \), otherwise \(d_H(x, y) \leq d_1 + d_2 + 2 = d + 2 \).
Compression: ✔

Query time?

How do we get $d_H(u, v)$?

We can do in $O(n + m_H)$ time instead of $O(n + m_G)$ but it’s far from $\text{polylog}(n)$.

What about if G is already sparse? say G is a cubic graph?

Lower bound [Sommer et al. (FOCS’09)]

Every stretch $O(k) \cdot d$ query time t distance oracle for graphs with $\tilde{O}(n)$ edges must have a size $n^{1+\Omega(1/k)}$.

Space limitation of $n^{1+\Omega(1/k)}$ comes from not only from compression but also from constant query time.
Compression: ✔

Query time?

How do we get \(d_H(u, v) \)?

We can do in \(O(n + m_H) \) time instead of \(O(n + m_G) \) but it’s far from \(\text{polylog}(n) \).

What about if \(G \) is already sparse? say \(G \) is a cubic graph?
Compression: ✔
Query time?

How do we get \(d_H(u, v) \)?

We can do in \(O(n + m_H) \) time instead of \(O(n + m_G) \) but it's far from \(\text{polylog}(n) \).

What about if \(G \) is already sparse? say \(G \) is a cubic graph?

Lower bound [Sommer et al. (FOCS’09)] Every stretch \(O(k) \cdot d \) query time \(t \) distance oracle for graphs with \(\tilde{O}(n) \) edges must have a size \(n^{1+\Omega(1/(kt))} \).

Space limitation of \(n^{1+\Omega(1/k)} \) comes from not only from compression but also from *constant* query time.
Thorup-Zwick distance oracle (J.ACM ’05) Every weighted graph has a stretch \((2k - 1)d\) distance oracle of size \(\tilde{O}(n^{1+1/k})\) with query time \(O(k)\), and polynomial pre-processing. Moreover, the oracle can be represented as a distance labeling.

For \(k=2\):
\[\Rightarrow\text{ stretch } 3d, \text{ space } n^{3/2}, \text{ constant query time}\]
Can we do better for unweighted graphs?

Pătraşcu-Roditty (FOCS '10) Every unweighted graph has stretch $2d + 1$ distance oracle of size $\tilde{O}(n^{5/3})$ with constant query time. (Label approach fails because of use a global hash table of size $n^{5/3}$)
Can we do better for unweighted graphs?

Pătraşcu-Roditty (FOCS ’10) Every unweighted graph has stretch $2d + 1$ distance oracle of size $\tilde{O}(n^{5/3})$ with constant query time. (Label approach fails because of use a global hash table of size $n^{5/3}$)

Theorem (This talk)

Let $k \geq 2$. Every unweighted graph has stretch $(2k - 2)d + 1$ distance oracle of size $\tilde{O}(n^{1+2/(2k-1)})$ with query time $O(k)$. Moreover it can be represented as a distance labeling.

For $k=2$:
\Rightarrow stretch $2d + 1$, space $n^{1+2/3} = n^{5/3}$, constant query time
Different trade-offs

[TZ05]

The best solution depends on the question:

1. What is the best space complexity with stretch $3d$?
 $\Rightarrow n^{3/2}$ [TZ05]

2. What is the best stretch with space complexity $o(n^2)$?
 \Rightarrow at most $2d + 1$ [PR10][us]

Under a conjecture about hardness of sparse intersecting set data structures, [PR10] believe that stretch $(2 - \varepsilon)d$ requires space $\tilde{\Omega}(n^2)$, and stretch $2d + 1$ requires $\tilde{\Omega}(n^{5/4})$.
Different trade-offs

The Best Solution depends on the question:

1. What is the best space complexity with stretch d?
 - $n^{3/2}$ [TZ05]

2. What is the best stretch with space complexity $O(n^2)$?
 - at most $2d + 1$ [PR10]

Under a conjecture about hardness of sparse intersecting set data structures, [PR10] believe that stretch $(2 - \varepsilon)d$ requires space $\tilde{\Omega}(n^2)$, and stretch $2d + 1$ requires $\tilde{\Omega}(n^{5/4})$.
Different trade-offs

\[[TZ05][PR10][us] \]

The best solution depends on the question:

1. What is the best space complexity with stretch \(n^{3/2} \)?
 \[\Rightarrow n^{3/2} \]
2. What is the best stretch with space complexity \(o(n^{2}) \)?
 \[\Rightarrow \text{at most } n^{3/2} \]

Under a conjecture about hardness of sparse intersecting set data structures, \([PR10]\) believe that stretch \((2 - \epsilon)d\) requires space \(\tilde{\Omega}(n^{2}) \), and stretch \(4d + 1\) requires \(\tilde{\Omega}(n^{3/2}) \).
Different trade-offs

The **Best Solution** depends on the question:

- What is the best space complexity with stretch \(d \)?
 \[
 \Rightarrow n^{3/2} \quad \text{[TZ05]}
 \]

- What is the best stretch with space complexity \(o(n^2) \)?
 \[
 \Rightarrow \text{at most } 2d + 1 \quad \text{[PR10][us]}
 \]

Under a conjecture about hardness of sparse intersecting set data structures, [PR10] believe that stretch \((2 - \epsilon)d \) requires space \(\tilde{\Omega}(n^2) \), and stretch \(2d + 1 \) requires \(\tilde{\Omega}(n^{3/2}) \).
Different trade-offs

[TZ05][PR10][us]

The **Best Solution** depends on the question:

1. What is the best space complexity with stretch $3d$?
 \[\Rightarrow n^{3/2} \ [TZ05] \]
Different trade-offs

The **Best Solution** depends on the question:

1. What is the best space complexity with stretch $3d$?
 \[\Rightarrow n^{3/2} \quad [TZ05] \]

2. What is the best stretch with space complexity $o(n^2)$?
 \[\Rightarrow \text{at most } 2d + 1 \quad [PR10][us] \]
Different trade-offs

The **Best Solution** depends on the question:

1. What is the best space complexity with stretch $3d$?
 \[\Rightarrow n^{3/2} \] [TZ05]

2. What is the best stretch with space complexity $o(n^2)$?
 \[\Rightarrow \text{at most } 2d + 1 \] [PR10][us]

Under a conjecture about hardness of sparse intersecting set data structures, [PR10] believe that stretch $(2 - \varepsilon)d$ requires space $\tilde{\Omega}(n^2)$, and stretch $2d + 1$ requires $\tilde{\Omega}(n^{3/2})$.
Proof for $k = 2$.

(we want n labels of $\tilde{O}(n^{2/3})$ bits and stretch $2d + 1$)
Proof for $k = 2$.
(we want n labels of $\tilde{O}(n^{2/3})$ bits and stretch $2d + 1$)

Definitions: Given a set of landmarks $L \subset V$:

$$B_L(u) = \{ v \in V : d(u, v) < d(u, L) \}$$
Proof for $k = 2$.
(we want n labels of $\tilde{O}(n^{2/3})$ bits and stretch $2d + 1$)

Definitions: Given a set of landmarks $L \subset V$:

$B_L(u) = \{v \in V : d(u, v) < d(u, L)\}$

$C_L(v) = \{u \in V : v \in B_L(u)\}$

$\quad v \in B_L(u)$ iff $u \in C_L(v)$
Select: \(|L| \sim n^{2/3} \) such that \(\forall u, |B_L(u)| \& |C_L(u)| \sim n^{1/3} \)

Lemma. Given \(s \ (= n^{2/3}) \), one can construct in polynomial time a landmark set \(L \) such that for every node \(u \) of \(G \), \(|B_L(u)| \& |C_L(u)| \leq 4n/s\), and in expectation, \(|L| \leq 2s \log n\).

Proof idea. Sample nodes of \(V \) with probability \(s/n \). \(|B_L(u)|\) is ok whp. Compute set \(W \) of \(w \) having large \(C_L(w) \). If \(|W| \leq s\), add \(W \) to \(L \). Otherwise, sample this \(W \) with probability \(s/|W| \). Then, half of large \(w \) becomes small (double counting + Markov).
Storage for u: $I(u)$ and the distance from u to every $v \in I(u)$, plus its closest landmarks l_v.

$|I(u)| = \tilde{O}(n^{2/3})$, storage ✔️
Querying between s and t

If $t \in I(s)$, then returns $d(s, t)$
Querying between s and t

If $t \in I(s)$, then returns $d(s, t)$
Querying between s and t

If $t \in I(s)$, then returns $d(s, t)$
else returns $\min \{d(s, l_s) + d(l_s, t), d(t, l_t) + d(l_t, t)\}$
Querying between s and t

If $t \in I(s)$, then returns $d(s, t)$
else returns $\min \{d(s, l_s) + d(l_s, t), d(t, l_t) + d(l_t, t)\}$

[dictionary and 2-level hash table, query time ✔]
Querying between s and t

If $t \in I(s)$, then returns $d(s, t)$
else returns $\min \{d(s, l_s) + d(l_s, t), d(t, l_t) + d(l_t, t)\}$

[stretch $2d + 1$?]

If $t \notin I(s)$, then $B_L(s) \cap B_L(t) = \emptyset$

[otherwise $\exists w \in B_L(t) \cap B_L(s) \Rightarrow t \in C_L(w)$ and $w \in B_L(s) \Rightarrow t \in I(s)$]
If $t \notin I(s)$, i.e., $B_L(s) \cap B_L(t) = \emptyset$

W.l.o.g. $d(s, l_s) \leq d(t, l_t)$
If $t \notin I(s)$, i.e., $B_L(s) \cap B_L(t) = \emptyset$

W.l.o.g. $d(s, l_s) \leq d(t, l_t)$

$[d(s, l_s) - 1] + 1 + [d(t, l_t) - 1] \leq d$
If \(t \not\in I(s) \), i.e., \(B_L(s) \cap B_L(t) = \emptyset \)

W.l.o.g. \(d(s, l_s) \leq d(t, l_t) \)

\[
[\lfloor d(s, l_s) - 1 \rfloor + 1 + \lfloor d(t, l_t) - 1 \rfloor] \leq d
\]

\[\Rightarrow 2d(s, l_s) \leq d + 1 \]
If \(t \not\in I(s) \), i.e., \(B_L(s) \cap B_L(t) = \emptyset \)

W.l.o.g. \(d(s, l_s) \leq d(t, l_t) \)

\[
\Rightarrow 2d(s, l_s) \leq d + 1
\]

\[
\Rightarrow \hat{d} \leq 2d(s, l_s) + d \leq 2d + 1
\]
Observation

Routing with $\tilde{O}(n^{2/3})$ bit routing tables, polylog addresses and stretch $2d + 1$ is not known. Routing query is not symmetric!
What about Compact Routing?

Best routing scheme [Thorup-Zwick (SPAA ’01)] achieves stretch \((4k - 5)d\) and routing tables of size \(\tilde{O}(n^{1/k})\).

[TZ01]
What about Compact Routing?

Best routing scheme [Thorup-Zwick (SPAA '01)] achieves stretch $(4k - 5)d$ and routing tables of size $\tilde{O}(n^{1/k})$.

New construction with stretch $(4k - 6)d + 1$ and routing tables of size $\tilde{O}(n^{3/(3k-2)})$.
Conclusion

<table>
<thead>
<tr>
<th></th>
<th>stretch</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanner</td>
<td>$d + 2$</td>
<td>$O(n^{1/2}) \cdot n$</td>
</tr>
<tr>
<td>Distance Labeling</td>
<td>?</td>
<td>$\tilde{O}(n^{2/3})$</td>
</tr>
<tr>
<td>Compact Routing</td>
<td>$2d + 1$</td>
<td>$\tilde{O}(n^{3/4})$</td>
</tr>
<tr>
<td>Compact Routing</td>
<td>$d + \beta$</td>
<td>$\tilde{\Omega}(n/\beta^2)$</td>
</tr>
</tbody>
</table>

Thank You!
Conclusion

<table>
<thead>
<tr>
<th></th>
<th>stretch</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanner</td>
<td>$d + 2$</td>
<td>$O(n^{1/2}) \cdot n$</td>
</tr>
<tr>
<td>Distance Labeling</td>
<td>?</td>
<td>$\tilde{O}(n^{2/3})$</td>
</tr>
<tr>
<td>Compact Routing</td>
<td>$2d + 1$</td>
<td>$\tilde{O}(n^{3/4})$</td>
</tr>
<tr>
<td>Compact Routing</td>
<td>$d + \beta$</td>
<td>$\tilde{\Omega}(n/\beta^2)$</td>
</tr>
</tbody>
</table>

Thank You!