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In this paper we deal with interval routing on n-node networks of diameterD. We show that, for

all n and D such that 2 < D < ©(n), there exists a network on which every interval routing

scheme with less than® (n/(D log(n/D))) intervals per link has a routing path length at least

3D/2] — 1. It improves the lower bound on the routing path lengths for the range of a very large

number of intervals. Moreover, we build a network of bounded degree, for allz and D such that

®(logn) <= D < ©(n), on which every interval routing scheme with less tharﬂ(n/Dz) intervals
per link has a routing path length at least 3D/2 — O(logn).
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1. INTRODUCTION TABLE 1.

Thedilation of a routing scheme is the length of the longest Number of Dilation

routing path. Assuming that the time cost of message intervals (lower bound)  Reference
delivery is a function of the routing path length or of the k=1 2D —13 6]
number of routers crossed, the dilation is a parameter of k= 0(J/n) 3D/2-3 [7]

the worst-case time complexity. At the same time, fast k= 0n?/3) D+ 0(1) [8]
routers must be easily implemented with a small amount of k=0(@m/logn) |3D/2]—1 Corollary 3.3
hardware.

Interval routing is a routing scheme implementing
compact routing tables, and allowing fast routing decisions

at each node [1, 2] (see [3] for a recent survey). It consists gesjgn [4] and in the RCube router [5]. Since the number
in labeling nodes by a unique integer taken{in. .., n}, of intervals is limited in each routing chip, we are interested
n the number of routers, and in assigning to each link at iy finding the minimum dilation for the interval routing
every router a set of intervals of destinations, such that any scheme using a fixed number of intervals. The dilation is
message can reach its destination from any source. Such &ypressed in terms of the diameter of the networks, which
labeling scheme on a netwockis called arinterval routing s 3 common lower bound of the dilation for all networks.
schemeon G. Each router locally finds the next link to  on the other hand, every network of diamef2rsupports
forward a message to its destination by choosing the link that 5y interval routing scheme of dilatiorbwith one interval
contains the label of the destination in one of its intervals. per link. Indeed, it is sufficient to route along a minimum

At each node, the intervals must be pairwise disjoint and spanning tree of the network, which supports an interval
cover the set of all the labels, maybe except the label of the routing scheme with only one interval per link [1]. So,
node itself. The local routing decision time is bounded by the |ower bound on dilation ranges betwednand 2D
O(logn) whereas the space complexity of the router is at depending on the number of intervals we allow.
most O (kd logn) bits, for a router of/ links, and if at most Table 1 summarizes the best known lower bounds and our
k intervals per link are usetl.In particular, such a routing  contribution about the dilation of interval routing schemes
scheme is efficient, i.e. compact and fast, if the degree oftheusing at mosk intervals per link onz-node networks of
network and the number of intervals per link are bothdow  giameterd. Note that the bounds presented in the table hold
relative to the number of routers of the network. for infinitely many values oD, but D is possibly a suitable
The interval routing scheme is used in the last generation fynction ofn (cf. Subsection 2.3 for more details).
of C104 routing chips for the INMOS T9000 Transputer  The next section presents the notation and previous work
on dilation. In Section 3, we prove the main theorem. We
extend the result to diameters which depena oW/e prove

1For each intervala;, b;] one can store its associated output ggrt
so a triple is(a;, b;, p;). There are at mostd such triples we can sort

with respect tog;’s in a data structure of sizé (kd logn) bits. In fact a trade-off of Q(n/(Dlog(n/D))) intervals required for
b;’s can be removed from the data structure, and given a destination label every interval routing scheme of dilation less tha&w /2| —
x € [a;,b;]; p; can be found by a binary search in lggl) = O(logn) 1, for everyD such that 2< D < ©(n). In Section 4,

integer operations. 2 . .
2For instancek andd satisfyingkd/logd = o(n/logn) may provide we prove a bound aR(r/(D” logd)) intervals required for

a scheme more compact than the standard routing tables which need€Very interval routing SChem_e of dilation less than/2 —
@ (nlogd) bits per router. O(log, n) for networks of diameteD = (log,n) and
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degree bounded by > 3. As a result, for every constant

e > 0, there exist networks of maximum degree 3 on

which every interval routing scheme of dilation less than 6
3D/2—o(D) requirex2 (n/ Iogz+8 n) intervals. Finally, we
propose some open problems in Section 5.

2. STATEMENT OF THE PROBLEM

2.1. Notation 5

The model of networks is an undirected connected graph
each vertex representing a router. The distance between any
two verticesx andy is the minimum number of edges of
paths connecting andy, and is denoted diét, y). In all

the rest of the papet, will denote the order of the graph and

D its diameter.

An interval means a set of consecutive integers taken in
{1,...,n}, n and 1 being considered as consecutive. For
every aré ¢, all the intervals associated toform a set of
integers, i.e. a set of labels of destinations, denoted, by
An interval routing schem®& on a graphG is a pair(L, 7),
where/L is the labeling of vertices off andZ is the set of
allthel,’s.

2.2. Asimple example

Let us consider the following example of interval routing FIGURE 1. Two interval routing schemes of dilation 2 on the same
on a graphGgo of seven vertices depicted in the top part graphGo. (We denote by ] the empty interval corresponding to
of Figure 1. Vertices are labeled by integers from 1 to 7, anempty set of destinations.)
and intervals are assigned to each arc. If vertex 5 sends
a message to vertex 1, the message will successively be . .
forwarded along the ar¢5, 7), then along(7, 1), because In _fact,Go has no shortest path routing scheme with only
lelsy =721 = {7.1, 2 and 1€ I71) = [1] = {1}. one interval per link (;ee [12, p. 171] for a proof)_. Hence
Each set of destinations, e arc of Go, is composed of at ("€ compactness d¥o is 2. The bottom part of Figure 1
most two intervals of consecutive labels. One can check thatShOWs another interval routing scheme@g but with only
every routing path ofGy is of minimal length. Therefore, ~ °N€ mter_val per arc. _It ha_s also a dilation 2, the_dlameter.
the dilation of this routing scheme is the diameteray, The dilation problem is, given a grapls and an integer
here 2. k, k being less than the compactness®f to determine
This interval routing scheme oo qualifies as the an interval routing scheme o6 using at mosk intervals

shortest patfinterval routing scheme because all the routing Pe" link which minimizes the longest routing path. This

paths in the graph are of minimal length. A classical problem 9€neral question is important in practice whenever a low
for interval routing is to compute the minimum number number of intervals is forced by the hardware of the router

of intervals per link needed to guarantee a shortest path@"d Whenever message delivery time must be as short as
interval routing scheme on a given graph. Such a numberP0Ssible. o
depends on the graph only, and is terreechpactnessThe Fundgmentally, the co_mpactness ‘prokl)lem. con5|s'Fs !n
compactness of a graph is at mag2, because any set of measuring the compression of the ‘routing information
destinations and any labeling of these destinations can notVhenever paths are of minimum length. Its dual problem,
contain more tham/2 non-consecutive integers. In [9] it the dilation problem, consists in measuring the efficiency of

has been shown that there are families of random graphs inth€ routing scheme when the compression rate is limited,
which for everye > 0 a compactness a(n~%) holds which defines the size of the routing information in each

with high probability. Moreover, in [10] the authors have vertex. Both the problem_s contribute to the need to design
given effective constructions of graphs with compactness of SOMe trade-off between time and space used by a routerin a
at least:/12. Recently in [11], the authors have tightened S0mmunication network.

the bounds, and showed a lower bound 6f — o(n) and an

upper bound ofi /4 + o(n). Thereforen/4 is atight bound  2.3. Related works

of compactness of-vertex graphs. The lower bound for the dilation problem for interval routing

3For convenience, each undirected edge of the graph is considered as #Vas first addr_e_ss_ed by Riﬁkg in [13]- He built aglope-
pair of two symmetric arcs. graph (a subdivision of the bipartite grapkiz ;) on which
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every interval routing scheme with one interval has dilation interval routing scheme of dilation less thaBD/2] — 1
at least /2 + 1, for every everD such thato (1) < D < requiresQ2 (n/ logn) intervals.
®(n). This result has been improved by Tse and Lau in [6]
for one interval with a lower bound ofI2 — 3, for every
evenD such thatO(1) < D < ©®(y/n). More generally
they gave a lower bound ofl2 — O(D?/n), for every D
such thatO (1) < D < ®(n). These results are based on an
extension of the globe-graph, called tmailti-globe-graph
a subdivision of the bipartite grapi, . 3.1. Sketch of the proof of Theorem 3.1

Considering a larger number of intervals, Tse and Lau Basically, we use a similar technique to establish lower
proved recently in [14] a lower bound db + ©(D/vk) bounds of the compactness (shortest paths) and to prove a
up tok = O(n/D) < O@n®?3 intervals, but for even  |ower bound of the dilation with a large number of intervals.
D = ©(»'/3). still using the multi-globe-graph, lgovit Our construction is an adaptation of the graph defined
et al. proved in [7] a lower bound of B/2 — 3 up to in [10]. For simplification, in this sketch of proof we assume
O(n/(D +n/D)) < O(y/n) intervals, for every everD that D is an odd fixed constant3. We build a graph which
such thatO(1) < D < ©(n). No result was known fora  has the two following properties:
number of intervals larger tha® (n%/3) [14]. _ _ _ _ _

In the other hand, in [8], it was proved that, for every (1) some vertices require an interval routing scheme using

Note that neither Theorem 3.1, Corollaries 3.2 or 3.3
say that every interval routing scheme of dilation at most
|3D/2] —1requirex2(n/logn) intervals for some arbitrary
n-vertex graphs of diameteb.

network and for everyr e (0,1), O(n/(aD)) intervals k = Q(n/logn) intervals on some arcs to rpute along
suffice to guarantee a dilation of at mdst. + «)D]. For the shortest paths between vertices at distance

« = 2/3, i.e. dilation at most5D/4], the number of (D—-1)/2; _ .

intervals can be reduced ©(./n) (cf. [8]). Moreover for (2) any interval routing scheme which does not route along
a = 1/2, i.e. dilation at mosf3D/2], in [7] it was shown the shortest paths between these vertices has routing
that O(y/nlogn ) intervals suffice. Intuitively, the more path lengths at least 3

intervals used, the lower the dilation. _ Any interval routing scheme of dilation less than éh
In this paper we extend the range of the possible numberyis qranh requires at leaktintervals or, equivalently, any

of intervals up to0 (n/(Dlog(n/D))) < O(n/logn), and interval routing scheme that uses at miost 1 intervals per
we prove a dilation of at lea$B8D /2] — 1, for everyD such link has dilation at leastz3

that 2< D < ©(n). Our result expresses the existence of
a gap in the number of intervals required for a dilation close 3.2. The graph construction
to three-halves of the diameter. o
Our construction is a function of a Boolean matfik and
of an integerD. It is denoted byG . p. More precisely,
3. CONSTRUCTION OF THE WORST CASE for every p x ¢ Boolean matrixM and for every integer
D > 2, we define the grap& y, p as follows: we associate
with each rowi of M,i € {1,..., p} avertexv; in Gy p.
THEOREM3.1.For all integersD > 2 andk > 2, there At each columry of M, j € {1, ..., ¢}, we associate a pair
exists a graph of diametdd withn = O (Dk logk) vertices of vertices{a;, b;} which are connected by an edge. We set
on which every interval routing scheme with less than ¢ = 1if D = 2, andr = |(D — 1)/2] for everyD > 3.
intervals per link has dilation at leag8D /2] — 1. Foreveryi € {1,...,p}andj € {1,..., g}, we connecy;

In Theorem 3.1 the number of vertices is expressed as a'>.%/ by a path of length, i.e. such that dist;, a;) = 1, if

function of the diameter and of the number of intervals, thus and only itm; ; = 0. Similarly, we connect; to b; by a
yielding more general results. For instance, Theorem 3.1 Path of lengir if and only if m; ; = 1. See Figure 2 for an
shows that for every constahthere exists an-vertex graph example. The construction is slightly dlﬁgr_ent fbr even
of diameterD = ®(n) on which every interval routing andD = 4. For every everD > 4, we subdivide each edge

scheme using intervals has a dilation of at lea@D /2| —1. aj, bj with a new vertex:;, and with the two new edges:
{aj,cj} and{cj, b;}. Also, we addp vertices of degree 1,

The main theorem of this section is the following.

COROLLARY 3.2.For every integerD such that2 < w;, fori € {1, ..., p}. The vertexw; is connected t@;.
D < ©(n), there exists am-vertex graph of diameteD We define theeompactnessf a Boolean matrixM as the
on which every interval routing scheme of dilation less than smallest integek such that there exists a matrix obtained
|13D/2] — 1requires2 (n/(D log(n/D))) intervals. by row permutation ofM having at mostk blocks of

consecutive 1's per column. The first and the last entry of
a column are considered as consecutive. For example, the
matrix M described in Figure 2 has its first and its third
columns composed of one block of consecutive 1's, whereas
its second column is composed of two blocks (each block
COROLLARY 3.3.For every constant integeD > 2, being composed of only one 1 entry). The reader can check
there exists am-vertex graph of diamete® on which every  that the compactness & is 2, as when one permutes the

Corollary 3.2 and Theorem 3.1 can be improved for the
particular cas® = 2. Indeed, in [15] it is shown that there
exists graphs of diameter 2 on which every interval routing
scheme using/4 — o(n) intervals has dilation at least 3.
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belongs taMg. We will see later that the grapldsy, 2 built
from anyM € Mg have diameter 2 exactly.

albl aZbZ %bS

LEMMA 3.5.For every sufficiently large integer, there
exist a constant < 416and ap x |« log p| matrix of Mg
of compactness at leagy/5.

Proof. We use a counting argument which can be for-

1 > Vs 4 malized by the Kolmogorov Complexity (see [18] for an
000 introduction). Basically, the Kolmogorov Complexity of an
individual objectX is the length (in bits) of the smallest
M = 011 program, written in a fixed programming language, which
101 prints X and halts. A simple counting argument allows us to
110 say that no program of size less th&rcan print certainXg

taken from a set of more tharf 2lements.

Let M be the set ofp x g Boolean matrices with
Lp/2] 1 entries per column. Let us begin to show that
the compactness of some matriceshdf is linear in p for
g = ©(log p), then we extend the result tol,.
rows of M, there exists at least one column with two blocks qu everyM e M we define olM) th_e subset of the
of consecutive 1's. Therefore, in this example, any interval Mafrices ofM obtained by row permutation olf. There
routing scheme using only one interval on all the arcs of EXIStS amatrixdo € M such that all the matrices of(@o)
the form(a;, b;) can not optimally reach all the;’s, and have 'a Kolmogorov Complexity of at Igaﬁt: Jog M|~
should have a dilation of at least.3In fact, every vertex  °9(P) —3logp. Indeed, by contradiction e, € cl(Mo)

labeling corresponds to a row permutationMf(according be a matrix of Kolkr)nodgoroybCerblplexitﬂ_.’ < ,C' fﬁr any
to the relative order of the labels of thgs) and, since an Mo € M. Mo may be described by a paib, M), wherei

arc(a;, b;) belongs to a shortest path to a verigjf and @s the index of the row permutation 1) into Mo. Such_ an
only if m; i = 1, every interval associated to an &g, b;) index can_be coded py atmost t@g). + 2 logp + 0(1.) t.)'.ts‘
correspoﬁds (according to the labels of this it coritains) Zlog p] bits are sufficient to descrlt)em_a self-delimiting
to at most one block of consecutive 1 entries in colujof way. Hence the Kolmogorov Complexity @fo would_be
M at mostC’ + log(p!) + 2logp + O(1) < log| M|, which
Without loss of generality we can always assume that is impossible for any matri#fo € M by the Pigeon Hole

in M there is no column whose entries are all equal to 0 Principle. T

or all equal to 1, since a column does not influence the M| = (LpI/JZJ)q = ©(2"//p)?. By Stirling's formula
compactness oM. The graph obtained fron& p by log| M| = pg —O(qlog p) andlog(p!) = plogp — O(p).
contraction of the edgef;,b;}, j € {1,...,q}, is a Hence,
complete bipartite grapK , , if + = 1, and a multi-globe-

graph (see [7, 6, 16]) if > 1, i.e. a subdivision oK, ,.

In the following, columns of Boolean matrices are seen =pg —plogp — O(p +qlog p). (2)
as binary strings. Log-functions are assumed in base
two. The following lemmas are exploited in the proof of
Theorem 3.1. We use the notatigiin) ~ g(n) to express
the fact thatf (n) and g(n) are asymptotically equivalent,

i.e.lim,— o f(n)/gn) = 1.

LEMMA 3.4.Let p, g be two sufficiently large integers.
Let M be the set op x ¢ Boolean matrices havingp/2] Co = c_ 2logp = p — plogp _ 0(3 + log p> .
1 entries per column. LeM; be the subset of matrices of q q
M such that all the rows are pairwise non complemented. 3)
Let M be the subset of matrices #8ff such that for every
pair of columns the& x p matrix composed of the pair of
columns contains the submattif) 9 53] up to a column
permutation. Then, ip = 0(27/2) andq = 0(2P/%), then
|IMa N Ma| ~ [M].

This is a consequence of aresult provedin [17]. Hereatfter, P \/ 5 i §In2 4
we setMp = M1NM>. The matrixM depicted in Figure 2 4 (6(p) + C)pz “)

44 is a submatrix of3 if A can be obtained from® by removing some occurrences of Ol-squences, for WiCienC)’fur_‘Ction{S
columns and rows. and some constant Since each 01-sequence in a binary

FIGURE 2. The graphG s p: 1) of diameterD < 2r 4 1, and 2)
of diameterD < 2r + 2.

C =log|M|—log(p!) — 3logp (1)

All the matrices of M have ¢ columns, each one of
Kolmogorov Complexity bounded by + O (1). Therefore,
there exists a matridfy such that every matrix obtained
by row permutation ofMp has a column of Kolmogorov
Complexity of at least

The term 2 log codes the length of the description of such
a columnin a self-delimiting way. From [18, Theorem 2.6.1,
p. 162], every binary string of lengtlp bits and of
Kolmogorov Complexity at leagt — §(p) contains at least
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string starts necessarily a new block of consecutive 1's, we belongs to a chain of lengththat directly connects a vertex,
get a lower bound on the number of blocks of consecutive namely v; (respectivelyv;r), to a vertexa; € {a;,b;}

1's for such strings.
By choosing; = |« log p], Equation (3) gives

p p
—p-L oL —5
Co=p ” 0<|ng> > p —38(p),

wmam=§+qm

By Equation (4), it follows thatp has a compactness of at
least

p 23
7 \/(14—0(1))]? o In2 5)

1 3 p
_p<Z—,/£|n2> —o(p) > 5 fora =416 (6)

(respectivelyaj € {aj,bj}). It follows thatx and x’
belong to a cyclex, o, o, vir, X', ajr, @7, v;, x), where
o; denotes the complement @f in {a;, b;} (similarly for
a;7). Its length is clearly bounded by 4- 2. It follows that
dist(x, x") < (4t+2)/2 = 2t +1. Therefore, for odd > 3,
G . p has a diameter bounded By > 2r + 1.

FACT 2. For any interval routing scheme = (£, 7)
on Guy,p, for every arc(aj, bj) and for every vertex;,
if mij =1 and L(v;) ¢ I(d_/,b_/), or if mij = 0 and
L(v;) € l@;.p;), then the dilation oR is at least 3

This results from the fact that there is no path shorter than
2t between any two verticas # v;;. Moreover any wrong
decision for routing frona ; to v; induces a path cuts a vertex
vy # v; before reaching;.

Let us show that the result also holds for the compactness FACT 3. Letk be the compactness 8f andR = (£, )

of some matrices oM. We remark that the lower bound
in the form p/5 that we proved on the compactness\f
depends on the cardinality 8ff only (see Equations (1), (3),
(4) and (6)). From Lemma 3.4, singe= 0(27/2) implies
p = 0(2208loary — ,(p208) andg = o(2r/*) because
g = O(logp), we get|Mp| ~ |M|. Clearly this implies
that loglMp| = log| M| + o(1), and thus Equations (1),
(3), (4) and (6) hold fotMg as well, which completes the
proof.

REMARK. The proof of Lemma 3.5 is not constructive.

be any interval routing scheme @hy p. If R uses less than
k intervals per arc, then its dilation is at least 3

AssumeR is fixed and uses only— 1 intervals. Letjp be
a column ofM composed of at leastblocks of consecutive
1's. Such a column exists because the compactneksief
k. Let us consider the sequence= (uy, ..., u,) defined
by: foreveryi € {1,...,p}, u; = 1if L(v;) € I(%,bj)
andu; = 0 otherwise. Since the sqgjo,bjo) is composeg of
at mostk — 1 intervals,u is composed of at mogt — 1
blocks of consecutive 1's. Thus the colunjg and the

As aresult, we can only prove the existence of such a worst-sequence: differ in at least one place. S&f as the index

case grapl s p.

Proof of Theorem 3.1Let D be an integer 2, let p be an
integer large enough and I&f € Mg be a matrix satisfying
Lemma 3.5. We consider the graghy p. Lett be the
length of the chains between the verti¢es, b;}'s and the
verticesy;'s. By the construction oGy p,t = 1if D =2
andt = [ (D — 1)/2] otherwise. Let us remark first that for
every integerD’ > D and for every graplt; of diameter
D on which every interval routing scheme usihgntervals
has a dilatiors, there exists a grap&i’ of diameterD’ on
which every interval routing scheme usikgntervals has a
dilation at leass (not a function ofD’). Indeed, to obtaiiw’

it is sufficient to add a path of length’ — D to one vertex
of G which is of eccentricityD. Hence, to prove a lower
bound for the dilation of graphs of diamet@rit is sufficient
to prove a lower bound for dilation in graphs of diameter at
mostD.

FACT 1. For oddD > 3, the diameter o€ s p is at most
2t +1.

By constructionG s, p has no vertexw; and no vertex
cj. Let us show that, for every pair of verticesandx’,
dist(x,x’) < 2t + 1. From the particular shape of the
matrices of Mg, no column is the string0or the string
17, Thus, forp > 2, all the vertices have degree of
at least 2. Let us show that there is a cycle of length
at most 4 + 2 that cutsx and x’. x (respectivelyx’)

such thatm;g j, # ui,. If ui; = 1, thenl(v;,) € Lajo.bjy)
andmio,jo =0 If Uiy = 0, thenﬁ(vio) ¢ I(ajO’be) and
mi, j = 1. We conclude by applying Fact 2.

FACT 4. For every everD > 4, the diameter o6 1 p is
at most 2 4+ 2. Moreover, ifR uses less thakintervals per
arc, then its dilation is at least 3- 2.

Note that forD = 2 we do not need Fact 4, because the
statement of Theorem 3.1 actually holds for every graph of
diameter 2.

The graphGy p has in this case the vertices; of
degree 1 and apafh;, c;, b;} betweer:; andb;. Letx, x’
be two nonw; vertices. Similarly to Fact 1, there exists a
cycle of length at most#4+ 4 that cutsx andx’. Hence
dist(x, x") < 2t + 2. Let us show that di&t;, v;) < 2r.
Indeed,M € My has the property that the rowsand:’
of M are not complemented. Thus there existsuch that
m; j = m; ;. It follows that eithew; or b; is connected by
a path of length to v; andv;,. Hence distw;, w;) < 2t +2.

Let us show that digt, v;) < 2r+1. Assume that belongs

to a path connecting; € {a;, b;} tov;. Lets, > 0 be the

distance betweern andv;. There are two paths between

andv;: one throughw;; of lengtht, + 2t and another one
throughe; of length at most — ¢, +2+¢. Thus

dist(x, v;) < min{¢, + 2,2t + 2 — t,}
=2t +minft,,2 -t} =2r + 1.
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It follows that distx, w;) < 2t + 2 and thus the diameter
of Gy, p is bounded by 2+ 2 = D for evenD > 4. The
dilation of R, using less thah intervals, is clearly 2 greater

than the case of odd diameter, because: (1) for a wrong

routing path we start with a new edge of the fofm, a;}
or {c;, b;}; and (2) the unique shortest path framto any
w; CUtsv;.

The orderofGy p isn < 2p+2q+ pg(t —1)+c, where
g = ©(ogp) andc € {0, 1, 2} is the number of vertices
added to have a diametBrexactly. We have = ® (D) and,
by Lemma 3.5, the compactness\f k, satisfiesk = O (p).
Therefore, for evenD > 2,n = O(Dklogk). By Fact 3,
foroddD, the dilationis 3 = 3| (D — 1)/2] =3D/2-3/2,
whereas by Fact 4, for eveh, the dilation is 3 + 2 =
3l(D—-1)/2]+2=3(D/2-1)4+2=3D/2—1. Therefore,
in all the cases, the dilation is at leda&D/2] — 1, which
completes the proof. O

FIGURE 3.
maximum degred.

Adaptation of the graphG,, p for graphs of

Theorem 3.1 allows one to establish a trade-off between (@ — 1" ~* <1 < (d =1, i.e.h; = [log, /], because in
the order, the diameter of the graph and the number of & COmplete-ary tree there arg” vertices at distancie from

intervals required for a dilatioh3D /2] — 1. For instance,
as already observed, the matri¥ of Figure 2 has a

compactness 2. Then, Fact 3 of Theorem 3.1 shows that the
worst-case graph of Figure 2, which is of maximum degree 3

and of diameteD ~ n/6, has a dilation3D/2] — 1~ n/4

for 1 interval. However, in general, the graphs p has a
maximum degre® (p + q) which is®(n/(D log(n/D))),

for D > 5.

4. A BOUNDED DEGREE WORST CASE

the root. The order of; is:

h—1

ITl< ) @-1 +1=

i=0

(d—-1Dh -1

[ <2
J—2 + 1 <4,

sinced > 3. HenceTj| = (). Lets = 2(h, + hy). We
have
8 < 2(log,_q (5k)7 + [log,_; (416 log5k))7).

Sincek > 2 andd > 3, we remark thas < 3log,_; (k) +
29. Note thatD — § > 2. So, the graplé y, p—s defined in

We saw that the degree of our construction is bounded by Section 3 can be considered.

®n/(Dlog(n/D))), for every D > 5. We adapt our
previous construction to show a lower bound for dilation
in networks of degree bounded by however with a little
degradation of the number of intervals.

THEOREMA4.1.For all integersd > 3, k > 2 and
D > 3log,_4(k) + 31, there exists a graph of diameter
D, maximum degreel and with n O (Dklogk)
vertices on which every interval routing scheme with less
than k intervals per link has dilation at leas8D/2 —
4.5log,_4(k) — 48.

Proof. In the following proof we make no attempt in the
optimization of the constants. #f = O(n/(Dlog(n/D)))
one can use directly Theorem 3.1. In particular, foe 2
andd = 3 one can use the matrix given in Figure 2 that gives
a better construction.

We consider ap x g Boolean matrixM = (m; ;)
satisfying Lemma 3.5. Let be its compactness. Hence
its compactness i% O(p) andg = O(logp). By
Lemma 3.5, we havp < 5k andg < 416 log5k).

Let 7; be a(d — 1)-ary tree composed df leaves and

having a minimum number of vertices such that all the leaves

are at the same distance from the root. We denotk liige
height of7;. Such a tree can be built from a compléfe-1)-
ary tree of heighk; —1, by adding one more level of exactly

Let us consideiGy, p—s that we modify as follows: for
everyi € {1,..., p} a copy ofT, is rooted inv; and for
everyj € {1,...,q} a copy ofT, is rooted ina;. All the
paths previously connected pare now connected to a leaf
of the treeT, associated to;, in such a way that each leaf is
connected to a unique path. Similarly, paths connecteg to
are moved to a unique leaf of. The same transformation
is applied to all the verticels;. See Figure 3.

The graph obtained is denoted 6y, p 4 and is of degree
bounded by!. By construction, the; such thatn; ; = 0
(respectivelyn; ; = 1) are at a distance+ h, + hy from
a; (respectively fronb;), wheret is the common length of
the paths between the verticgsanda; in Gy, p-s5. Here
t=(D—8—1)/2],thust > D/2 — 1.5log,_4(k) — 16.

From the remark in the proof of Theorem 3.1, it is
sufficient to show that the diameter 6fy p 4 iS at most
D. The graphG i, p—s has a diameter at most — §. Every
shortest path between any two vertices@f; p 4 cuts at
most two leaves of th&, trees and cuts at most two leaves
of the T, trees. Thus the diameter 6fy; p 4 is bounded by
D —6+42h,+2h; = D.

Let £ be the compactness af. Similarly to Fact 3 of
the proof of Theorem 3.1, any interval routing scheme using
less thark intervals routes messages from somgto v;,
along a path of length at least.3Therefore, every interval

leaves. Vertices which are not along a path from such leavesrouting scheme 017 s p 4 Of dilation less than Brequires

to the root can be deleted. The heightof 7; must satisfy

k intervals.
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The order ofGy, p.a isn = p|Ty| +q|Tpl+ (¢ - pg = ACKNOWLEDGEMENT
O(tpg) = O(Dklogk) because = O(D), p = O(k)
andg = O(logp). The dilation is at leasts3i.e. at least
3D/2—4.5log,_4(k) — 48, which completes the proof.C]

The author would like to thank the referees for their
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