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In this paper we deal with interval routing on n-node networks of diameterD. We show that, for
all n and D such that 2 ≤ D ≤ 2(n), there exists a network on which every interval routing
scheme with less than�(n/(D log(n/D))) intervals per link has a routing path length at least
b3D/2c − 1. It improves the lower bound on the routing path lengths for the range of a very large
number of intervals. Moreover, we build a network of bounded degree, for alln and D such that
2(logn) ≤ D ≤ 2(n), on which every interval routing scheme with less than�(n/D2) intervals

per link has a routing path length at least 3D/2 − O(logn).
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1. INTRODUCTION

Thedilation of a routing scheme is the length of the longest
routing path. Assuming that the time cost of message
delivery is a function of the routing path length or of the
number of routers crossed, the dilation is a parameter of
the worst-case time complexity. At the same time, fast
routers must be easily implemented with a small amount of
hardware.

Interval routing is a routing scheme implementing
compact routing tables, and allowing fast routing decisions
at each node [1, 2] (see [3] for a recent survey). It consists
in labeling nodes by a unique integer taken in{1, . . . , n},
n the number of routers, and in assigning to each link at
every router a set of intervals of destinations, such that any
message can reach its destination from any source. Such a
labeling scheme on a networkG is called aninterval routing
schemeon G. Each router locally finds the next link to
forward a message to its destination by choosing the link that
contains the label of the destination in one of its intervals.
At each node, the intervals must be pairwise disjoint and
cover the set of all the labels, maybe except the label of the
node itself. The local routing decision time is bounded by
O(logn) whereas the space complexity of the router is at
mostO(kd logn) bits, for a router ofd links, and if at most
k intervals per link are used.1 In particular, such a routing
scheme is efficient, i.e. compact and fast, if the degree of the
network and the number of intervals per link are both low2

relative to the number of routers of the network.
The interval routing scheme is used in the last generation

of C104 routing chips for the INMOS T9000 Transputer

1For each interval[ai , bi ] one can store its associated output portpi ,
so a triple is(ai , bi , pi ). There are at mostkd such triples we can sort
with respect toai ’s in a data structure of sizeO(kd logn) bits. In fact
bi ’s can be removed from the data structure, and given a destination label
x ∈ [ai , bi ]; pi can be found by a binary search in log(kd) = O(logn)

integer operations.
2For instance,k andd satisfyingkd/ logd = o(n/ logn) may provide

a scheme more compact than the standard routing tables which need
2(n logd) bits per router.

TABLE 1.

Number of Dilation
intervals (lower bound) Reference

k = 1 2D − 3 [6]
k = O(

√
n) 3D/2 − 3 [7]

k = O(n2/3) D + O(1) [8]
k = O(n/ logn) b3D/2c − 1 Corollary 3.3

design [4] and in the RCube router [5]. Since the number
of intervals is limited in each routing chip, we are interested
in finding the minimum dilation for the interval routing
scheme using a fixed number of intervals. The dilation is
expressed in terms of the diameter of the networks, which
is a common lower bound of the dilation for all networks.
On the other hand, every network of diameterD supports
an interval routing scheme of dilation 2D with one interval
per link. Indeed, it is sufficient to route along a minimum
spanning tree of the network, which supports an interval
routing scheme with only one interval per link [1]. So,
the lower bound on dilation ranges betweenD and 2D
depending on the number of intervals we allow.

Table 1 summarizes the best known lower bounds and our
contribution about the dilation of interval routing schemes
using at mostk intervals per link onn-node networks of
diameterD. Note that the bounds presented in the table hold
for infinitely many values ofD, butD is possibly a suitable
function ofn (cf. Subsection 2.3 for more details).

The next section presents the notation and previous work
on dilation. In Section 3, we prove the main theorem. We
extend the result to diameters which depend onn. We prove
a trade-off of �(n/(D log(n/D))) intervals required for
every interval routing scheme of dilation less thanb3D/2c−
1, for everyD such that 2≤ D ≤ 2(n). In Section 4,
we prove a bound of�(n/(D2 logd)) intervals required for
every interval routing scheme of dilation less than 3D/2 −
O(logd n) for networks of diameterD = �(logd n) and
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degree bounded byd ≥ 3. As a result, for every constant
ε > 0, there exist networks of maximum degree 3 on
which every interval routing scheme of dilation less than
3D/2− o(D) requires�(n/ log2+ε n) intervals. Finally, we
propose some open problems in Section 5.

2. STATEMENT OF THE PROBLEM

2.1. Notation

The model of networks is an undirected connected graphG,
each vertex representing a router. The distance between any
two verticesx andy is the minimum number of edges of
paths connectingx andy, and is denoted dist(x, y). In all
the rest of the paper,n will denote the order of the graph and
D its diameter.

An interval means a set of consecutive integers taken in
{1, . . . , n}, n and 1 being considered as consecutive. For
every arc3 e, all the intervals associated toe form a set of
integers, i.e. a set of labels of destinations, denoted byIe.
An interval routing schemeR on a graphG is a pair(L, I),
whereL is the labeling of vertices ofG andI is the set of
all theIe ’s.

2.2. A simple example

Let us consider the following example of interval routing
on a graphG0 of seven vertices depicted in the top part
of Figure 1. Vertices are labeled by integers from 1 to 7,
and intervals are assigned to each arc. If vertex 5 sends
a message to vertex 1, the message will successively be
forwarded along the arc(5, 7), then along(7, 1), because
1 ∈ I(5,7) = [7, 2] = {7, 1, 2} and 1∈ I(7,1) = [1] = {1}.
Each set of destinationsIe, e arc ofG0, is composed of at
most two intervals of consecutive labels. One can check that
every routing path onG0 is of minimal length. Therefore,
the dilation of this routing scheme is the diameter ofG0,
here 2.

This interval routing scheme onG0 qualifies as the
shortest pathinterval routing scheme because all the routing
paths in the graph are of minimal length. A classical problem
for interval routing is to compute the minimum number
of intervals per link needed to guarantee a shortest path
interval routing scheme on a given graph. Such a number
depends on the graph only, and is termedcompactness. The
compactness of a graph is at mostn/2, because any set of
destinations and any labeling of these destinations can not
contain more thann/2 non-consecutive integers. In [9] it
has been shown that there are families of random graphs in
which for everyε > 0 a compactness of�(n1−ε) holds
with high probability. Moreover, in [10] the authors have
given effective constructions of graphs with compactness of
at leastn/12. Recently in [11], the authors have tightened
the bounds, and showed a lower bound ofn/4− o(n) and an
upper bound ofn/4 + o(n). Therefore,n/4 is a tight bound
of compactness ofn-vertex graphs.

3For convenience, each undirected edge of the graph is considered as a
pair of two symmetric arcs.
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FIGURE 1. Two interval routing schemes of dilation 2 on the same
graphG0. (We denote by[ ] the empty interval, corresponding to
an empty set of destinations.)

In fact,G0 has no shortest path routing scheme with only
one interval per link (see [12, p. 171] for a proof). Hence
the compactness ofG0 is 2. The bottom part of Figure 1
shows another interval routing scheme onG0, but with only
one interval per arc. It has also a dilation 2, the diameter.
The dilation problem is, given a graphG and an integer
k, k being less than the compactness ofG, to determine
an interval routing scheme onG using at mostk intervals
per link which minimizes the longest routing path. This
general question is important in practice whenever a low
number of intervals is forced by the hardware of the router
and whenever message delivery time must be as short as
possible.

Fundamentally, the compactness problem consists in
measuring the compression of the ‘routing information’
whenever paths are of minimum length. Its dual problem,
the dilation problem, consists in measuring the efficiency of
the routing scheme when the compression rate is limited,
which defines the size of the routing information in each
vertex. Both the problems contribute to the need to design
some trade-off between time and space used by a router in a
communication network.

2.3. Related works

The lower bound for the dilation problem for interval routing
was first addressed by Ruˇzička in [13]. He built aglobe-
graph (a subdivision of the bipartite graphK2,q ) on which
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every interval routing scheme with one interval has dilation
at least 3D/2 + 1, for every evenD such thatO(1) ≤ D ≤
2(n). This result has been improved by Tse and Lau in [6]
for one interval with a lower bound of 2D − 3, for every
evenD such thatO(1) ≤ D ≤ 2(

√
n). More generally

they gave a lower bound of 2D − O(D2/n), for everyD

such thatO(1) ≤ D ≤ 2(n). These results are based on an
extension of the globe-graph, called themulti-globe-graph,
a subdivision of the bipartite graphKp,q .

Considering a larger number of intervals, Tse and Lau
proved recently in [14] a lower bound ofD + 2(D/

√
k)

up to k = O(n/D) ≤ O(n2/3) intervals, but for even
D = 2(n1/3). Still using the multi-globe-graph, Kr´ǎlovič
et al. proved in [7] a lower bound of 3D/2 − 3 up to
O(n/(D + n/D)) ≤ O(

√
n) intervals, for every evenD

such thatO(1) ≤ D ≤ 2(n). No result was known for a
number of intervals larger than2(n2/3) [14].

In the other hand, in [8], it was proved that, for every
network and for everyα ∈ (0, 1), O(n/(αD)) intervals
suffice to guarantee a dilation of at mostd(1 + α)De. For
α = 2/3, i.e. dilation at mostd5D/4e, the number of
intervals can be reduced toO(

√
n) (cf. [8]). Moreover for

α = 1/2, i.e. dilation at mostd3D/2e, in [7] it was shown
that O(

√
n logn ) intervals suffice. Intuitively, the more

intervals used, the lower the dilation.
In this paper we extend the range of the possible number

of intervals up toO(n/(D log(n/D))) ≤ O(n/ logn), and
we prove a dilation of at leastb3D/2c − 1, for everyD such
that 2 ≤ D ≤ 2(n). Our result expresses the existence of
a gap in the number of intervals required for a dilation close
to three-halves of the diameter.

3. CONSTRUCTION OF THE WORST CASE

The main theorem of this section is the following.

THEOREM 3.1.For all integersD ≥ 2 andk ≥ 2, there
exists a graph of diameterD with n = O(Dk logk) vertices
on which every interval routing scheme with less thank

intervals per link has dilation at leastb3D/2c − 1.

In Theorem 3.1 the number of vertices is expressed as a
function of the diameter and of the number of intervals, thus
yielding more general results. For instance, Theorem 3.1
shows that for every constantk there exists ann-vertex graph
of diameterD = 2(n) on which every interval routing
scheme usingk intervals has a dilation of at leastb3D/2c−1.

COROLLARY 3.2.For every integerD such that2 ≤
D ≤ 2(n), there exists ann-vertex graph of diameterD
on which every interval routing scheme of dilation less than
b3D/2c − 1 requires�(n/(D log(n/D))) intervals.

Corollary 3.2 and Theorem 3.1 can be improved for the
particular caseD = 2. Indeed, in [15] it is shown that there
exists graphs of diameter 2 on which every interval routing
scheme usingn/4 − o(n) intervals has dilation at least 3.

COROLLARY 3.3.For every constant integerD ≥ 2,
there exists ann-vertex graph of diameterD on which every

interval routing scheme of dilation less thanb3D/2c − 1
requires�(n/ logn) intervals.

Note that neither Theorem 3.1, Corollaries 3.2 or 3.3
say that every interval routing scheme of dilation at most
b3D/2c−1 requires�(n/ logn) intervals for some arbitrary
n-vertex graphs of diameterD.

3.1. Sketch of the proof of Theorem 3.1

Basically, we use a similar technique to establish lower
bounds of the compactness (shortest paths) and to prove a
lower bound of the dilation with a large number of intervals.
Our construction is an adaptation of the graph defined
in [10]. For simplification, in this sketch of proof we assume
thatD is an odd fixed constant≥3. We build a graph which
has the two following properties:

(1) some vertices require an interval routing scheme using
k = �(n/ logn) intervals on some arcs to route along
the shortest paths between vertices at distancet =
(D − 1)/2;

(2) any interval routing scheme which does not route along
the shortest paths between these vertices has routing
path lengths at least 3t .

Any interval routing scheme of dilation less than 3t on
this graph requires at leastk intervals or, equivalently, any
interval routing scheme that uses at mostk − 1 intervals per
link has dilation at least 3t .

3.2. The graph construction

Our construction is a function of a Boolean matrixM and
of an integerD. It is denoted byGM,D. More precisely,
for everyp × q Boolean matrixM and for every integer
D ≥ 2, we define the graphGM,D as follows: we associate
with each rowi of M, i ∈ {1, . . . , p} a vertexvi in GM,D .
At each columnj of M, j ∈ {1, . . . , q}, we associate a pair
of vertices{aj , bj } which are connected by an edge. We set
t = 1 if D = 2, andt = b(D − 1)/2c for everyD ≥ 3.
For everyi ∈ {1, . . . , p} andj ∈ {1, . . . , q}, we connectvi

to aj by a path of lengtht , i.e. such that dist(vi , aj ) = t, if
and only if mi,j = 0. Similarly, we connectvi to bj by a
path of lengtht if and only if mi,j = 1. See Figure 2 for an
example. The construction is slightly different forD even
andD ≥ 4. For every evenD ≥ 4, we subdivide each edge
aj , bj with a new vertexcj , and with the two new edges:
{aj , cj } and{cj , bj }. Also, we addp vertices of degree 1,
wi , for i ∈ {1, . . . , p}. The vertexwi is connected tovi .

We define thecompactnessof a Boolean matrixM as the
smallest integerk such that there exists a matrix obtained
by row permutation ofM having at mostk blocks of
consecutive 1’s per column. The first and the last entry of
a column are considered as consecutive. For example, the
matrix M described in Figure 2 has its first and its third
columns composed of one block of consecutive 1’s, whereas
its second column is composed of two blocks (each block
being composed of only one 1 entry). The reader can check
that the compactness ofM is 2, as when one permutes the
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FIGURE 2. The graphGM,D : 1) of diameterD ≤ 2t + 1, and 2)
of diameterD ≤ 2t + 2.

rows ofM, there exists at least one column with two blocks
of consecutive 1’s. Therefore, in this example, any interval
routing scheme using only one interval on all the arcs of
the form (aj , bj ) can not optimally reach all thevi ’s, and
should have a dilation of at least 3t . In fact, every vertex
labeling corresponds to a row permutation ofM (according
to the relative order of the labels of thevi ’s) and, since an
arc (aj , bj ) belongs to a shortest path to a vertexvi if and
only if mi,j = 1, every interval associated to an arc(aj , bj )

corresponds (according to the labels of thevi ’s it contains)
to at most one block of consecutive 1 entries in columnj of
M.

Without loss of generality we can always assume that
in M there is no column whose entries are all equal to 0
or all equal to 1, since a column does not influence the
compactness ofM. The graph obtained fromGM,D by
contraction of the edges{aj , bj }, j ∈ {1, . . . , q}, is a
complete bipartite graphKp,q if t = 1, and a multi-globe-
graph (see [7, 6, 16]) ift > 1, i.e. a subdivision ofKp,q .

In the following, columns of Boolean matrices are seen
as binary strings. Log-functions are assumed in base
two. The following lemmas are exploited in the proof of
Theorem 3.1. We use the notationf (n) ∼ g(n) to express
the fact thatf (n) andg(n) are asymptotically equivalent,
i.e. limn→∞ f (n)/g(n) = 1.

LEMMA 3.4.Let p, q be two sufficiently large integers.
LetM be the set ofp × q Boolean matrices havingbp/2c
1 entries per column. LetM1 be the subset of matrices of
M such that all the rows are pairwise non complemented.
LetM2 be the subset of matrices ofM such that for every
pair of columns the2 × p matrix composed of the pair of
columns contains the submatrix4

[0 0 1 1
0 1 0 1

]
up to a column

permutation. Then, ifp = o(2q/2) andq = o(2p/4), then
|M1 ∩M2| ∼ |M|.

This is a consequence of a result proved in [17]. Hereafter,
we setM0 =M1∩M2. The matrixM depicted in Figure 2

4A is a submatrix ofB if A can be obtained fromB by removing some
columns and rows.

belongs toM0. We will see later that the graphsGM,2 built
from anyM ∈ M0 have diameter 2 exactly.

LEMMA 3.5.For every sufficiently large integerp, there
exist a constantα ≤ 416and ap × bα logpc matrix ofM0
of compactness at leastp/5.

Proof. We use a counting argument which can be for-
malized by the Kolmogorov Complexity (see [18] for an
introduction). Basically, the Kolmogorov Complexity of an
individual objectX is the length (in bits) of the smallest
program, written in a fixed programming language, which
printsX and halts. A simple counting argument allows us to
say that no program of size less thanK can print certainX0
taken from a set of more than 2K elements.

Let M be the set ofp × q Boolean matrices with
bp/2c 1 entries per column. Let us begin to show that
the compactness of some matrices ofM is linear inp for
q = 2(logp), then we extend the result toM0.

For everyM ∈ M, we define cl(M) the subset of the
matrices ofM obtained by row permutation ofM. There
exists a matrixM0 ∈M such that all the matrices of cl(M0)

have a Kolmogorov Complexity of at leastC = log |M| −
log(p!) − 3 logp. Indeed, by contradiction letM ′

0 ∈ cl(M0)

be a matrix of Kolmogorov ComplexityC′ < C, for any
M0 ∈M. M0 may be described by a pair(i0,M

′
0), wherei0

is the index of the row permutation ofM ′
0 into M0. Such an

index can be coded by at most log(p!)+2 logp +O(1) bits.
2dlogpe bits are sufficient to describep in a self-delimiting
way. Hence the Kolmogorov Complexity ofM0 would be
at mostC′ + log(p!) + 2 logp + O(1) < log |M|, which
is impossible for any matrixM0 ∈ M by the Pigeon Hole
Principle.

|M| = (
p

bp/2c
)q = 2(2p/

√
p)q . By Stirling’s formula

log |M| = pq −O(q logp) and log(p!) = p logp−O(p).
Hence,

C = log |M| − log(p!) − 3 logp (1)

= pq − p logp − O(p + q logp). (2)

All the matrices ofM have q columns, each one of
Kolmogorov Complexity bounded byp + O(1). Therefore,
there exists a matrixM0 such that every matrix obtained
by row permutation ofM0 has a column of Kolmogorov
Complexity of at least

C0 = C

q
− 2 logp = p − p logp

q
− O

(
p

q
+ logp

)
.

(3)

The term 2 logp codes the length of the description of such
a column in a self-delimiting way. From [18, Theorem 2.6.1,
p. 162], every binary string of lengthp bits and of
Kolmogorov Complexity at leastp − δ(p) contains at least

p

4
−
√

(δ(p) + c)p
3

2
ln 2 (4)

occurrences of 01-sequences, for anydeficiencyfunction δ

and some constantc. Since each 01-sequence in a binary
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string starts necessarily a new block of consecutive 1’s, we
get a lower bound on the number of blocks of consecutive
1’s for such strings.

By choosingq = bα logpc, Equation (3) gives

C0 = p − p

α
− O

(
p

logp

)
> p − δ(p),

with δ(p) = p

α
+ o(p).

By Equation (4), it follows thatM0 has a compactness of at
least

p

4
−
√

(1 + o(1))p2 3

2α
ln 2 (5)

= p

(
1

4
−
√

3

2α
ln 2

)
− o(p) >

p

5
, for α = 416. (6)

Let us show that the result also holds for the compactness
of some matrices ofM0. We remark that the lower bound
in the formp/5 that we proved on the compactness ofM0
depends on the cardinality ofM only (see Equations (1), (3),
(4) and (6)). From Lemma 3.4, sincep = o(2q/2) implies
p = o(2208 logp) = o(p208) and q = o(2p/4) because
q = O(logp), we get|M0| ∼ |M|. Clearly this implies
that log|M0| = log |M| + o(1), and thus Equations (1),
(3), (4) and (6) hold forM0 as well, which completes the
proof.

REMARK. The proof of Lemma 3.5 is not constructive.
As a result, we can only prove the existence of such a worst-
case graphGM,D.

Proof of Theorem 3.1.Let D be an integer≥ 2, letp be an
integer large enough and letM ∈M0 be a matrix satisfying
Lemma 3.5. We consider the graphGM,D . Let t be the
length of the chains between the vertices{aj , bj }’s and the
verticesvi ’s. By the construction ofGM,D , t = 1 if D = 2
andt = b(D − 1)/2c otherwise. Let us remark first that for
every integerD′ > D and for every graphG of diameter
D on which every interval routing scheme usingk intervals
has a dilationδ, there exists a graphG′ of diameterD′ on
which every interval routing scheme usingk intervals has a
dilation at leastδ (not a function ofD′). Indeed, to obtainG′
it is sufficient to add a path of lengthD′ − D to one vertex
of G which is of eccentricityD. Hence, to prove a lower
bound for the dilation of graphs of diameterD it is sufficient
to prove a lower bound for dilation in graphs of diameter at
mostD.

FACT 1. For oddD ≥ 3, the diameter ofGM,D is at most
2t + 1.

By constructionGM,D has no vertexwi and no vertex
cj . Let us show that, for every pair of verticesx andx ′,
dist(x, x ′) ≤ 2t + 1. From the particular shape of the
matrices ofM0, no column is the string 0p or the string
1p. Thus, for p ≥ 2, all the vertices have degree of
at least 2. Let us show that there is a cycle of length
at most 4t + 2 that cutsx and x ′. x (respectivelyx ′)

belongs to a chain of lengtht that directly connects a vertex,
namely vi (respectivelyvi′ ), to a vertexαj ∈ {aj , bj }
(respectivelyαj ′ ∈ {aj ′, bj ′ }). It follows that x and x ′
belong to a cycle(x, αj , αj , vi′ , x ′, αj ′ , αj ′ , vi , x), where
αj denotes the complement ofαj in {aj , bj } (similarly for
αj ′ ). Its length is clearly bounded by 4t + 2. It follows that
dist(x, x ′) ≤ (4t +2)/2 = 2t +1. Therefore, for oddD ≥ 3,
GM,D has a diameter bounded byD ≥ 2t + 1.

FACT 2. For any interval routing schemeR = (L, I)

on GM,D, for every arc(aj , bj ) and for every vertexvi ,
if mi,j = 1 andL(vi) /∈ I(aj ,bj ), or if mi,j = 0 and
L(vi) ∈ I(aj ,bj ), then the dilation ofR is at least 3t .

This results from the fact that there is no path shorter than
2t between any two verticesvi 6= vi′ . Moreover any wrong
decision for routing fromaj tovi induces a path cuts a vertex
vi′ 6= vi before reachingvi .

FACT 3. Letk be the compactness ofM andR = (L, I)

be any interval routing scheme onGM,D. If R uses less than
k intervals per arc, then its dilation is at least 3t .

AssumeR is fixed and uses onlyk −1 intervals. Letj0 be
a column ofM composed of at leastk blocks of consecutive
1’s. Such a column exists because the compactness ofM is
k. Let us consider the sequenceu = (u1, . . . , up) defined
by: for everyi ∈ {1, . . . , p}, ui = 1 if L(vi) ∈ I(aj0,bj0)

andui = 0 otherwise. Since the setI(aj0 ,bj0) is composed of
at mostk − 1 intervals,u is composed of at mostk − 1
blocks of consecutive 1’s. Thus the columnj0 and the
sequenceu differ in at least one place. Seti0 as the index
such thatmi0,j0 6= ui0. If ui0 = 1, thenL(vi0) ∈ I(aj0,bj0)

andmi0,j0 = 0. If ui0 = 0, thenL(vi0) /∈ I(aj0,bj0) and
mi0,j0 = 1. We conclude by applying Fact 2.

FACT 4. For every evenD ≥ 4, the diameter ofGM,D is
at most 2t + 2. Moreover, ifR uses less thank intervals per
arc, then its dilation is at least 3t + 2.

Note that forD = 2 we do not need Fact 4, because the
statement of Theorem 3.1 actually holds for every graph of
diameter 2.

The graphGM,D has in this case the verticeswi of
degree 1 and a path{aj , cj , bj } betweenaj andbj . Letx, x ′
be two non-wi vertices. Similarly to Fact 1, there exists a
cycle of length at most 4t + 4 that cutsx andx ′. Hence
dist(x, x ′) ≤ 2t + 2. Let us show that dist(vi , vi′ ) ≤ 2t .
Indeed,M ∈ M0 has the property that the rowsi and i ′
of M are not complemented. Thus there existsj such that
mi,j = mi′,j . It follows that eitheraj or bj is connected by
a path of lengtht to vi andvi′ . Hence dist(wi,wi′) ≤ 2t +2.
Let us show that dist(x, vi) ≤ 2t +1. Assume thatx belongs
to a path connectingαj ∈ {aj , bj } to vi′ . Let tx ≥ 0 be the
distance betweenx andvi′ . There are two paths betweenx

andvi : one throughvi′ of length tx + 2t and another one
throughαj of length at mostt − tx + 2 + t . Thus

dist(x, vi) ≤ min{tx + 2t, 2t + 2 − tx}
= 2t + min{tx , 2 − tx} = 2t + 1.
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It follows that dist(x,wi) ≤ 2t + 2 and thus the diameter
of GM,D is bounded by 2t + 2 = D for evenD ≥ 4. The
dilation ofR, using less thank intervals, is clearly 2 greater
than the case of odd diameter, because: (1) for a wrong
routing path we start with a new edge of the form{cj , aj }
or {cj , bj }; and (2) the unique shortest path fromcj to any
wi cutsvi .

The order ofGM,D is n ≤ 2p+2q+pq(t −1)+c, where
q = 2(logp) andc ∈ {0, 1, 2} is the number of vertices
added to have a diameterD exactly. We havet = 2(D) and,
by Lemma 3.5, the compactness ofM, k, satisfiesk = 2(p).
Therefore, for everyD ≥ 2, n = O(Dk logk). By Fact 3,
for oddD, the dilation is 3t = 3b(D − 1)/2c = 3D/2−3/2,
whereas by Fact 4, for evenD, the dilation is 3t + 2 =
3b(D − 1)/2c+2 = 3(D/2−1)+2 = 3D/2−1. Therefore,
in all the cases, the dilation is at leastb3D/2c − 1, which
completes the proof.

Theorem 3.1 allows one to establish a trade-off between
the order, the diameter of the graph and the number of
intervals required for a dilationb3D/2c − 1. For instance,
as already observed, the matrixM of Figure 2 has a
compactness 2. Then, Fact 3 of Theorem 3.1 shows that the
worst-case graph of Figure 2, which is of maximum degree 3
and of diameterD ∼ n/6, has a dilationb3D/2c − 1 ∼ n/4
for 1 interval. However, in general, the graphGM,D has a
maximum degree2(p + q) which is 2(n/(D log(n/D))),
for D ≥ 5.

4. A BOUNDED DEGREE WORST CASE

We saw that the degree of our construction is bounded by
2(n/(D log(n/D))), for every D ≥ 5. We adapt our
previous construction to show a lower bound for dilation
in networks of degree bounded byd, however with a little
degradation of the number of intervals.

THEOREM 4.1.For all integers d ≥ 3, k ≥ 2 and
D ≥ 3 logd−1(k) + 31, there exists a graph of diameter
D, maximum degreed and with n = O(Dk logk)

vertices on which every interval routing scheme with less
than k intervals per link has dilation at least3D/2 −
4.5 logd−1(k) − 48.

Proof. In the following proof we make no attempt in the
optimization of the constants. Ifd = O(n/(D log(n/D)))

one can use directly Theorem 3.1. In particular, fork = 2
andd = 3 one can use the matrix given in Figure 2 that gives
a better construction.

We consider ap × q Boolean matrixM = (mi,j )

satisfying Lemma 3.5. Letk be its compactness. Hence
its compactness isk = 2(p) and q = 2(logp). By
Lemma 3.5, we havep ≤ 5k andq ≤ 416 log(5k).

Let Tl be a (d − 1)-ary tree composed ofl leaves and
having a minimum number of vertices such that all the leaves
are at the same distance from the root. We denote byhl the
height ofTl . Such a tree can be built from a complete(d−1)-
ary tree of heighthl−1, by adding one more level of exactlyl

leaves. Vertices which are not along a path from such leaves
to the root can be deleted. The heighthl of Tl must satisfy

a b
j j

i
v

Tq

pT

qpt=D/2-O(h + h )

(log     )dph =O         p

(log     )dqh =O         q

a b
j ’ j ’

FIGURE 3. Adaptation of the graphGM,D for graphs of
maximum degreed.

(d −1)hl−1 < l ≤ (d −1)hl , i.e.hl = dlogd−1 le, because in
a completek-ary tree there arekh vertices at distanceh from
the root. The order ofTl is:

|Tl | ≤
hl−1∑
i=0

(d − 1)i + l = (d − 1)hl − 1

d − 2
+ l < 2l,

sinced ≥ 3. Hence|Tl | = 2(l). Let δ = 2(hp + hq). We
have

δ ≤ 2(dlogd−1 (5k)e + dlogd−1 (416 log(5k))e).
Sincek ≥ 2 andd ≥ 3, we remark thatδ ≤ 3 logd−1 (k) +
29. Note thatD − δ ≥ 2. So, the graphGM,D−δ defined in
Section 3 can be considered.

Let us considerGM,D−δ that we modify as follows: for
every i ∈ {1, . . . , p} a copy ofTq is rooted invi and for
everyj ∈ {1, . . . , q} a copy ofTp is rooted inaj . All the
paths previously connected tovi are now connected to a leaf
of the treeTq associated tovi , in such a way that each leaf is
connected to a unique path. Similarly, paths connected toaj

are moved to a unique leaf ofaj . The same transformation
is applied to all the verticesbj . See Figure 3.

The graph obtained is denoted byGM,D,d and is of degree
bounded byd. By construction, thevi such thatmi,j = 0
(respectivelymi,j = 1) are at a distancet + hp + hq from
aj (respectively frombj ), wheret is the common length of
the paths between the verticesvi andaj in GM,D−δ. Here
t = b(D − δ − 1)/2c, thust > D/2 − 1.5 logd−1(k) − 16.

From the remark in the proof of Theorem 3.1, it is
sufficient to show that the diameter ofGM,D,d is at most
D. The graphGM,D−δ has a diameter at mostD − δ. Every
shortest path between any two vertices ofGM,D,d cuts at
most two leaves of theTp trees and cuts at most two leaves
of theTq trees. Thus the diameter ofGM,D,d is bounded by
D − δ + 2hp + 2hq = D.

Let k be the compactness ofM. Similarly to Fact 3 of
the proof of Theorem 3.1, any interval routing scheme using
less thank intervals routes messages from someaj0 to vi0

along a path of length at least 3t . Therefore, every interval
routing scheme onGM,D,d of dilation less than 3t requires
k intervals.
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The order ofGM,D,d is n = p|Tq | + q|Tp| + (t − 1)pq =
O(tpq) = O(Dk logk) becauset = O(D), p = 2(k)

andq = O(logp). The dilation is at least 3t , i.e. at least
3D/2− 4.5 logd−1(k)− 48, which completes the proof.

COROLLARY 4.2.For all integersd andD such that3 ≤
d ≤ 2(n) and2(logd n) ≤ D ≤ 2(n), there exists ann-
vertex graph of diameterD and maximum degreed on which
every interval routing scheme of dilation3D/2− O(logd n)

requiresk = �(n/(D2 logd)) intervals.

Proof. BecauseD = �(logd k), we can apply Theorem 4.1,
which shows thatn = O(Dk logk). SinceD = �(logd k)

implies logk = O(D logd), we haven = O(D2k logd). It
turns out thatk = �(n/(D2 logd)). The dilation is at least
3D/2 − O(logd k) ≥ 3D/2 − O(logd n).

COROLLARY 4.3.For every integerD large enough,
there exists a graph of diameterD and maximum degree3 on
which every interval routing scheme of dilation3D/2−o(D)

requiresk = �(n/ log2+ε n) intervals, for every constant
ε > 0, wheren is the number of vertices of the graph.

Proof. Choosen such thatD = 2(log1+ε/2 n), and apply
Corollary 4.2 withd = 3. We getO(logd n) = o(D), hence
the dilation is 3D/2 − o(D), andk = �(n/ log2+ε n).

We can increase the number of intervals if the degree
is unbounded. For instance, for degree at most logn, and
choosingn such thatD = 2(logn/

√
log logn), we can

prove by Corollary 4.2 a dilation of 3D/2 − o(D) for
k = �(n/ log2 n) intervals. More generally, we can choose
D = 2(logn/

√
logd) and prove a dilation of 3D/2 −

O(D/
√

logd), which is 3D/2−o(D) for unboundedd, and
with k = �(n/ log2 n) intervals.

5. CONCLUSION

We essentially show in this paper that there is no hope to
guarantee, for an arbitrary network, interval routing schemes
with a dilation of shorter thanb3D/2c − 1 with less than
�(n/(D log(n/D))) intervals per link. So, it is still an open
problem to find a tight bound on the smallest number of
intervals required for a dilation of exactlyb3D/2c − 1 or
higher. For instance, we do not know whether the upper
bound ofO(

√
n logn ) intervals for dilation at mostd3D/2e

is tight or not (cf. [7]). It would also be interesting to find
trade-offs for particular classes of graphs, such as planar
graphs. We propose the two following problems, already
mentioned in [3]:

Open question 1: Is there a constantk0 such that every
planar graph of diameterD supports an interval routing
scheme of dilation at mostd3D/2e and using at mostk0
intervals?

Open question 2: Are there constantsk0 ands0 such that
every graph supports an interval routing scheme with at most
k0 intervals and such that the ratio between the routing path
length and the distance in the graph between any pair of
nodes (the stretch factor) is bounded bys0?
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complexity of shortest path and dilation bounded interval
routing. In Proc. 3rd Int. Euro-Par Conf. (Lecture Notes in
Computer Science, vol. 1300), pp. 258–265. Springer, Berlin.

[8] Tse, S. S. H. and Lau, F. C. M. (1999) Some results
on the space requirement of interval routing. InProc.
6th Int. Coll. on Structural Information & Communication
Complexity (SIROCCO), pp. 264–279. Carleton Scientific,
Ottawa, Canada.

[9] Flammini, M., van Leeuwen, J. and Marchetti-
Spaccamela, A. (1998) The complexity of interval routing on
random graphs.Comp. J., 41, 16–25.

[10] Gavoille, C. and Gu´evremont, E. (1998) Worst case bounds
for shortest path interval routing.J. Algorithms, 27, 1–25.

[11] Gavoille, C. and Peleg, D. (1999) The compactness of interval
routing.SIAM J. Discrete Math., 12, 459–473.

[12] Fraigniaud, P. and Gavoille, C. (1998) Interval routing
schemes.Algorithmica, 21, 155–182.
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