
Sparse Spanners vs. Compact Routing

Cyril Gavoille
∗

LaBRI - Université de Bordeaux
351, cours de la Libération

33405 Talence cedex, France
gavoille@labri.fr

Christian Sommer
†

Massachusetts Institute of Technology
77 Massachusetts Avenue

Cambridge, MA 02139-4307
csom@mit.edu

ABSTRACT
Routing with multiplicative stretch 3 (which means that the
path used by the routing scheme can be up to three times
longer than a shortest path) can be done with routing tables

of Θ̃(
√
n) bits1 per node. The space lower bound is due to

the existence of dense graphs with large girth. Dense graphs
can be sparsified to subgraphs, called spanners, with various
stretch guarantees. There are spanners with additive stretch
guarantees (some even have constant additive stretch) but
only very few additive routing schemes are known.

In this paper, we give reasons why routing in unweighted
graphs with additive stretch is difficult in the form of space
lower bounds for general graphs and for planar graphs. We
prove that any routing scheme using routing tables of size
µ bits per node and addresses of poly-logarithmic length has
additive stretch Ω̃(

p
n/µ) for general graphs, and Ω̃(

√
n/µ)

for planar graphs, respectively. Routing with tables of
size Õ(n1/3) thus requires a polynomial additive stretch of

Ω̃(n1/3), whereas spanners with average degree O(n1/3) and
constant additive stretch exist for all graphs. Spanners, how-
ever sparse they are, do not tell us how to route. These
bounds provide the first separation of sparse spanner prob-
lems and compact routing problems.

On the positive side, we give an almost tight upper bound:
we present the first non-trivial compact routing scheme
with o(lg2 n)-bit addresses, additive stretch Õ(n1/3), and

table size Õ(n1/3) bits for all graphs with linear local tree-
width such as planar, bounded-genus, and apex-minor-free
graphs.

∗C.G. is also member of “l’Institut Universitaire de France”.
He is also supported by ANR projects “ALADDIN”, and the

équipe-projet INRIA Sud-Ouest “CÉPAGE’.
†Part of this work was done at the University of Tokyo and
while C.S. visited LaBRI.
1Tilde-big-O notation is similar to big-O notation up to fac-
tors poly-logarithmic in n.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’11, June 4–6, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0743-7/11/06 ...$10.00.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Network Architecture and
Design—Routing protocols; F.2.2 [Nonnumerical Algo-
rithms and Problems]: [Routing and layout]; G.2.2
[Discrete Mathematics]: Graph Theory—Network prob-
lems, Graph labeling, Graph algorithms.

General Terms
Algorithms, Theory.

Keywords
compact routing, shortest paths

1. INTRODUCTION
Routing is essential for communication in networks. For

a network with n devices, we deem a routing scheme to
be compact, if the maximum amount of memory used per
routing table grows asymptotically slower than n. Research
on compact routing [8, 20, 34, 35, 52] is concerned with the
tradeoff between the space requirements and the quality of
the routes, where the quality is measured with respect to the
best possible route. The (multiplicative) stretch of a routing
scheme is defined as the worst-case ratio for any pair of nodes
of the route length divided by the shortest-path distance. A
routing scheme that uses linear space per node may store
information on all shortest routes. If the memory available
per node (the table size) is o(n lgn), packets can not always
be sent along shortest paths [41].

The fundamental tradeoff between stretch and routing ta-
ble size has been investigated broadly and both upper and
lower bounds for general graphs [4, 7, 20, 55] and for graphs
stemming from specific classes such as trees [31, 32, 47, 48,
55], planar graphs [37, 49, 54], minor-free graphs [1, 3], non-
positively curved plane graphs [18], graphs with bounded
genus [37], with low doubling dimension [2, 45], chordal
graphs [23, 24], “flat” networks [43], random graphs [28],
power-law graphs [13, 16], permutation graphs, interval
graphs and related classes [11, 25, 26], and others are known
(see Table 1 for an overview).

The space lower bounds known for general graphs [36,
55] are based on dense graphs with given girth.2 To over-
come difficulties with dense graphs, sparse spanners [6, 19,
51] have been devised. Spanners are subgraphs with fewer
edges that satisfy certain distance inequalities — spanners

2The girth of a graph is the length of its shortest cycle.

225

Graph Stretch Tables Addresses Ref.

General 1 n lg2 n O(lgn) Folkl.
General 2 (n−

√
n) lg2 n O(lgn) [42]

General 3 Õ(n1/2) O(lgn) [55]

General 4k − 5 Õ(n1/k) o(k lg2 n) [55]

Trees 1 none o(lg2 n) [31, 55]
Tree-width τ 1 none O(τ lg2 n) [50]
Planar 1 7.18n+ o(n) O(lgn) [49]
Genus γ 1 n lg2 γ +O(n) O(lgn) [37]
Planar 1 + ε none o(ε−1 lg2 n) [54]
Minor-free 1 + ε none o(ε−1 lg2 n) [1]

Doubling dim. α 1 + ε ε−O(α) lg3 n O(lgn) [45]

Gn,p (p = 1/2) 1 n+O(lg4 n) O(lgn) [39]

Gn,p (np ∈ (lg n, 9√n)) 2 Õ(n3/4) O(lgn) [28]

Random PL 5 Õ(n1/3) o(lg2 n) [16]

Table 1: Best results known on labeled (name-
dependent) compact routing schemes for connected
graphs on n nodes. The stretch is multiplicative,
meaning the worst-case ratio between the path used
by the routing scheme and the distance between
source and target. For labeled schemes, the designer
may choose arbitrary node names (also termed ad-
dresses), including, for example, names that depend
on the topology and the edge weights of the graph.

ought to maintain distances up to small stretch factors. Re-
cently, instead of spanners with multiplicative stretch, ad-
ditive spanners [10, 12, 27, 53, 57, 58, 59] have been in-
vestigated as well. Spanners could potentially be used for
routing — in fact, their usefulness for routing is often one
of the (main) reasons stated in the introduction and moti-
vation section of articles on spanners. However, the trade-
off between routing table space requirements and worst-case
stretch is not yet completely understood for sparse graphs.
Indeed, sparse spanners do not tell the designer of the rout-
ing scheme how to find and encode short routes.

The additive stretch of a routing scheme (and, analo-
gously, of a spanner) is defined as the worst-case difference
for any pair of nodes of the route length minus the shortest-
path distance (the graphs considered are assumed to be un-
weighted whenever we consider additive stretch). Instead
of routing with multiplicative stretch, researchers have also
started to investigate routing schemes with additive stretch
guarantees. However, only very little is known (see Table 2
for an overview).

For general graphs, the following straightforward ap-
proach guarantees additive stretch β using routing tables
of size Õ(n/β), for any integral parameter β. The routing
scheme routes along shortest-path spanning trees rooted at
each node of a small 1

2
β-dominating set, that is a subset C of

nodes such that every node u is at distance at most 1
2
β from

some center cu ∈ C. It is well-known that every connected
graph has a 1

2
β-dominating set of size < 2n/(β + 1), com-

putable efficiently [46]. By the triangle inequality, routes are
stretched by an additive factor of at most β. The address of
each node u consists of the node identifier of its closest cen-
ter cu, telling the source which tree to use. Since each tree
contributes o(lg2 n) bits per node to the routing tables [31,

55], the tables are of size o(|C| lg2 n) = Õ(n/β).
A non-trivial compact routing scheme with additive

stretch β should thus have table size o(n/β). Schemes

with small tables and small additive stretch have been de-
vised for restricted graph classes such as chordal graphs [24],
graphs with bounded tree-length [23], and, more generally3

graphs of bounded hyperbolicity [17]. Furthermore, Brady
and Cowen [14] construct a routing scheme with additive
stretch 6 given an exact distance labeling scheme [38, 40,
50]. Their approach yields sublinear table sizes for all graphs
that allow for a distance labeling scheme with labels of
length o(

√
n). Unfortunately, any exact distance labeling

scheme in unweighted graphs requires at least Ω(n)-bit la-
bels in general, Ω(

√
n)-bit labels for bounded-degree graphs

and Ω(n1/3)-bit labels for planar graphs [40].
Other compact routing schemes have been proposed for

internet-like topologies, with small multiplicative stretch
and poly-logarithmic additive stretch [13, 33].

Graph Stretch Table Addresses Ref.

General β Õ(n/β) o(lg2 n) Folkl.
Diameter ∆ 2∆ none o(lg2 n) Folkl.
`(n)-Labels 6 O(

√
n(`(n) + lg2 n) O(`(n) + lg2 n) [14]

Interval 1 O(lgn) O(lgn) [14]
Circular-arc 1 O(lgn) o(lg2 n) [14]
Chordal 2 o(lg3 n) o(lg3 n) [24]
Tree-length δ 6δ − 2 O(δ lg2 n) O(δ lg2 n) [23]
δ-Hyperbolic O(δ lgn) O(δ lg2 n) O(δ lg2 n) [17]

Table 2: Best results known on compact routing
schemes with additive stretch for unweighted con-
nected graphs on n nodes. The scheme by Brady
and Cowen [14] uses exact distance labels of length
`(n) to devise a routing scheme with additive stretch.

Although there are some routing schemes that guarantee
additive stretch for restricted classes of graphs, the results
on routing somehow cannot catch up with the results on
spanners. While there are rather sparse additive spanners,
additive routing schemes for (more) general graphs have not
been found.

1.1 Contributions
In the current work, we investigate tradeoffs between the

size of routing tables and the additive stretch. We give both
upper and lower bounds. Our lower bounds explain why,
unfortunately, sparse additive spanners cannot be converted
into compact routing schemes. Routing with additive stretch
requires large tables — even for planar graphs. We thus
give the first separation of spanner problems and routing
problems. On the positive side, we also give an almost tight
upper bound for routing with additive stretch on graphs
with linear local tree-width (a class of graphs that includes
planar, bounded-genus, and apex-minor-free graphs).

Lower Bounds.
For general graphs on n nodes, we prove that any routing

scheme using addresses of poly-logarithmic length and rout-
ing tables of size µ bits per node has additive stretch at least
Ω̃(

p
n/µ) (Theorem 1). For planar graphs, we prove that

the lower bound on the additive stretch is at least Ω̃(
√
n/µ)

(Theorem 2).

3Chordal graphs have tree-length 1, graphs of tree-length δ
are O(δ)-hyperbolic, δ-hyperbolic graphs have tree-length
O(δ lgn).

226

Upper Bound.
We provide a rather general approach for compact routing

with additive stretch. For planar graphs on n nodes (and
actually for graphs of linear local tree-width, which includes
all bounded-genus graphs), this general approach yields a
compact routing scheme with poly-logarithmic addresses, ta-
ble size Õ(n1/3), and additive stretch Õ(n1/3) (Theorem 3).
Our upper bound is almost tight with respect to the lower
bound of Theorem 2, which says that table size Õ(n1/4) re-

quires additive stretch Ω̃(n1/4). Actually, our scheme works
for general graphs but with weaker bounds on the memory
consumption.

2. LOWER BOUNDS
We first state and prove the general lower bound (The-

orem 1). Second, we state and prove the lower bound for
planar graphs (Theorem 2) as a special case of the general
lower bound.

Theorem 1. For connected, unweighted graphs on n
nodes, any labeled routing scheme using addresses of poly-
logarithmic length and routing tables of size µ bits per node
has worst-case additive stretch at least β = Ω̃(

p
n/µ).

Before presenting our proof, let us observe that one can-
not derive a lower bound on the additive stretch from
multiplicative-stretch lower bounds for the following reason.
It is known [36, 55] that there are worst-case dense graphs
on k nodes for which any routing scheme with o(k)-bit rout-
ing tables cannot achieve shortest-path routing between all
pairs of adjacent nodes (and so provide routes of length at
least 2 for some edge uv). We may believe that by uni-
formly subdivising each edge of these dense graphs into k
new edges we are done. Choosing k ∼ n1/3, we may ob-
tain a graph with O(k2) edges and O(k3) = O(n) nodes in
which any routing scheme between some distance-k nodes
requires a route of length ≥ 2k, and thus an additive stretch
of ≥ 2k − k = n1/3. The argument is flawed since the route
from u to v in the new graph can first make a short loop
to collect routing information, before going straight to v.
And, unfortunately, the degree of u is large by construction,
and thus the routing information about u’s neighbors could
be efficiently distributed around u (e.g., by the use of some
hash tables).

This reduction might work if worst-case graphs of bounded
degree were known. Unfortunately, compact routing with
small (multiplicative) stretch in bounded degree graphs is
widely open. No upper and lower bounds (other than the
ones for general graphs) are known for this problem.

Proof. Our worst-case graphs (see Fig. 1) consist of
a set of p sources S = {s1, . . . sp}, a set of q targets
T = {t1, . . . tq}, and two graphs L (for left) and R (for right),
both lying between the sources and the targets. Each source
si is connected to a representative node sLi in L and a node
sRi in R, on a path of length ρ, respectively. L and R connect
these representative sources to the targets tj . Both L and R
are built from the same base graph (or gadget) but different
shortcuts are added. For each pair (si, tj) there is exactly
one shortcut, either in L or in R. Except for these shortcuts,
L and R thus look almost identical. For each pair (si, tj), in-
dependent of all other pairs, there is only one shortest path,
going either through L or through R (depending on whether

Figure 1: An example of the lower bound construc-
tion for general graphs. Each target (red, lower
part) is connected to either the left part or the
right part (independently for different targets). In-
tuitively speaking, to route from any source we need
to know for all targets whether to send a message
using the edge on the left or the edge on the right.
If the number of sources is sufficiently large, the in-
formation cannot be encoded in the address.

the shortcut is in L or in R). The graphs are constructed
such that any alternative path is much longer.

Let K be the p × q matrix with entries in {0, 1}, where
ki,j is 0 if the shortcut for (si, tj) is in L and 1 otherwise
(i.e., the shortcut is in R). Since each shortcut (i, j) can
be added either to L or to R independently, there are 2pq

different combinations and thus 2pq different matrices K.
An encoding of K thus requires at least lg2 2pq = pq bits.
In the following, we argue that the addresses of the targets
and the routing tables “around” the sources must encode K.

Intuitively speaking, to route from si, we need to know
for all tj whether to send a message using L or R. For any
source si, a routing scheme that has additive stretch at most
2ρ may explore the routing tables of all the nodes at distance
at most ρ from si to decide whether to use L or R. Recall
that, in our construction, each source is connected to only
two long paths of length ρ and thus the number of nodes
within distance ρ is 2ρ. The collective information of all the
nodes (including si) within distance ρ around source si is
bounded by (2ρ + 1)µ bits. The collective information of
all the nodes within distance ρ around all the p sources is
bounded by p(2ρ+ 1)µ bits. The addresses of the p sources
and the q targets may also contribute to the encoding of
K, adding another (p + q)α bits, where α is the maximum
address length. We thus have

p(2ρ+ 1)µ+ (p+ q)µ ≥ pq. (1)

For the case of general graphs, the base graph (gadget)
is very simple (Fig. 1 provides an illustration): it consists

of p nodes s
{L,R}
i (one for each source) and no edges. A

“shortcut” for a pair of source and target (si, tj) is a path

of length ρ from s
{L,R}
i to tj . The graph uses Θ(pρ) nodes

and edges to connect S to L and R and Θ(pqρ) nodes and
edges to connect L and R to T . The shortest path from si
to tj has length 2ρ. Suppose that the shortcut (i, j) was in
L. Any path from si to tj in R has length at least ρ + 3ρ.
To achieve additive stretch less than 2ρ, the routing scheme
must know after ρ steps whether to use L or R.

Let us now fix the parameters p, q, ρ, with respect to α

227

(the address length), µ and n. The number of sources p is
chosen such that the address of a target tj cannot encode
the L vs. R decision for each source si:

p = ω(α).

For poly-logarithmic address length α, we may choose p to
be poly-logarithmic in n as well. Using n = Θ(pqρ), Eq. (1)
yields

p(2ρ+ 1)M + (p+ q)α ≥ pq (2)

ρM = Ω̃(q) (3)

ρ = Ω̃(
p
n/µ). (4)

Since the additive stretch is at least ρ, the claim follows.

We observe that the worst-case graphs used in the our
proof have less than 2n edges. The graphs itself are sparse
spanners (trivial stretch). However, we prove that no addi-
tive compact routing scheme with small tables exists. Note
that the optimal Õ(n1/k)-space routing scheme of Thorup
and Zwick [55] also requires additive stretch no better than

n1/2−O(1/k) for these graphs. However, the sampling tech-
nique used to design this optimal routing scheme has also
been used [57] to produce spanners for unweighted graphs
with stretch much smaller than O(k), namely 1 + ε for any
ε > 0.

Note.
Techniques for compact routing schemes and for distance

oracles [56] are often applicable to both problems. The
graph (and the query pairs) we use in this lower bound, how-
ever, admits a straightforward, exact distance (and shortest-
path) oracle using linear space. Our proof shows that the
routing problem is much harder.

The lower-bound graph construction for general graphs
can be combined with lower bounds for exact compact rout-
ing schemes [2]. Note that the upper part of the general
construction is a planar graph. We thus need a planar gad-
get for the lower part. The general construction, combined
with [2], yields a lower bound for additive stretch routing in
planar graphs, and also bounded-doubling-dimension graphs
(details and proof in Appendix A).

Theorem 2. For connected, unweighted bounded degree
planar graphs on n nodes, any labeled routing scheme using
addresses of poly-logarithmic length and routing tables of size
µ bits per node has worst-case additive stretch at least β =
Ω̃(
√
n/µ).

3. UPPER BOUND
In this section, we provide a routing scheme with table

sizes and additive stretch both Õ(n1/3) for planar graphs.
The tradeoff between table size and stretch almost matches
the lower bound in Theorem 2. Actually, this trade-off ap-
plies to every graph having linear local tree-width, a much
larger class of graphs including for instance all bounded-
genus graphs.

A graph G with n nodes has local tree-width τ(r) if the
subgraph induced by nodes within distance r of any node
has tree-width at most τ(r). The local tree-with is linear if
τ(r) = O(r). Planar graphs of radius4 r have tree-width ≤
4A graph has radius r if it has a spanning tree of depth r.

3r, and for graphs of genus γ the tree-width is O(γr) [29], so
all these graphs have linear local tree-width. More generally,
all apex-minor-free graphs5 have linear local tree-width [21].
These latter graphs can be recognized in linear time [44],
and play an important role in Graph Minor Theory with
important algorithmic applications [22]. The class of graphs
with local tree-width is however not restricted to minor-
closed families: bounded degree-d graphs have local tree-
with τ(r) = O(dr), and d-dimensional meshes have local
tree-width τ(r) = O(rd).

Theorem 3. Every connected, unweighted graph of lin-
ear local tree-width on n nodes has a labeled routing scheme
constructible in polynomial time with o(lg2 n)-bit addresses,

table size Õ(n1/3), and additive stretch Õ(n1/3).

Our routing scheme is actually more general and it works
for any graph G (with worse guarantees on the table size).
The additive stretch and the table size bounds rely on a
node partition of G and a clustering of it. An (r, σ)-cell
partition of G = (V,E) is a partition {Vi} of its node-set V
into σ parts such that each Vi, called cell, contains at least
r/2 nodes and induces a subgraph of radius at most r. By
definition, every (r, σ)-cell partition requires σ ≤ 2n/r. A
(δ, τ)-clustering of a cell partition {Vi} is a collection {Ci}
of connected subgraphs of G, called clusters, such that:

1. every node of G belongs to at most δ clusters;
2. the tree-width of any cluster is at most τ ; and
3. for every cell Vi there is a cluster Ci containing all

shortest paths in G between nodes of Vi.

Thus, every shortest path in the subgraph Ci between two
nodes of Vi is a shortest path in G.

The features of our general scheme are summarized as
follows:

Theorem 4. Given an (r, σ)-cell partition with (δ, τ)-
clustering of a connected unweighted graph with n nodes, one
can construct in polynomial time a labeled routing scheme
time with o(lg2 n)-bit addresses, table size Õ(σ/r+ δτ), and
additive stretch O(r lg σ).

Let us first show that Theorem 3 is a direct corollary of
Theorem 4.

It is not difficult to see that every connected graph G
has an (r, 2n/r)-cell partition constructible efficiently (see
Lemma 2 in Appendix B). Then, if G has linear local
tree-width, we can construct a (O(lgn), O(r lgn))-clustering
based on a sparse cover of G, a notion introduced by Awer-
buch and Peleg [9], closely related to the (δ, τ)-clustering
definition.

A (ρ, d, s)-sparse cover is a collection of connected sub-
graphs {Gi} of G such that:

1. every node of G belongs to at most d subgraphs;
2. the radius of each Gi is at most sρ; and
3. for each node of G at least one Gi contains all neigh-

bors within distance ρ;

5That is the graphs excluding some apices as minor. An
apex is a graph with one vertex whose removal leaves a pla-
nar graph. K5 and K3,3 are apices, so planar graphs are
apex-minor-free.

228

For general graphs and for any k, ρ there are polynomial-
time constructions of (ρ,O(kn1/k), 2k − 1)-sparse covers.
This leads to the construction of (ρ,O(lgn), O(lgn))-sparse
covers by taking k = lgn. Sparse covers can be refined
for planar graphs [15], minor-free graphs [5], and graphs of
bounded doubling dimension [2]. All these graphs support
(ρ,O(1), O(1))-sparse covers.

An important observation is that, if G has local tree-
width τ(r), then a (2r, d, s)-sparse cover is also a (d, τ(2rs))-
clustering (see Lemma 3 in Appendix C). Choosing d =
s = O(lgn), it follows that G has an (O(lgn), τ(O(r lgn)))-
clustering, which, by linearity of τ , is a (O(lgn), O(r lgn))-
clustering.

In particular, plugging r = n1/3 in Theorem 4, wet get σ =
O(n2/3), τ = O(n1/3 lgn), and δ = O(lgn). The additive

stretch is O(r lg σ) = Õ(n1/3) and the routing tables have

length Õ(σ/r + δτ) = Õ(n1/3), as claimed.
The remainder of this section is dedicated to prove Theo-

rem 4.

3.1 Overview of the Scheme
We start with any (r, σ)-cell partition {Vi} and a (δ, τ)-

clustering {Gi} of G. With each cell Vi, we associate a
rooted spanning tree of G[Vi], denoted by Ti, and of depth
no more than r. The root of Ti, denoted by ci, is called the
center of Vi.

The address of any node u ofG is a pair (i, `u) composed of
the unique index i such that u ∈ Vi, and a label `u allowing
shortest-path routing in the tree Ti. According to [31, 55],
given the labels `u, `v of nodes u, v ∈ Ti, it is possible to
compute the next hop on the unique path from u to v in Ti,
i.e., the port number leading to a neighbor of u on the path
towards v. The length of `u is O(lg2 |Vi|/ lg lg |Vi|) bits, and
thus the length of the address (i, `u) is o(lg2 n) bits.6

As one component of our scheme, each node uses a local
shortest-path routing scheme for all targets in its cluster.
A node thus stores the routing information for this local
scheme for each cluster Ci it belongs to. Recall that, by
definition of the clustering, each node is in at most δ clusters.
Tables for these local routing schemes require o(τ lg2 n) bits.
Routing between nodes in the same cell is achieved by these
local routing schemes as we guarantee that any shortest path
between two nodes in the same cell is totally contained in
at least one cluster. Note that the shortest paths between
nodes of a cell (as opposed to a cluster) may leave and re-
enter the cell multiple times.

Routing between different cells (say between two cell cen-
ters) is achieved by encoding (in the message header) a sum-
mary — which we call trail — of a “cell path.” As paths
within cells are handled by the local routing schemes, trails
only encode the inter-cell edges of the cell path. A source
center has σ− 1 potential target centers, and each trail may
contain Ω(σ) edges. Remembering all these trails poten-
tially requires Ω(σ2) bits. Since this quantity is too much
for one source center, we use a specific collection of trails

6In this paper, we assume that port numbers of all the edges
are fixed (by some adversary) before the labeling of the tree.
The label length can be reduced to (1 + o(1)) lg2 |Vi| if the
designer of the scheme is allowed to permute the port num-
bers of Ti. In this model, and since all the trees are disjoint,
the address length is only (1 + o(1)) lg2 n bits by ordering
cells according to their number of nodes, so that (i, `u) has
length lg2 (i) + (1 + o(1)) lg2 (n/i).

(simultaneously for all target centers) that can collectively

be encoded within Õ(σ) bits. This is done at the price of
increasing the additive stretch of the trails.

Tables of each node are restricted to roughly Õ(σ/r) bits,
which is r times less than the information required to store
all the trails originating at a given source center. As a first
step, a particular routing scheme is in charge of collecting
the routing information, distributed to Ω(r) nodes within
the cell. Since cells have ≥ r/2 nodes, and radius O(r),
the scheme can use a walk of length O(r) to collect all the
information.

Then, the trail leading to the target is extracted form this
routing information, and the message is sent along the trail.
The message is routed between the trail edges using the local
routing scheme (inside the clusters).

Summary.
When sending a message from s ∈ Vi to t ∈ Vj , the fol-

lowing steps are performed (see also Figure 2):

1. from s we route to its center ci using tree Ti;

2. the routing table of node ci contains the encoding of
a walk of length O(r), which we follow to collect the

Õ(σ) bits of routing information on trails (Section 3.3);

3. from the address of t we extract its center cj , to which
we compute the trail from the information collected at
ci (Section 3.2);

4. we route the message along the trail from ci to cj by
alternatively using edges of the trail and the local rout-
ing schemes; and

5. we route to the final destination t using tree Tj .

3.2 Trail Routing
We assume that the routing task is to send messages be-

tween centers only, i.e., we skip Step 1 and 5 of the general
routing scheme. The routing between arbitrary nodes re-
duces to this problem, up to additive stretch O(r) using the
trees within the cell.

We consider a source center cs ∈ Vs. Let T be any tree
rooted at cs spanning all the centers of the partition. For a
tree T we define two parameters important for the analysis
of our scheme: its distortion, and its number of gates. Tree T
has distortion d if for every center c, dT (cs, c) ≤ dG(cs, c)+d.
A node u in cell Vi is a gate if u = ci, or u has neither a
proper ancestor nor a proper descendant in Vi. In other
words, on the path from cs to u in T , u is either the first
node entering Vi or the last node leaving Vi.

Routing from cs to any destination center ct ∈ Vt can be
done using the subpath from cs to ct in T , denoted by T [ct].
The trail of T [ct] is the sequence of gates encountered from
cs to ct.

Consider two consecutive gates of the trail of T [ct]. If u, v
belong to the same cluster Vi, then the routing from u to v is
performed using the local routing scheme in cluster Ci (see
Lemma 4 in Appendix D). It uses shortest paths, and tables

of Õ(τ) bits per node in Ci, and requires a piece of advice of
o(lg2 n) bits about u, v. This advice is attached to the trail
collected at cs. If u, v belong to different cells, then they
must be adjacent, and the port number of this edge is also
attached to the trail. Therefore, the information required at
cs only depends on the number of gates in T [ct].

229

s

t

ci

cj

Vĉ

Ti

Tj

walk

Figure 2: Trail Routing Example: from source s to center ci on tree Ti, on walk to collect routing information,
on trail to cj using the internal scheme within cells and gates between cells, and then on Tj to t.

If T is constructed as a shortest-path tree (without any
distortion), it may occur that T [cs] contains Ω(σ) gates. The
number of gates for T can also be as large as Θ(σ2). This is
due to the fact that many paths of T can cross the same cell
using different gates. For our purposes, this would be too
large. Clearly, there are trees with only O(σ) gates, based on
spanning trees of the cell graph (nodes correspond to cells,
nodes corresponding to neighboring cells are connected by
an edge). However, such trees with O(σ) gates may have a
very large distortion.

The goal of this section is to show that there are trees with
both small distortion and only few gates. More precisely, we
prove the following.

Lemma 1. For every center c, there is a tree rooted at c
spanning all the centers with distortion O(r lg σ) and with
O(σ lg σ) gates.

Proof. We fix a center c ∈ C, we run a breadth-first
search inG from c and we cut all subtrees that do not contain
any center c′ ∈ C. Let B denote this tree (spanning C).
Although the number of clusters is |C| = σ, the number of
gates may be Ω(n). For each center c′ ∈ C there is a unique
path Tc,c′ in B from c to c′.

Intuition: to reduce the number of gates, we merge some
paths at each cluster such that

• each path gets merged with another path at most
dlg2 σe times, and

• the number of gates from any cluster towards the root
is at most dlg2 σe.

The merge operation works as follows: given two paths
Tc,c′ , Tc,c′′ to be merged at a cluster Vĉ, we keep Tc,c′ and
we replace Tc,c′′ by the concatenation of three paths:

1. the first part of the path Tc,c′ before it enters Vĉ at
gate g′,

2. the second part of the path Tc,c′′ after it leaves Vĉ at
gate g′, and

3. any path of length ≤ 2r in Vĉ (not necessarily in B)
connecting g′ to g′′.

We use the best gate g′′ to leave Vĉ but we may use a sub-
optimal gate g′ to enter Vĉ since the first part of Tc,c′ is not
necessarily optimal for c′′. Using the wrong edge to enter
Vĉ adds a detour of length at most 2r + 2r, where 2r is the
diameter of Vĉ and another 2r is from the potential detour
going through g′ (using the triangle inequality).

Note that all the gates of Tc,c′′ above Vĉ are not needed
anymore (as long as they do not appear in other paths) since
Tc,c′′ has been merged with Tc,c′ .

We now describe which paths to merge. We assign a weight
to each path T , corresponding to the number of centers
reached through T . At the beginning, all the weights are
set to 1. Throughout the merge process, all the weights are
powers of two. We start at all the leafs of B (the centers)
and merge while proceeding towards the root. Whenever we
are at a cluster Vĉ where two paths T1, T2 with the same
weight 2i meet, we merge them. In this merge, path T1 is
assigned weight 2i + 2i = 2i+1 (and T2 is not considered
anymore). This merging process might continue recursively
until all the paths going out of Vĉ towards the root have
distinct weights. Consequently, at most dlg2 σe trails can
proceed towards the root, providing a bound on the number
of gates towards the root. Since each cell has at most dlg2 σe
gates towards the root, the total number of gates is at most
O(σ lg σ).

Since each path is merged at most dlg2 σe times (at most
once for each i), the length of the path has distortion at
most O(r lg σ), as claimed.

3.3 Collecting the Routing Information
By definition of the (r, σ)-cell partition, each cell con-

tains at least r/2 nodes and induces a subgraph of radius
at most r. We distribute the routing information evenly
among r/2 nodes on a walk of length r from the center (us-
ing an Euler tour of a tree spanning the r/2 closest nodes of
the center).

230

4. CONCLUSION
We prove that routing with additive stretch requires large

table sizes — even for graphs as restricted as planar graphs.
Routing thus requires a lot of information stored in large
tables even for sparse graphs. The existence of dense graphs
with large girth was not the only reason for the “hardness”
of compact routing. Our lower bounds separate spanner
problems from routing problems and give a reason why not
more additive routing schemes have been found yet.

Despite these negative results we also provide a new addi-
tive compact routing scheme that almost matches the lower
bound for planar graphs. Our scheme is also the first addi-
tive routing scheme for planar graphs (and, more generally,
graphs with linear local tree-width), for which there are com-
pact routing schemes with multiplicative stretch 1 + ε and
table sizes Õ(ε−1) bits. By our new lower bound we now

know that tables of this size imply additive stretch Ω̃(
√
εn).

Although the stretch-space tradeoff of our new scheme
almost matches the lower bound, there is also room for im-
provement: our scheme is rather complicated and the header
length is not yet satisfactory (also, headers may require up-
dates on the way). Our lower bound currently does not
incorporate headers. The upper bound almost matches the
bound on all the parameters involved. Modeling and giving
lower bounds on headers remains an open problem.

5. REFERENCES

[1] I. Abraham and C. Gavoille. Object location using
path separators. In Proceedings of the Twenty-Fifth
Annual ACM Symposium on Principles of Distributed
Computing, PODC 2006, Denver, CO, USA, July
23-26, 2006, pages 188–197, 2006.

[2] I. Abraham, C. Gavoille, A. V. Goldberg, and
D. Malkhi. Routing in networks with low doubling
dimension. In 26th IEEE International Conference on
Distributed Computing Systems (ICDCS 2006), 4-7
July 2006, Lisboa, Portugal, page 75, 2006.

[3] I. Abraham, C. Gavoille, and D. Malkhi. Compact
routing for graphs excluding a fixed minor. In DISC,
pages 442–456, 2005.

[4] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and
M. Thorup. Compact name-independent routing with
minimum stretch. ACM Transactions on Algorithms,
4(3), 2008. Announced at SPAA 2004.

[5] I. Abraham, C. Gavoille, D. Malkhi, and U. Wieder.
Strong-diameter decompositions of minor free graphs.
In SPAA 2007: Proceedings of the 19th Annual ACM
Symposium on Parallel Algorithms and Architectures,
San Diego, California, USA, June 9-11, 2007, pages
16–24, 2007.

[6] I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and
J. Soares. On sparse spanners of weighted graphs.
Discrete & Computational Geometry, 9:81–100, 1993.

[7] M. Arias, L. Cowen, K. A. Laing, R. Rajaraman, and
O. Taka. Compact routing with name independence.
SIAM J. Discrete Math., 20(3):705–726, 2006.
Announced at SPAA 2003.

[8] B. Awerbuch, A. B. Noy, N. Linial, and D. Peleg.
Improved routing strategies with succinct tables.
Journal of Algorithms, 11(3):307–341, 1990.

[9] B. Awerbuch and D. Peleg. Sparse partitions
(extended abstract). In 31st Annual Symposium on
Foundations of Computer Science, 22-24 October
1990, St. Louis, Missouri, USA, pages 503–513, 1990.

[10] S. Baswana, T. Kavitha, K. Mehlhorn, and S. Pettie.
Additive spanners and (α, β)-spanners. ACM
Transactions on Algorithms, 7(1), Nov. 2010.

[11] F. Bazzaro and C. Gavoille. Localized and compact
data-structure for comparability graphs. Discrete
Mathematics, 309(11):3465–3484, June 2009.

[12] B. Bollobás, D. Coppersmith, and M. L. Elkin. Sparse
distance preservers and additive spanners. In
Symposium on Discrete Algorithms (SODA), 2003.

[13] A. Brady and L. J. Cowen. Compact routing on power
law graphs with additive stretch. In 8th Workshop on
Algorithm Engineering and Experiments (ALENEX),
pages 119–128, Jan. 2006.

[14] A. Brady and L. J. Cowen. Exact distance labelings
yield additive-stretch compact routing schemes. In
20th International Symposium on Distributed
Computing (DISC), volume 4167 of Lecture Notes in
Computer Science, pages 339–354. Springer, Sept.
2006.

[15] C. Busch, R. LaFortune, and S. Tirthapura. Improved
sparse covers for graphs excluding a fixed minor. In
Proceedings of the Twenty-Sixth Annual ACM
Symposium on Principles of Distributed Computing,

231

PODC 2007, Portland, Oregon, USA, August 12-15,
2007, pages 61–70, 2007.

[16] W. Chen, C. Sommer, S.-H. Teng, and Y. Wang.
Compact routing in power-law graphs. In Distributed
Computing, 23rd International Symposium, DISC
2009, Elche, Spain, September 23-25, 2009.
Proceedings, pages 379–391, 2009.

[17] V. D. Chepoi, F. F. Dragan, B. Estellon, M. Habib,
and Y. Vaxès. Additive spanners and distance and
routing labeling schemes for hyperbolic graphs, 2009.
preprint.

[18] V. D. Chepoi, F. F. Dragan, and Y. Vaxès. Distance
and routing labeling schemes for non-positively curved
plane graphs. Journal of Algorithms, 61(2):60–88,
2006.

[19] E. Cohen. Fast algorithms for constructing t-spanners
and paths with stretch t. SIAM Journal on
Computing, 28(1):210–236, 1998. Announced at FOCS
1993.

[20] L. Cowen. Compact routing with minimum stretch.
Journal of Algorithms, 38(1):170–183, 2001.
Announced at SODA 1999.

[21] E. D. Demaine and M. Hajiaghayi. Equivalence of
local treewidth and linear local treewidth and its
algorithmic applications. In 14th Symposium on
Discrete Algorithms (SODA), pages 840–849.
ACM-SIAM, Jan. 2004.

[22] E. D. Demaine, M. Hajiaghayi, and
K. Kawarabayashi. Approximation algorithms via
structural results for apex-minor-free graphs. In 36th

International Colloquium on Automata, Languages
and Programming (ICALP), volume 5555 of Lecture
Notes in Computer Science, pages 316–327. Springer,
July 2009.

[23] Y. Dourisboure. Compact routing schemes for
bounded tree-length graphs and for k-chordal graphs.
In Distributed Computing, 18th International
Conference, DISC 2004, Amsterdam, The Netherlands,
October 4-7, 2004, Proceedings, pages 365–378, 2004.

[24] Y. Dourisboure and C. Gavoille. Improved compact
routing scheme for chordal graphs. In Distributed
Computing, 16th International Conference, DISC
2002, Toulouse, France, October 28-30, 2002
Proceedings, pages 252–264, 2002.

[25] F. F. Dragan and I. Lomonosov. On compact and
efficient routing in certain graph classes. Discrete
Applied Mathematics, 155(11):1458–1470, 2007.

[26] F. F. Dragan, C. Yan, and D. G. Corneil. Collective
tree spanners and routing in AT-free related graphs.
In 30th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG), volume 3353 of
Lecture Notes in Computer Science. Springer, June
2004. 68-80.

[27] M. L. Elkin and D. Peleg. (1 + ε, β)-spanner
constructions for general graphs. SIAM Journal on
Computing, 33(3):608–631, 2004.

[28] M. Enachescu, M. Wang, and A. Goel. Reducing
maximum stretch in compact routing. In INFOCOM
2008. 27th IEEE International Conference on
Computer Communications, Joint Conference of the
IEEE Computer and Communications Societies, 13-18
April 2008, Phoenix, AZ, USA, pages 336–340, 2008.

[29] D. Eppstein. Diameter and treewidth in minor-closed
graph families. Algorithmica, 27(3):275–291, 2000.

[30] U. Feige, M. T. Hajiaghayi, and J. R. Lee. Improved
approximation algorithms for minimum weight vertex
separators. SIAM J. Comput., 38(2):629–657, 2008.
Announced at STOC 2005.

[31] P. Fraigniaud and C. Gavoille. Routing in trees. In
Automata, Languages and Programming, 28th
International Colloquium, ICALP 2001, Crete, Greece,
July 8-12, 2001, Proceedings, pages 757–772, 2001.

[32] P. Fraigniaud and C. Gavoille. A space lower bound
for routing in trees. In STACS 2002, 19th Annual
Symposium on Theoretical Aspects of Computer
Science, Antibes - Juan les Pins, France, March
14-16, 2002, Proceedings, pages 65–75, 2002.

[33] P. Fraigniaud, E. Lebhar, and L. Viennot. The
inframetric model for the internet. In 27th Annual
IEEE Conference on Computer Communications
(INFOCOM), pages 1085–1093, Apr. 2008.

[34] G. N. Frederickson and R. Janardan. Designing
networks with compact routing tables. Algorithmica,
3:171–190, 1988.

[35] C. Gavoille. Routing in distributed networks: overview
and open problems. SIGACT News, 32(1):36–52, 2001.

[36] C. Gavoille and M. Gengler. Space-efficiency of routing
schemes of stretch factor three. Journal of Parallel
and Distributed Computing, 61(5):679–687, 2001.

[37] C. Gavoille and N. Hanusse. Compact routing tables
for graphs of bounded genus. In Automata, Languages
and Programming, 26th International Colloquium,
ICALP’99, Prague, Czech Republic, July 11-15, 1999,
Proceedings, pages 351–360, 1999.

[38] C. Gavoille, M. Katz, N. A. Katz, C. Paul, and
D. Peleg. Approximate distance labeling schemes. In
Algorithms - ESA 2001, 9th Annual European
Symposium, Aarhus, Denmark, August 28-31, 2001,
Proceedings, pages 476–487, 2001.

[39] C. Gavoille and D. Peleg. The compactness of interval
routing for almost all graphs. SIAM Journal on
Computing, 31(3):706–721, 2001.

[40] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz.
Distance labeling in graphs. J. Algorithms,
53(1):85–112, 2004. Announced at SODA 2001.

[41] C. Gavoille and S. Pérennès. Memory requirement for
routing in distributed networks. In 15th Annual ACM
Symposium on Principles of Distributed Computing
(PODC), pages 125–133. ACM Press, May 1996.

[42] K. Iwama and A. Kawachi. Compact routing with
stretch factor of less than three. IEICE Transactions,
88-D(1):47–52, 2005. Announced at PODC 2000.

[43] K. Iwama and M. Okita. Compact routing for flat
networks. In Distributed Computing, 17th
International Conference, DISC 2003, Sorrento, Italy,
October 1-3, 2003, Proceedings, pages 196–210, 2003.

[44] K. Kawarabayashi. Planarity allowing few error
vertices in linear time. In 50st Annual IEEE
Symposium on Foundations of Computer Science
(FOCS), pages 639–648. IEEE Computer Society
Press, Oct. 2009.

[45] G. Konjevod, A. W. Richa, and D. Xia. Optimal
scale-free compact routing schemes in networks of low

232

doubling dimension. In Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2007, New Orleans, Louisiana,
USA, January 7-9, 2007, pages 939–948, 2007.

[46] S. Kutten and D. Peleg. Fast distributed construction
of small k-dominating sets and applications. Journal
of Algorithms, 28(1):40–66, 1998. Announced at
PODC 1995.

[47] K. A. Laing. Name-independent compact routing in
trees. Inf. Process. Lett., 103(2):57–60, 2007.
Announced at PODC 2004.

[48] K. A. Laing and R. Rajaraman. A space lower bound
for name-independent compact routing in trees.
Journal of Interconnection Networks, 8(3):229–251,
2007. Announced at SPAA 2005.

[49] H.-I. Lu. Improved compact routing tables for planar
networks via orderly spanning trees. SIAM J. Discrete
Math., 23(4):2079–2092, 2010. Announced at
COCOON 2002.

[50] D. Peleg. Proximity-preserving labeling schemes. J.
Graph Theory, 33(3):167–176, 2000. Announced at
WG 1999.

[51] D. Peleg and A. A. Schäffer. Graph spanners. Journal
of Graph Theory, 13(1):99–116, 1989.

[52] D. Peleg and E. Upfal. A trade-off between space and
efficiency for routing tables. Journal of the ACM,
36(3):510–530, July 1989. Announced at STOC 1988.

[53] S. Pettie. Low distortion spanners. In Automata,
Languages and Programming, 34th International
Colloquium, ICALP 2007, Wroclaw, Poland, July
9-13, 2007, Proceedings, pages 78–89, 2007.

[54] M. Thorup. Compact oracles for reachability and
approximate distances in planar digraphs. J. ACM,
51(6):993–1024, 2004. Announced at FOCS 2001.

[55] M. Thorup and U. Zwick. Compact routing schemes.
In SPAA, pages 1–10, 2001.

[56] M. Thorup and U. Zwick. Approximate distance
oracles. Journal of the ACM, 52(1):1–24, 2005.
Announced at STOC 2001.

[57] M. Thorup and U. Zwick. Spanners and emulators
with sublinear distance errors. In Proceedings of the
Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2006, Miami, Florida,
USA, January 22-26, 2006, pages 802–809, 2006.

[58] D. P. Woodruff. Lower bounds for additive spanners,
emulators, and more. In 47th Annual IEEE
Symposium on Foundations of Computer Science
(FOCS 2006), 21-24 October 2006, Berkeley,
California, USA, Proceedings, pages 389–398, 2006.

[59] D. P. Woodruff. Additive spanners in nearly quadratic
time. In 37th International Colloquium on Automata,
Languages and Programming (ICALP), volume 6198
of Lecture Notes in Computer Science (ARCoSS),
pages 463–474. Springer, July 2010.

APPENDIX
A. PLANAR LOWER BOUND

Theorem 2.
For connected, unweighted bounded degree planar graphs

on n nodes, any labeled routing scheme using addresses of
poly-logarithmic length and routing tables of size µ bits per
node has worst-case additive stretch at least β = Ω̃(

√
n/µ).

Proof. Our family of worst-case graphs is a combination
of the construction for general graphs (Theorem 1, see also
Fig. 1) and techniques by Abraham et al. [2]. For each pair
of source si and target tj there is a shortcut in the “skew
mesh”either on the left-hand-side or on the right-hand-side.

“Skew mesh” construction(s).
We closely follow the exposition in [2, Theorem 7]. The

final graph will be unweighted. To simplify the exposition,
we begin our description with a weighted graph. Let p, q, ρ
be positive integers. Let M be a (p+ 1)× (q + 1) weighted
mesh. Each edge in row i has weight 2i and each edge in row
j has weight 2j. Due to these weights, the unique shortest
path from (i, q+1) to (p+1, j) consists of edges from column
i and row j only. The shortest path length from (i, q+ 1) to
(p + 1, j) is 2i(q + 1 − j) + 2j(p + 1 − i). Let L be a mesh
based on M with some “half-diagonals” (i, j) added as fol-
lows. First, each weighted edge is subdivided into two edges
of length 1 and 2i − 1, respectively, where the shorter edge
is assigned to the part closer to the origin (1, 1). Second, in-
dependent of all other half-diagnolas, the non-identical end-
points of these adjacent edges with weight 1 (the two newly
added nodes) can be connected by a new edge with weight 1.
If diagonal (i, j) is included, the shortest path length from
(i, q+1) to (p+1, j) is reduced by 1. Let R be the mesh built
from M containing the half-diagonals that were not added to
L. Each half-diagonal (i, j) is thus either in L or in R. The
weighted graphs L,R have Θ(pq) nodes and Θ(pq) edges. In
their unweighted form (by replacing each edge with integral
weight w by w edges), the graphs have Θ(pq(p + q)) nodes
and edges. We further subdivide each edge into ρ edges —
the resulting graphs have Θ(pq(p+ q)ρ) nodes and edges.

In the final step, we combine these skew meshes with the
construction for general graphs (proof of Theorem 1). We
add p sources si and q targets tj ; we connect each si to li,q+1

and ri,q+1 using a path with ρ edges and each tj to lp+1,j and
rp+1,j (also using a path with ρ edges7). This construction
adds another Θ((p + q)ρ) nodes and edges. Now, for any
source si and target tj , if a message is routed using the
mesh that does not contain the diagonal (i, j), the route
length increases by at least ρ.

In the construction for planar graphs, we have that the
number of nodes is n = Θ(pqmax{p, q}ρ). The lower bound
changes accordingly. For poly-logarithmic α, we have p =
o(q) and thus n = Θ(pq2ρ). We obtain (using Eq. (3))

p(2ρ+ 1)µ+ (p+ q)α ≥ pq

ρµ = Ω̃(q)

ρ = Ω̃(
√
n/µ).

7In the construction for planar graphs, a single edge would
be enough.

233

The statement follows since the additive stretch is at
least ρ.

B. CELL PARTITION

Lemma 2. Every connected graph with n ≥ r/2 nodes has
a (r, 2n/r)-cell partition computable in polynomial time.

Proof. The number of parts of any (r, σ)-partition is no
more 2n/r. Consider any spanning tree T0 of the graph and
rooted at some node u0. We greedily construct the cells of
the partition as follows. Initially, we set T := T0, and i := 1.
We iteratively select a node u ∈ T such that Tu (the subtree
of T rooted at u) has depth ≤ r and contains ≥ r/2 nodes.
If u is found, we let Vi := Tu, we update T by removing Tu,
and we repeat for the next cell Vi+1.

Clearly, all cells constructed as above satisfy the con-
straints on the radius and on the number of nodes. So,
if T is empty at the end of the loop, then we are done. If
T is not empty, we then consider the last cell created, say
Vi, and u the last node selected such that Vi = Tu, and we
update Vi := Tu ∪ T .

Note that u is well-defined. Indeed, if no node u has been
selected in T0, then every proper subtree has < r/2 nodes.
It follows that T0 has depth ≤ r (actually depth ≤ r/2).
Since n ≥ r/2, node u0 could have been selected in T0:
contradiction.

Cell Vi contains Tu, so it has at least r/2 nodes. We need
to check that the radius of Vi is ≤ r. If the depth of T of
depth is ≥ r/2, then T must contains a node w such that
Tw has depth ≤ r and contains ≥ r/2 nodes (in particular a
node at distance r/2 from a leaf of maximum depth in T).
So, the depth of T is < r/2, and so the distance from u to
u0 is ≤ r/2. It follows that the distance in T0 from u to any
node w ∈ T is ≤ r. Therefore, the radius of Vi is ≤ r, as
claimed.

C. SPARSE COVERS

Lemma 3. If G has local tree-width τ(r), then any
(2r, d, s)-sparse cover is also a (d, τ(2rs))-clustering of a
(r, σ)-cell partition.

Proof. Consider a (2r, d, s)-sparse cover {Gj} and
(d, τ(2rs))-clustering {Ci} of G for some (r, σ)-cell partition
{Vi}. It is enough to let for Ci the subgraph Gj covering
the 2r-radius ball around center ci ∈ Vi.

Clearly, each node belongs to at most d cluster Ci. The
radius of Gj is no more than 2rs, so the tree-with of Ci is
bounded by τ(2rs).

Consider any shortest path P in G between x, y ∈ Vi, and
let u ∈ P . Using a path from u to ci going thru x, we get

dG(u, ci) ≤ dP (u, x) + dG[Vi](x, ci) ≤ dG(u, x) + r

since P is a shortest path in G and G[Vi] has radius at most
r. Similarly, using a path from u to ci going thru y, we get
dG(u, ci) ≤ dG(u, y) + r. It follows that:

dG(u, ci) ≤ min {dG(u, x), dG(u, y)}+r ≤ 1

2
(dG(u, x)+dG(u, y))+r .

We observe that dG(u, x) + dG(u, y) = dG(x, y) ≤ 2r. If
follows that dG(u, ci) ≤ 2r, and thus u ∈ Ci, and so path P
is wholly included in Ci as required.

D. LOCAL ROUTING

Lemma 4. Let G be a connected (weighted) graph with n
nodes and tree-with τ . There is a routing scheme for G,
constructible in polynomial time, with O(lgn)-bit addresses

and routing tables of Õ(τ) bits such that routing from any
source s to any target t can be done along a shortest path
provided an advice A(s, t) given at s of O(lg2 n) bits.

This result is based on the classical shortest path routing
in tree-width τ graphs. However, the classical solution re-
quires addresses of Õ(τ). This is too much, since we need
to store target addresses for each gates of our trails. Items
of only Õ(1) are allowed to specify a gate.

Proof. We first compute a decomposition of G into small
pieces using balanced separators (sets of nodes separating
the graph into components of size roughly half). If G has
tree-width τ , then a decomposition with separators of size
O(τ
√

lg τ) can be done in polynomial time [30].
Each node u stores a hierarchy Hu of O(lgn) separators,

and for each node in these separators, it stores the port
number leading to it along a shortest path. In total, the
routing table for u has length O(τ

√
lg τ lg2 n) = Õ(τ) bits.

The hierarchy of O(lgn) separators is chosen such that any
two nodes u, v share at least one separator of the hierarchy,
i.e., Hu ∩Hv 6= ∅.

Consider a shortest path P from s to t. Similarly to the
cell partition (cf. Section 3), we consider each separator in
the set Hs ∪Ht as a cell. And, analogously, we call the first
node of P entering and the last one leaving a separator a
gate. (Note however that separators may not be disjoint.)
The number of gates is at most |Hs ∪Ht| = O(lgn). Be-
cause the hierarchy is shared by all the nodes of P , it follows
that a trail specifying the gates of P suffices to route, pro-
vided that every node in the graph has a routing table for
all the nodes of its hierarchy of separators. Each gate can
be specified with a O(lgn) identifier, so an advice A(s, t) of
O(lg2 n) bits allows shortest-path routing in G from s to t
along P .

234

