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A b s t r a c t  
We consider the problem of labeling the nodes of a graph in 
a way that will allow one to compute the distance between 
any two nodes directly from their labels (without using any 
additional information). Our main interest is in the minimal 
length of labels needed in different cases. We obtain upper 
bounds and (most importantly) lower bounds for several 
interesting families of graphs. In particular, our main results 
are the following: 
1. For generM graphs, the length needed is O(n). 
2. For trees, the length needed is O(log 2 n). 
3. For planar graphs, we show an upper bound of 

O(~/tnlog n) and a lower bound of ~(nl/3). 
4. For bounded degree graphs, we show a lower bound 

of n(~/~) 
The upper bounds for planar graphs and for trees 

follow by a more general upper bound for graphs with a r(n)-  
separator. The two lower bounds, however, are obtained by 
two different arguments that may be interesting in their own 
right. 

We also show some lower bounds on the length of 
the labels, even if it is only required that distances be 
approximated to a multiplicative factor s. For example, we 
show that for general graphs the required length is fl(n). 
We also consider the problem of the time complexity of the 
distance function once the labels are computed. We show 
that there are graphs with optimal labels of length 3 log n, 
such that if we use any labels with fewer than n bits per 
label, computing the distance function requires exponential 
time. A similar result is obtained for planar and bounded 
degree graphs. 

1 I n t r o d u c t i o n .  

1.1 M o t i v a t i o n .  
Most common network representations are global 

in nature, and require users to have access to data  on 
the entire network structure in order to derive useful 
information, even if the sought piece of information is 
very local, and pertains to only few nodes. 

In contrast,  the notion of adjacency labeling 
schemes, introduced by Breuer and Folkman [2, 3], in- 
volves using more localized labeling schemes for net- 
works. The idea is to label the nodes in a way that  
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will allow one to infer the adjacency of two nodes di- 
rectly from their labels, without using any additional 
information sources. 

Obviously, labels of unrestricted size can be used 
to encode any desired information. However, for such 
a labeling scheme to be useful, it should strive to use 
relatively short labels (say, of length polylogarithmic in 
n), and yet allow efficient (say, polylogarithmic time) 
information deduction. The  feasibility of such efficient 
adjacency labeling schemes was explored over a decade 
ago by Kannan,  Naor and Rudich [7]. 

Interest  in this natural  idea was recently revived by 
the observation that  in addition to adjacency labeling 
schemes, it may be possible to devise similar schemes 
for capturing distance information. This has led to the 
notion of distance labeling schemes, which are schemes 
possessing the ability to determine the distance between 
two nodes efficiently (say, in polylogarithmic t ime again) 
given their labels [9]. 

The  relevance of distance labeling schemes in the 
context of communication networks has been pointed 
out in [9], and illustrated by presenting an application 
of such labeling schemes to distr ibuted connection setup 
procedures in circuit-switched networks. I t  seems very 
plausible that  distance labeling schemes may be useful 
also in the design of "memory-free" routing schemes, 
which are routing schemes geared towards support ing 
architectures based on very fast and simple switches, 
allowed to store very little da ta  locally. Some other 
problems where distance labeling schemes may play 
an active role are bounded ("t ime-to-l ive") broadcast  
protocols and topology update  mechanisms. 

1.2 D i s t a n c e  l a b e l i n g .  
Let us define the notion of distance labeling schemes 

more precisely. Given a graph G and two nodes u and v, 
let dG(u,v) denote the distance between u and v in G. 
A node-labeling for the graph G is a non-negative integer 
function L tha t  assigns a label L(u, G) to each node u 
of G. A distance decoder is a function f responsible 
for distance computat ion;  given two labels A1,A2 (not 
knowing from which graph they are taken),  it returns 
an integer f(A1,A2)- We say tha t  (L, f )  is a distance 
labeling for G if f(L(u, G), L(v, G)) = de(u, v) for any 
pair of nodes u,v E V(G). More generally, (L, f )  is a 
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bounded treewidth ~(~BTW, n )  = O(log 2 n). 
Our main results concern establishing some lower 

bounds on the size of the labels. (Some of these bounds 
hold even if it is only required that  the distances are 
approximated to a multiplicative stretch factor s). In 
particular, we prove the following: 

1. For the family G of general graphs, we prove 
~8(~,n) _> n / 2 -  O(1) and ~8(~,n) _> n 2 / 2 -  
O(n log n), for any s < 2. 

2. For the family Bk of bipartite graphs whose smaller 
part is of size k, we prove ~(13k,n) _> k(n - 
k ) -  O(nlogn), for any s < 3, and thus that  
~°(G,n) _> n2/4 - O(nlogn), for any s < 3. 

3. For the family l)3 of graphs of maximum degree 3, 
we prove ~(7)3, n) = ~(n3/2). 

4. For the family P of bounded degree planar graphs, 
we prove ~(P, n) = fl(nd/3). (This answers nega- 
tively a question of [9], but leaves an intriguing gap 
between our upper and lower bounds.) 

5. For the family T of unweighted binary trees, we 
prove g(T, n) > log2(n) /S-  O(logn). (For the fam- 
ily 7" of binary trees with weights from the range 
[0, M - 1], we prove g(7", n) _> log(n)log(M)/2 - 
O(log M).) 

Finally, we consider the time complexity of the 
distance function once the labels are computed. In the 
full paper (see [4]) we show that  there are graphs with 
optimal labels of size 3 logn such that,  if one uses labels 
with fewer than n bits, it requires an exponential time 
to compute the distance function. A similar result is 
obtained for planar graphs, and bounded degree graphs. 

2 U p p e r  B ounds .  

2.1 G e n e r a l  G r a p h s .  
Consider the family G of all graphs. A trivial 

scheme can be based on labeling each node with its 
vector of distances to all other nodes, establishing 
~(G,n) = O(nlogn) with O(1) time to decode the 
distance. Let us now show that t(G,n) = O(n) with 
O(loglogn) time to decode the distance. We start 
with some preliminary claims regarding dominating 
sets. Consider a graph G and let p be a positive integer. 
A p-dominating set for G is a set S C V(G) satisfying 
that for every node v E V(G) there is a node w E S at 
distance at most p from it. It is well-known (cf. [11]) 
that  for every n-node connected graph G and integer 
p > 1, there exists a p-dominating set of cardinality at 

most max{l,  [p-~-lJ }. 

A collection S = {(Si,pi)}iel, I = {0 ,1 , . . . , k} ,  
such that Si is a pi-dominating set for G and Sk = 
V(G), is called a dominating collection for G. The above 

discussion implies the following trivial fact, needed for 
later use. (Throughout this extended abstract, some 
proofs are omitted or deferred to the full paper [4].) 

FACT 2.1. For every connected n-node graph G and 
k = [log logn],  there exists a dominating collection 
S = {(S~,p,)},el, I = {0 , . . . , k}  for G, such that 
Pi = 2 k -  i and ISi[ < 2f-~ for every i 6 I. 

Let S be a p-dominating set for G. For every 
x 6 V(G), let doms(x) denote the dominator o f x  in S, 
namely, an arbitrary node x' 6 S minimizing da(x, x'). 

LEMMA 2.1. For every two nodes x ,y  6 V(G), 
1. da(doms(x), doms(y)) - 2p < da(x, y) 

< da(doms(x), doms(y)) + 2p. 
2. Knowing da(doms(x),doms(y)) and 

da(x, y) mod (dp), one can compute da(x,y). 

Our main lemma, based on a recursive construction 
using a dominating collection, is the following. 

LEMMA 2.2. There exists a distance labeling scheme 
(L, f)  such that for any n-node graph G, and any dom- 
inating collection S = {(Si,pi)}~e{0 ..... k}, ~(L,I)(G) < 

k--1 
~i=0  ISi+i I log(dpi) + IS0] log n + O(k log n). Moreover, 
f can be computed in time O(k) and each label can be 
computed in time O(E~= o IS, I). 

P roo f .  We define a sequence of functions {]i}iel 
and of labelings {Li}iEl such that  for u,v E Si, 
f i(Li(u,G),Li(v,G)) = do(u,v). The pair (L i, fi) 
is then said to be i-valid. We denote by t(i) the 
maximum time needed to compute fi,  and let a(i) = 
max,  esl IL i (u ,  G)I. 

The proof is by induction. Starting with i = 0 we 
define an ordering of the nodes of So. The label L°(u, G) 
of a node u in S0 is made of two fields : 

[a] its rank order(u) in the ordering of So; 

[b] the list {da(u, v)}veSo, given in the ordering chosen. 

The distance decoder fo is as follows: Given two 
labels L°(x,G),L°(y,G),  we use field [a] of L°(y,G) 
in order to find order(y). Then we use field [b] of 
L°(x, G), containing the list {dv(x,v)}~eso, select the 
order(y)'th item in this list and output this result. 
Clearly, the pair (L°, f o) is 0-valid, Also note that 
a(0) = [S011ogn + logn, and the operation requires 
constant time 1, i.e., t(0) = O(1). 

Now we proceed inductively, assuming that  (L i, f i)  
is i-valid and defining L i+1. For every node u E Si+l, 
we compute its dominator in Si, u'  -- doms, (u), and we 

l C o n s t a n t  m e a n i n g  i n v o l v i n g  o p e r a t i o n s  o n  log  n b i t  w o r d s  o n  
a RAM. 
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also choose some arbitrary ordering of the elements of 
Si+l. Then we assign to u a label L ~+1 (u, G) composed 
of the following fields: 

[a] the label Li(u ', G) assigned to u' (_< a(i) bits). 
[b] the rank order(u) of u in Si+l (O(logn) bits); 
[c] the list of values {da(u,v) mod 4pi}~es,+x, given 

according to the ordering chosen for Si+l 
(ISi+ll log(4pl) bits). 

To compute da(x,y) for x,y  E Si+l from the labels 
L i+l(x, G), L i+1 (y, G) of x and y, we proceed as follows 
defining fi+l:  

1. For x' = doms,(x) and y' = doms,(y) ,  obtain 
Li(x ', G) and Li(y ', G) from field [a] of Li+l(x, G) 
and L i+1 (y, G) respectively (constant time). 

2. Determine dG(x', y') by computing 
fi(L~(x ', G), Li(y ', G)) (time t(i)). 

3. Obtain the rank order(y) of y in Si+l from field [b] 
of Li+l(y,  G) (constant time). 

4. Obtain dG(x,y) mod (4pi), which is the 
order(y)'th entry in field [c] of Li+l(x,G) 
(constant time as the list is sorted). 

5. Compute dc(x,y)  as in Lemma 2.1, relying on the 
fact that Si is a pi-dominating set (constant time). 

It is easy to verify that (L i+ l , f i+ l )  is (i + 1)- 
valid. Concerning "the resulting label sizes and 
computation times, we have t(i + 1) _< t(i) + O(1) 
and a(i + 1) _< a(i) + ISi+lllog(4pi) + O(logn).  As 
Sk = V(G), these recurrences imply the lemma. | 

THEOREM 2.1. For the class G of general graphs, 
~(G,n) < 9n + O(lognloglogn). Moreover, the dis- 
tance can be computed in (sublinear) time O(loglogn)  
and the set off labels can be computed in time O(n2). 

P r o o f .  The theorem is proved by first constructing 
a dominating collection S = {(S0,P0) , . . . , (Sk,pk)} ,  
for k = [ loglogn],  as in Fact 2.1, and then applying 
Lemma 2.2. 

Let us now calculate the size of the resulting labels. 
k--1 

e(L,s)(G) _< ~ [Si+xllog(4p,)+lS01 logn+O(klogn)  . 
i = 0  

Recalling that pi = 2 k-i, IS~l _< n/2 k-i and k = 
[log logn],  we get that the second term is bounded 
by i ~ "  log n = n, the third term is bounded by 
O(log n log log n), and the first term is bounded by 

k- -1  k-l  k _ i  + 2 
2a-( i+l)n • log(4- 2 k-i) _< n ~  2k_(i+1) 

i = 0  i = 0  

oo i + 3  
< n Z 2 ~ < 8n. 

i = 0  

Hence overall, ~(L,I) (G) < 9n + O(log n log log n). 
Considering the time complexity, in order to obtain 

the labeling one needs to compute the dominating col- 
lection and then some dominating sets with geometric 
sizes. This takes at most O(n 2) steps. 

The time analysis for computing dc(x,y)  from 
the labels L(x, G),L(y, G) using the distance decoder 
f (L(x ,G) ,L(y ,G)) ,  follows directly from Lemma 2.2, 
and the fact that here k = [log log n]. | 

2.2 D i s t a n c e  L a b e l i n g  a n d  S e p a r a t o r s .  
It is known [7] that  planar graphs support a 4 log n 

bit adjacency labeling scheme. In contrast, we show 
later on (in Section 3.3) that one cannot solve the 
general distance labeling problem for planar graphs 
using labels shorter than f~(n 1/3) bits. Conversely, 
we now show that using the recursive O(x/n)-separator 
property, the problem can be solved using O(~/~logn)  
bit labels. 

More generally, in this section we deal with recur- 
sive r(n)-separators. For an n-node graph G, a subset of 
nodes S is a separator if its deletion splits G into (zero 
or more) connected components of size at most an, for 
a given constant a < 1. (For concreteness, we hereafter 
assume a = 2/3 . )  

Given a class G of graphs and an integer function 
r(¢), we say that G has a recursive r(n)-separator (or 
simply r(n)-separator) if for every connected n-node 
graph G E ~ there exists a separator S of size at most 
r(n) such that every connected component of the graph 
G \ S, obtained from G by removing all the nodes of 
S, belongs to ~ (thus in particular it has a separator of 
size at most r(an)). 

It is well-known that planar graphs have an O(x/n )- 
separator. More generally, graphs of genus ~ have 
an O(,vf~)-separator  [5], and graphs with Kk mi- 
nors excluded have an O(k,~/nTffffn)-separator [12] or 
a O ( v / ~ ) - s e p a r a t o r  [1], and are conjectured to have 
an O(kv/n)-separator.  Trees, series-parallel graphs, and 
bounded treewidth graphs, all have an O(1)-separator. 

Let R(n) = ~,<_logl .bnr((~)i .n) .  Note that for 

monotone r(n), R(u) _< r(n)log n, and R(n) = O(r(n)) 
whenever r(n) = n ~ for constant e > 0. The following 
is a generalization of the result of [9] for trees. 

THEOREM 2.2. For a family G of graphs with a r(n)- 
separator, g(G,n) < O(R(n) logn + log 2 n). Moreover 
the distance can be computed in O(logn) time. 

COROLLARY 2.1. 1. For the family GP of planar 
graphs, g(Gp,n) _< O(x/~logn) .  
2. For the family ~BTW of graphs with bounded 
treewidth, g(~BTW,n) < O(log 2 n). 
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3 L o w e r  B o u n d s .  

For any family of 2 k labeled graphs on the set of 
nodes Vn = { 1 , . . . , n } ,  and any distance labeling 
scheme (L, f) ,  some graph G must satisfy g(L,I)(G)+ 
O(nlogn) > k, since for every graph G, the tuple of 
labels (L(1, G ) , . . . , L ( n ,  G)) suffices to reconstruct all 
the edges of the graph, as it suffices to test for every pair 
of nodes if their distance is 1 or not. (Clearly, delimiting 
the fields of the tuple costs at most O(nlogn).) In 
particular, there exists some n-node graph G with 

g(L,f)(G) _> n/2 - O(logn),  since there are 2(~) graphs 
labeled on Vn. 

In this section we present lower bounds for the 
following graph classes: (1) general graphs with small 
stretched distance labeling; (2) graphs with a r(n)-  
separator and small stretched distance labeling; (3) 
sparse and bounded degree graphs; (4) planar graphs; 
(5) trees. 

The first four lower bounds use the same technique, 
which is formalized in the next subsection. 

3 .1  T h e  M a i n  L o w e r - B o u n d  T h e o r e m .  
Let A C_ V~ = { 1 , . . . , n } ,  and let k > 1 be a real 

number (k can be a function of n). Consider a family 
.T of labeled graphs on the set of nodes V~. Two graphs 
G, H E 9 r are said to exhibit a k-gap over A if there 
exist x,y  E A such that  da(x,y) > k .  dH(x,y) or 
dg(x, y) > k.da(x, y). The graph family .T is an (A, k)- 
family if every two distinct graphs G, H E ~" exhibit a 
k-gap over A. The family .T is an A-family if there 
exists a real k > 1 such that .T is a ( A, k)-family. For 
such a family, we define 

~(L,i}(A,.~) = max{L~m(A,G) I G e .T}, 

g(A,.T) = min{g(Lj)(A,.T) I (L, f )  is a 

distance labeling scheme for .T}, 

and similarly for s-stretched distance labeling schemes. 

THEOREM 3.1. Let iF be an (A,k)-family, for k > 1. 
Then for any stretch s < k, 
Z. gs(.r) > ~. log I~l; 

2. g '(A,.F) > log I.F I - IAI loglogl .FI .  

P r o o f .  Let ( L , f )  be any is-stretched) distance la- 
beling scheme on .T with s < k. Assume that A = 
{ a l , . . . , a ~ } .  For every graph G E .T, let L(G) = 
(L(al ,G), . . . ,L(a~,G)) ,  and let £ = {L(G) I G E J:}. 
First, let us show that  for every two distinct G, H E .T, 
L(G) ¢ L(H), i.e., ]£] = ].T I. 

Assume, by way of contradiction, that L(G) = 
L(H) for some G, H e .T, namely, L(a,, G) = L(ai, H) 
for every a~ E A. By definition of .T, there exists 
a pair x,y  e A such that  da(x,y) _> k .  dg(x,y)  or 

dtt(x,y) _> k • da(x,y). Without  loss of generality 
assume the former. Hence as s < k, we have 

(3.1) da(x,y) > s . d g ( x , y ) .  

Since (L , f )  is s-stretched, we have da(x,y) < 
f (L(x ,G) ,L(y ,G))  and f (L (x ,H) ,L (y ,H) )  < s • 
dH(x,y). However, since L(a~,G) = L(ai,H) for ev- 
ery ai ~ A, we have in particular that  

f (L(x ,  G), L(y, G)) = f (L(x ,  g ) ,  L(y, H)) . 
Hence da(x,  y) < s.dH(x, y), contradicting Ineq. (3.1). 

Now we simply evaluate the cardinality of £ accord- 
ing to a given restriction on the label length. For the 
first claim of the theorem, let t8(.T) = I. Then there 
exists an s-stretched distance labeling scheme (L, f )  for 
.T, such that  L~a,(G ) < l for every G E .T. This im- 
plies that  £ C [0, 21 - 1] '~ and hence [.T I = I£[ _< 2 l~. 
The claim now follows as log I.T] < la. 

A slightly more complex argument implies the sec- 
ond claim as well. Suppose that  there exists an s- 
stretched distance labeling scheme (L, f )  for .T, s.t. 
Lg~,m(A,G ) < I for every G E .7". This implies that 

If a + l > ogI .T [ t en > log[.T[ - a _> 
l o g ] . T ] -  a log log ].T] , and the claim follows. So 
suppose a + l < log [.T I. Then Ineq. (3.2) implies that 
I.TI < (log I.T[) a .  2 t, hence log [.T[ < a log log  [.T I + I. I 

Let us remark that  the theorem applies, in particu- 
lar, to exact (nonapproximate) schemes. This requires 
us to interpret such a scheme over a class of n-node 
graphs ~n as an s-stretched scheme with s = 1, and 
take k = 1 + 1/n. 

In some cases it is possible to amplify the lower 
bound of the above theorem, by enlarging the graph 
in a suitable way. A (B, r ) -graph  is a graph T in 
which B = {ba,...,bf~} is a subset of nodes, and r 
a particular node of T, r ~ B. Given an A-family 
.T, A = { a l , . . .  ,as},  and a (B, r ) -graph T, we create 
for each G E .T a graph fliT(G) as follows. To each 
1 < i < a we associate a distinct copy Ti of T, which 
is a (Bi,r~)-graph, with B i = {b~,... ,  b~}. We then set 

• T(G) ---- G t3 Uia=l Ti, where the node r ~ is identified 
with the node ai in G for every 1 < i < a. Denote by 
.T o T the family of graphs {ff2T(G) [ G E jc-}. 

We note that  all the graphs in .T o T share the same 
set of nodes, V~ t3 [-J~l V(Ti). 

LEMMA 3.1. Let .T be an A-family for A = 
{aa,. . . ,aa},  let T be a (B,r)-graph for B = 
{bl, . . . ,b~},  let 6 = maxj{dT(bj,r)}, and let (L, f )  be 
any distance labeling scheme on the family ~ o T. Then 

g(L,l)(.To T) _> f l -g(A, .T)  - a/3 [log(/f + 1)] . 
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P r o o f .  Parti t ion Z = lJi~l Bi into ~3 disjoint sets 
At = {b~,.. .  ,b~}, 1 < t _< ~, each of cardinality a. 

For every 1 <_ t <_ ~, define a distance labeling 
scheme (L *, ]*)  on .Y" as follows. For G E J:, u E V(G), 

~_~_ f (L(u,~T(G)),O), i f u C A  
Lt(u'uJ.  - ~ (L(b~,q}T(a)),dT(bt,r)), i f u  = a i e  A 

and f ( (Al ,dl) , (A2,d2))  = f(Ai,X2) - (dl + d2). 
Clearly, f*  returns the correct distance between any 
two nodes of V(G) \ A (as the fields dl and d2 
are null, and V(G) C V(~T(G))). Note that  each 
ai E A is a cut-vertex in @T(G). Thus, dv(ai,u) = 
d¢T(G)(b ~, u)-d¢T(v)(b~, ai), for every u E V(G). More- 
over, d~r(G)(b~,ai) = dT(bt,r). So, f* is a distance 
decoder for L t. Note that  f* does not depend on t. 

For every t and i and every G, [Lt(a~,G)l < 
[L(b~, ~T(G)) t + [log(~i + 1)1 , because the second field 
of L ~ labels has ~i + 1 possible values (namely, the code 
0, and dT(b~, r) • [1, ~f]). 

Define a distance labeling scheme (L*, f*)  on .F 
as follows. For every G • .~', we have Lt~,~(A, G) = 
~i~1 [L~(a~,G)I . Define t(G) to be the index t that  
minimize L~,m(A ,G). Now define L*(u,G) for every 
G • Y and u • V(G) by L*(u, G) = L~(G)(u, G). Since 
ff* is a distance decoder for every L ~, we conclude that  
]* is a distance decoder for L*. 

Since (L*, f*)  is a distance labeling scheme on .~ 
there exists Go • ~ such that L:~m(A, Go) > ~(A,~) 
and hence for every 1 < t < ~, we have Lt~um(A, Go) 
£(A, .F). Denote Ho = ~T(Go). It follows that  for every 
1 < t </~, ~ i a l  (]L(bLHo)I + [log(if + 1)1) _> ~(A,.~). 
Since ~ia=ilL(b~,Ho)I = Lsum(A~,Ho), the above 
inequality can be rewritten as L ,~ (A~ ,Ho)  _> 
~(A,.T') - c ~  [log(~ + 1)1. Since the sets A~ are pair- 
wise disjoint, L~,m(Z, Ho) = ~ = ~  L~m(A~,Ho) _> 
~3- ~(A, .T') - c~fl [log(~ + 1)1. We complete the proof by 
noting that ~(L,f)(~ y o T) > Lsum(Z, Ho). I 

Hence we can hope to amplify the lower bound of 
Theorem 3.1 by a multiplicative factor of ~ = [B[. The 
family .T" o T contains graphs of size larger than n but 
smaller than n +a[V(T)I. This remains O(n) for (B, r)- 
graphs T with [V(T)[ = O(n/a) and then we can also 
have [B[ = O(n/a).  Thus, for suitable families ~ ,  ~, 
and a graph T so that  .T C G, and .F o T C G, we can 
have 

~(G,n) > ~ ( n . g ( G , n ) ) - O ( n l o g n ) .  
Lemma 3.1 is used to prove Theorem 3.4 and Theo- 

rem 3.5. 

3.2 A p p l i c a t i o n s  o f  t h e  Lower  B o u n d .  
Our first application of the main lower-bound the- 

orem is the following. 

THEOREM 3.2. Let G be the family of general graphs, 
and let s < 2. Then £S(G,n) > ( n - 1 ) / 2 - o ( 1 )  and 
~s(G,n) > n2/2 - O(nlogn).  

P r o o f .  Let .T be the family of all labeled graphs 
of diameter 2 on Vn = { 1 , . . . , n } .  .T is a (V~,2)- 
family, because for any two distinct graphs G, H of 
there always exists a pair (x, y) of Vn for which either 
dG(x,y) = 1 and dH(x,y) = 2, or dG(x,y) = 2 and 
dH(x,y) = 1. 

To apply the main lower bound theorem we need 
to estimate [.T I. Let G be the set of all (connected 
or disconnected) graphs on V,. Clearly .~ C G and 

[GI = 2(~). Let us bound the probability that  a graph 
G taken uniformly at random from G is in .~. One 
possible way for taking a graph G randomly and 
uniformly from G consists of setting all the possible 
edges with probability p = 1/2. Note that  G ¢ .T" if and 
only if there is a pair x, y E V~ such that  x and y are 
not adjacent, and such that  there is no z E Vn \ {x, y} 
adjacent to both x and y. This occurs, for a given pair 
{x, y}, with probability p(1 - p2)n--2 = 1/2" (3/4) n-2. 
Hence, it occurs for at least one pair with probability of 
at most ( ~ ) - 1 / 2 .  (3/4) n-2 < 1/2 for every sufficiently 
large n. Therefore, logi.F I > n(n - 1 ) / 2 -  1. Both 
claims of the theorem now follow by Theorem 3.1 
(noting, for the second claim, that  also [3cl < 2 ~2 and 
hence loglog [.~'[ < 21ogn). 1 

We next consider graphs with r(n)-separator.  Let 
Bk denote the set of biparti te graphs whose smaller part  
is of size k. Clearly, 13k has a k-separator. Denote by 
Bk,n the subcollection of graphs of Bk on the set of nodes 
Vn. We next bound the total label length required by 
distance labeling schemes for Bk,n. 

For every biparti te graph in Bk,n, let X and Y 
denote the two parts of nodes, with IX[ = k, and 
IY[ = n - k. Consider the subset of graphs 9 c C Bk,n 
whose diameter is bounded by 3. Note that .T is a 
(Vn, 3)-family, because for every two distinct G, H E .T, 
there exists a pair (x, y) E X x Y such that  dG(x, y) = 1 
and dH(x,y) ¢ 1 (or the reverse). Since H is of 
diameter 3, the fact that  there is no edge between x 
and y necessitates dH(x, y) : 3. 

LEMMA 3.2. For suffciently large n and for 21ogn < 
k < n/2,  [.T[ > 2 k(n-k)-l. 

THEOREM 3.3. Let s < 3. Then for every sufficiently 
large n and]or each k such that 21ogn < k < n/2, 

~s(Bk,~) > k(n - k) - 2 n lo g n  . 

Since Bk has a k-separator, we have that  in general, 
graphs with an n~-separator for constant e < 1 have 
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distance labeling scheme for the graph family G if it is 
a distance labeling for every graph G E G. 

It is important to note that the function f ,  re- 
sponsible of the distance computation, is independent 
of G or of its cardinality IV(G)I. Thus f can be seen 
as a method used to compute the distances in a dis- 
tributed fashion, given any two labels and knowing that 
the graph belongs to some specific family. In particu- 
lar, it must be possible to define f by a constant size 
algorithm. In contrast, the labels contain some informa- 
tion that can be pre-computed by considering the whole 
graph structure. 

Clearly, a distance labeling scheme always exists for 
any graph family if one allows arbitrarily large labels. In 
this paper we are interested in the existence of distance 
labeling schemes which use short labels. Let IL(u, G)I 
denote the length of the binary label L(u, G) associated 
with u, and denote Lm~,~(G) = max~,ey(o ) IL(u,G)I. 
Given a finite graph family G and a distance labeling 
scheme (L, f),  denote 

e(L,I)(G) = max{Lma,(G) l G E Q}, 

l(~) = min{g(L,i)(~) l ( i , ] )  is a 

distance labeling scheme for ~}. 

For an arbitrary graph family G, let Go denote the 
subfamily containing the n-node graphs of G, and define 

• t(L,f)(~,n) = ~(L, f ) (Gn)  and ~(G,n) = £(G,). 
Instead of considering the maximal label length one 

can prefer the total label length. For every node subset 
W C_ V(G), let L,~m(W,G) = ~ewIL(u,G)l, and 
Ls~,m(G) = Ls~,~(V(G), G). Given a distance labeling 
scheme (L, f),  denote 

~(L,I)(G) = max{Laura(G) t G E G), 

~(~) = min(~(L,i)(G) l (L,f)  is a 

distance labeling scheme for G}. 

and let ~(L,i)(G,n) ---- ~(L,/)(Gn) and ~(6, n) = ~(Gn). 
We are also interested in the efficiency of the distance 
computation. In a linear distance labeling, the worst- 
case time complexity is proportional to the size of the 
inputs, i.e., to the length of the longest label. 

Distance lahelings can also be defined up to mul- 
tiplicative stretch factor s. That is, given a distance 
decoder f ,  a node-laheling L and a real s _> 1, we say 
that (L, f) is an s-stretched distance labeling for G if for 
any pair of nodes u, v of G, 

do(u,v) < ](L(u,G),L(v,G)) < s . d o ( u , v ) .  

All the above parameters are extended to this case by 
adding a superscript s. 

The above definitions are for the general case of 
weighted graphs. Below, we will work mainly with 
classes of unweighted graphs (unless said otherwise). 

1.3 Re la ted  work. 
Many online problems on static graph collections 

can be solved efficiently using preprocessing and auxil- 
iary space. However, here we insist on more localized 
processing, namely, answering online queries with lo- 
cal information (or labels) associated to the nodes in- 
volved in the query alone. Adjacency labeling schemes 
are studied in [7]. Specifically, it is shown how to 
construct O(logn)-bit adjacency labeling schemes for 
a number of graph families, including trees, bounded 
arboricity graphs (including, in particular, graphs of 
bounded degree and graphs of bounded genus, e.g., pla- 
nar graphs), various intersection-based graphs such as 
interval graphs, and c-decomposahle graphs. It is also 
easy to encode the ancestry (or descendance) relation in 
a tree using interval-based schemes (cf. [13]). 

Concerning distance query on general n-node 
graphs, Graham and Pollak proposed to label each 
node by a word of qn symbols taken in {0, 1, *} such 
that the distance between two nodes corresponds to 
the Hamming distance of the two words (the distance 
between * and any symbol is null) [6]. Referenced as 
the Squashed Cube Conjecture, Winkler has proved that 
qn < n - 1 for every n, implying a scheme with labels 
of n log2(3 ) ,~ 1.58n bits, although with a prohibitive 
O(n) query time to decode the distance [14]. 

More recently, a distance labeling scheme for 
weighted trees with weights from the range [0, M - 1] 
using O(log 2 n + log n log M) bit labels has been given 
in [9], and O(log 2 n) distance labeling schemes for in- 
terval graphs and permutation graphs were presented 
in [8], all with O(logn) query time. Queries concern- 
ing the least-common ancestor of two nodes, and re- 
lated functions, can be answered with labels of length 
O(log 2 n) bits with O(log n) query time [10]. 

1.4 Our  cont r ibut ion .  
We first present some upper bounds. For the class 

of all graphs, Winkler showed in [14] that ~(G, n) _~ 
1.58n, however with a O(n) time to decode the distance. 
We show that n-node graphs can be labeled with labels 
of size 9n bits so that in time O(log log n) the distance 
between two nodes can be computed given their labels 
only. This result is complemented by the fact that the 
class G of all n-node graphs requires labels of size fi(n). 
Hence ~(G, n) = O(n). 

We also show that classes of graphs with (recursive) 
r(n)-separators support distance labeling scheme with 
labels of size O(r(n) log n+log 2 n) such that the distance 
can be computed in time O(log n). This general upper 
bound implies several results. For instance, it implies 
that for the family GP of planar graphs ~(Gp,n) = 
O(v~logn) ,  and for the family GBTW of graphs with 
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distance labeling with labels of size l-~(n~). The extremal 
case k = n/2 yields an alternative proof for the ~(n) 
lower bound for general graphs, which in fact holds 
for larger stretch values, albeit with a slightly weaker 
constant in the leading term. 

COROLLARY 3.1. Let ~ be the family of general graphs, 
and let s < 3. Then for every su~ciently large n, 
~(G,n)  > n2/4 - 2nlogn.  

Our next question is whether there exists a distance 
labeling scheme with short labels, say of length O(n ~) 
for constant e < 1, for the class of n-node graphs 
with O(n) edges. The following theorem answers this 
question negatively for every e < 1/2. Let T)3 be the 
class of graphs of maximum degree three. 

THEOREM 3.4. For every su~eiently large n, 
~(~3, n) = ~(n3/2). 

Proof .  Let X = {Xl,...,Xk} and Y = {Y l , . . . ,Ym}  
where k + m  = n. For an integer t _> 1, let T(t) be 
a complete binary tree of height [log t 1. We assume 
that the first m leaves of the tree T(m) are numbered 1 
through m. We construct a family 7-/of graphs defined 
as follows. With each xi E X we associate a copy Tx. of 
T(m). Similarly, with each yj E Y we associate a copy 
Tu~ of T(k). The union of these n trees forms the set of 
nodes and a part of the edge-set of all the graphs of 7-/. 
In addition, for every (xi,yj) E X × Y, a graph H E 
may or may not contain a cross edge ei,j connecting the 
j t h  leaf of Tx~ with the i th leaf of Tyj. Thus the class 
consists of the 2 km graphs generated by considering all 
possible such choices. Alternatively, 7-/can be viewed 
as the class of all bipartite graphs with parts X and 
Y, in which every node xi E X (respectively, yj E T) 
is replaced by a complete binary tree of height [log m I 
(resp., [logkl). (See Fig. 1.) 

I 2 3 4 5 6 

Figure 1: A possible graph H for k = 3 and m = 6. 

The number of leaves in a complete binary tree of 
height h is 2 h,  and the number of nodes is 2 T M  --  1. So ,  

the number of nodes in each graph of ~ is 
N = k . 2  r l ° g m l + l - k + m - 2  r l ° g k l + l - m  

< 4 k m + 4 m k - n  < 8 k m .  

Moreover, the maximum degree is three (as in par- 
ticular, there is at most one cross edge touching any 
leaf). Let VN = { 1 , . . . , N }  and A = X U Y .  For 
every a E A, the root of Ta is labeled a. By the 
above definition, every two graphs G, H E 7-/differ on 
some cross edge e~j, and subsequently, exhibit a gap, as 
dG(x~,yj) ~ dH(Xi,yj). Hence 7-/ is an A-family. The 
number of graphs in 7-/equals 2 kin, the number of bi- 
partite graphs defined on X O Y, and can be bounded 
from above by [?/[ < 2 n2. Hence by part 2 of Theo- 
rem 3.1, any distance labeling scheme (L, f)  on 7-/ re- 
quires ~(A, 7-/) _> k m -  2n log n. 

Consider now a complete binary tree T of height hT 
with a node r of degree one attached to its root. We 
choose hT such that  its set of leaves, B, has cardinality 
at least k m / n  and less than 2km/n.  T is a (B, r)-graph, 
and 7-/o T C/ )3 .  Thus, by By Lemma 3.1, the family 
7-/o T satisfies ~(~-/o T) > IBI • ~(A,7-/) - [A[. [B[. 
[log(hT + 2)1. 

Let W denote the set of nodes for every graph in 
"HOT. Then ]W I _< ]VN[ +]AI-IV(T)] < 12km, because 
each copy of tree T has at most 2km/n  leaves, thus 
at most 4km/n  nodes. Moreover, [B] < 2km/n  and 
[log(hT + 2)1 < 2 log log(kin/n). It follows that  

~(7-l o T) > ] B l ( k m -  2nlogn  - 2nloglog(km/n)) 

_> (kin)2 2km (Iogn + loglog(km/n))  . 
n 

Choosing k = n/2,  we obtain ~(7-/oT) > n 3 / 1 6 - n  2 logn 
and IWI < 3n 2, i.e., ~(7-/o T) = ~ ( [ W I 3 / 2 ) .  I 

3.3 A Lower Bound  for Planar Graphs.  
In this subsection we provide a lower bound for 

planar graphs. Note that  a graph with a O(vfn )- 
separator is not necessarily planar. In particular, 
almost all the subgraphs of the complete bipartite graph 
Kv,~,n_v, ~ are not planar (because they contain K3,3), 
and yet they have a vfn-separator. So the lower bound 
of Theorem 3.3 cannot be applied. 

THEOREM 3.5. There exists a graph family 7 ~ consist- 
ing of bounded degree planar graphs, such that for sui~i- 
ciently large n, ~(P, n) = ~(n4/a). 

P roof .  We first construct a class G of planar n-node 
graphs of bounded degree, which is an S-family for 
a node set S of size [S[ = 0(nl/3) ,  and such that  
log [G[ = 12(n2/3). Since the size of any family of n- 
node bounded-degree graphs is at most 2 °(~l°gn), it 
follows by part 2 of Theorem 3.1 that  every distance 
labeling scheme on G requires ~(S, ~) > f~(n2/3). Then 
it remains to consider the family P = G o T, where 
T is a complete binary tree with O(n 2/3) leaves. P is 
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composed of planar O(n)-node bounded degree graphs, 
and by Lemma 3.1 every distance labeling on 7' requires 
~(~ o T) : ~(n4/3). 
D e s c r i p t i o n  of  an S - f a m i l y  G. Consider the upper- 
left half of a grid of k columns and k rows (see Fig. 2). 
The node with coordinates ( i , j ) ,  i.e., residing on the 
i th column and j th  row of the grid, is named zi,j. The 
set of nodes we consider in the grid is Z = {zi,j I 2 _< 
i + j  <_ k +  1} (drawn in gray in Fig. 2). At every 
node zi,1, for 1 < i < k, we attach a node ui of degree 
one, and at every node zk+l-3,~, for 1 < j <_ k, we 
attach a node vj of degree one. To lighten notations 
ui is also named zi,o and vj named zk+2-jj. For every 
z~,j E Z, the edge (zid,zi j_l)  is subdivided into two 
edges (zi,j, xi,j) and (xi,j, zi,j-1), adding the node xi d. 
Moreover the edge (zi,j, zi+l,j) is subdivided into the 
edges (zid,y~,j) and (Yid, zi+l,j), adding the node yi,j. 
Finally we add the edge ei,j = ( x i , j , Y i , j )  for all i , j .  For 
simplification, we consider the graph to be weighted, 
and assign an integer weight w(e) > 1 to each edge e. 
Specifically, let w(e) = 1 for every edge e, except for the 
edges (xi,j, zi,j-1) which are assigned the weight 2i - 1, 
and the edges (yi,j, z~+l d) which are assigned the weight 
2 j - 1 ,  for a l l i , j  such that 2 _< i + j  < k + l .  The 
resulting labeled graph is denoted by Gk. It is planar 
and of degree bounded by 4. It is depicted on Fig. 2 
with k = 6. 

ul ui Uk 

[ [ I / I /o -  ' 

Figure 2: The graph Gk defining G. 

It should be clear that the graph Gk can be trans- 
formed back into an unweighted graph, by replacing 
each edge e of weight w(e) with a simple path of w(e) 
edges. Since an edge with weight w contributes w - 1 
new nodes, the total number of nodes in the unweighted 
version of Gk is 

n = E (2i + 2j + O(1)) + O(k 2) 
2_<i+j~k+l 

= 2 .k3+O(k2 ).  
3 

For convenience, we henceforth discuss the graph in its 
weighted form. 

Let S = {Ul, . . . ,Uk,Vl , . . . ,Vk}.  The family G is 
composed of all graphs Gk in which we decide to remove 
or not each edge e i j .  The number of edges eid in Gk 
is [Z[ = k(k + 1)/2, thus IGI = 2k(k+l)/2" We need to 
show that G is an S-family. Towards proving this, we 
establish the following two lemmas. 

LEMMA 3.3. Any shortest path in Gk from ui to any of 
the nodes (xid,Yid, z i j} ,  for every j ,  must go through 
the nodes of the ith column only. 

The next lemma states that the shortest path in Gk 
from ui to vj is precisely the one highlighted in Fig. 2. 

LEMMA 3.4. For any i , j ,  2 _< i + j < k + 1, every 
shortest path in Gk from ui to vj goes through the 
sequence of nodes Xi,1, Zi,1, Xi,2, Z i , 2 , . . . ,  Zi,j--l~ Xi,j~ 

Yi , j ,  Z iT l , j ,  Y i + l , j , . . . ~  ZkTl-- i , j ,  Y k + l - i , j .  

It follows from Lemma 3.4 that any shortest path 
from ui to vj must use the edge ei,j, so removing this 
edge from the graph increases the distance by at least 
1. Moreover, this shortest path does not go through 
any other edge ei,,j,, showing that  da(ui,vj) depends 
only on whether eid exists or not. So, given two 
graphs G, H E ~ that  differs by the edge ei,j we have 
dG(ui,vj) ¢ dH(Ui,Vj). 
A p p l i c a t i o n  o f  t h e  L o w e r - B o u n d  T h e o r e m .  
Because G is an S-family, we have by part 3 of Theorem 
3.1 that every distance labeling scheme on G requires 
~(S, G) _> k(k + 1)/2 - O(IS I log k). We have IS] = 2k, 
n = (2/3) • k a + O(k2), thus k > n 1/3 - 0(n2/9), and 
finally Ls~m(S, H) > n2/3/2 - 0(n4/9), completing the 
proof. | 

We also trivially have a vfn-lower bound for non- 
uniform weighted planar graphs. 

COROLLARY 3.2. There exists a graph family W P  con- 
sisting of bounded degree weighted planar graphs, such 
that for every distance labeling scheme (L, f)  for 14279, 
and for sufficiently large n, there exists an n-node graph 
G of W7 ~ on which (L, f)  requires Ls~m(G) = fl(n3/2). 
Moreover, the weights are non negative integers that do 
not exceed O( x/~ ). 

3.4 A Lower  B o u n d  o n  Trees .  
When applying the general approach for trees, 

considering the set .7" of all labeled trees on the set 
Vn = {1 , . . . n}  as a (V,~,l)-family, one gets ].T] = 
n n-2 (known as Cayley's formula). Unfortunately, this 
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implies only the trivial log n lower bound on the average 
or maximum label length. 

In this section we prove a stronger lower bound, 
namely, that  for the family T of weighted trees with 
weights from the range [0, M -  1], any distance labeling 
scheme requires g(T, n) = ~((log M + log n) log n). This 
bound is tight given the O((log M+log  n) log n) distance 
labeling scheme given for this class in [9]. Note that  for 
unweighted trees we obtain a lower bound of ~(log 2 n). 

For the lower bound proof we focus on a special class 
of binary weighted trees called (h, M)-trees, defined as 
follows. For h = 1, a (1, M)-tree T is composed of a root 
with a single child and two grandchildren. An integral 
weight x • [0, M - 1] is associated with each of the two 
edges connecting the child to the two grandchildren, and 
the weight M -  x is associated with the edge connecting 
the root to the child. 

For h > 2, a (h ,M)- t ree  is constructed by taking 
a (1, M)-tree and attaching to each of its two leaves 
an ( h -  1, M)-tree.  Hence an (h, M)-tree contains 2 h 
leaves, denoted a l , . . . , a 2 h .  Let C(h,M) denote the 
class of all (h, M)-trees. Note that all of those trees 
have the same structure, and they differ only in their 
weight assignment. Fig. 3 depicts a (3, M)-tree.  

X l , 1  ~ 1 , 2  

G1 a 2  a 3  a 4  a 5  a 6  a 7  a 8  

Figure 3: A (3, M)-tree. 

Note that  a (h ,M)- t ree  T is completely defined 
by the triple T = (To,Tl,x), where x is the weight 
associated with the two edges of the top (1,M)-tree,  
and To and T1 are the two (h - 1, M)-trees attached 
to the leaves of the top tree. The subclass of C(h, M) 
consisting of (h ,M)- t rees  with topmost weight x is 
denoted C(h, M, x). Hence C(h, M) I]M-1 Crh M, x). 

By the definition of these binary trees we have 

LEMMA 3.5. For every two leaves a,a ~ of a tree 
T • C(h,M,x),  ( 1 ) I ]  a • To and a' • T1 then 

dT(a,a') = 2 ( h - 1 ) M +  2x, and (2) If a, a' • Ti (.for 
i • {0, 1}) then dT(a,a') = dT~(a,a'). | 

LEMMA 3.6. Consider two (h,M)-trees T = (To,Tl,x) 
and T' = (Tg, T[, x'). For any leaves ao • To, al • T1, 
a~ • Tg and a t • T~, 

t t X t" dT(ao,al) = dT,(ao,al) ~ x = | 

For a distance labeling scheme (L, f )  on C(h, M),  
let W(L, h, M) denote the set of all labels assigned by 
L to nodes in trees of C(h, M), and let g(h, M) denote 
the minimum cardinality IW(L, h, M)I over all distance 
labeling schemes on C(h, M). 

Hereafter, we fix (L, f )  to be some distance labeling 
scheme attaining g(h, M),  i.e., such that 
IW(L,h,M)I = g(h,M). Let W(x) denote the set of 
possible pairs of labels (v0, vl) assigned by L to some 
leaves aj E To and at E T1 respectively, for some tree 

T = (To, T1, x) E C(h, M, x). Let W = [.jM__~i W(x). As 
W C W(L,  h, M) × W(L,  h, M) we have 

LEMMA 3.7. IWl _< g(h, M) 2. 

LEMMA 3.8. For every 0 <_ x ~ x I < M, the sets W(x) 
and W(x  t) are disjoint. 

P r o o f .  Consider two different weights 0 < x ¢ x * < M, 
and assume by way of contradiction that  there exists a 
pair (hi,A2) E W(x) N W(x~). Then there exist two 
(h - 1, M)-trees To, T1 such that  T = (To, T1, x) uses 
the label ~1 for some leaf ajl E To and the label .k2 
for some leaf aj2 E T1, and there exist two ( h -  1, M)- 
trees Tg,T~ such that  T ~ = (Tg,T~,x ~) uses the label )q 
for some leaf aja • Tg and the label A2 for some leaf 
aj4 • T~. Therefore, by the definition of f ,  

2 ( h -  1 ) / + 2 x  = d(ajl,aj2 ) = f()~1,~2) 

= d(aja,aj4 ) = 2 ( h - 1 ) M + 2 x ' ,  
implying x = x' ,  contradiction. | 

The crux of the analysis lies in the following lemma. 

LEMMA 3.9. For 0 _< x < M, IW(x)l > g(h - 1, M2). 

P r o o f .  In any ( h -  1, M2)-tree, a weight w E [0, M 2 - 1] 
can be represented by the pair of weights w0 = w mod 
M, wl = [w/M], such that wo,wl e [0, M -  1] and 

w = wo  + M W l .  

Consequently, one can associate with any ( h -  
1,M2)-tree T '  a pair of ( h -  1,M)-trees To and T1 
as follows. For any edge e of T '  with weight w = 
w0 + M • wl, let the corresponding weight of e in To 
(respectively, T1) be wo (resp., wl). These two trees 
define also a (h, M)- t ree  T = (To, T1, x) in C(h, M, x). 
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Every leaf aj of T '  is now associated with two 
0 homologous leaves of T, namely, the leaf aj = aj 

(occurring in the left part of T, i.e., To), and the leaf 
a} = aj+2h-1 (occurring in T1). For every two leaves 
aj, at of T ~ we now have 
(3.3 / dT,(aj,at) o o 1 = dTo (aj, a t) + M .  dr, (aj, at 1) 

dT(a~,at °) + M 1 1 = • dT(aj, a t ) • 
We use this observation to derive a labeling scheme for 

all (h - 1, M2)-trees using at most IW(x)l labels. Given 
an (h - 1, M2)-tree T ' ,  consider the pair of (h - 1, M)- 
trees To, T1 defined above, and use the labeling L to 
label the tree T = (To,Tl,x).  Now use the resulting 
labeling to define a labeling function L' for the nodes 
of T '  as follows. A leaf a s E T '  receives as its label the 
pair L'(aj ,T ' )  = (L(a~,T) ,L(a} ,T) ) .  Note that  this 
pair belongs to W(x).  

The distance decoder f '  for ( h -  1, M2)-trees is now 
obtained by setting f ' (L ' (aj ,  T'), L'(at, T')) = 
f ( ( L ( a ~ ,  T), L(a}, T ) ) ,  (L(at °, T), L(at 1 , T)))  = 
f(L(a~, T), L(at °, T)) + M .  f(L(a~, T),  L(at 1, T)). As 
L is a distance labeling scheme for (h ,M)-trees  
we have f (L(a~,T) ,L(at° ,T))  = dT(a~,at °) and 
f (L(a} ,T) ,L(a t l ,T) )  = dT(aJ,atl), so by Eq. (3.3), 

f ' (n ' (a j ,  T'), L'(at, T')) = dT(aj,° atO) + M • dT(aj,1 atl) 

= dT,(aj,at) • 
So we have obtained a labeling scheme (L', f ' )  labeling 

any ( h -  1, MZ)-tree with labels taken from W(x) .  It 
follows that IW(x)l >_ g(h - 1, M2). I 

LEMMA 3.10. g(h, M)  > M h/2. 

THEOREM 3.6. For the family 7- of binary trees with 
weights from the range [0, M - 1], 

1 
£(T,n)  > ~ ( l o g n - 2 ) l o g M .  

P r o o f .  By Lemma 3.10, for the class C(h, M) we have 
£(C(h, M)) > ~.  log M. The number of nodes of the an 
unweighted (h, M)-tree is n = 3- 2 h - 2. This yields the 
theorem, as 

; £(T,n)  _> ~-log .logM_> ( l o g n - 2 ) l o g M  | 

COROLLARY 3.3. For the family T of unweighted bi- 
nary trees, ~(T, n) > ~ log 2 n - O(log n). 

P r o o f .  A (h ,M)- t ree  can be transformed into an 
unweighted tree by replacing each edge e of weight w 
with a path of w (unweighted) edges. Let t (h ,M)  
be the maximal number of nodes of the unweighted 
tree corresponding to the construction of a (h, M)-tree. 
Then t(h, M) < 3 . 2  h • M. Taking h = log V f ~  and 
M = V / ~ ,  and applying Lemma 3.10, we obtain 

g(h ,M)  _> 2~l°gM ~ 281-1og 2 (n/S) 

for sufficiently large n. Moreover; we obtain an 
unweighted tree with at most t ( h ,M)  _< n nodes. 
Note that  the depth is at most 2hM < vfnlogn.  So 
for unweighted binary trees with n nodes and depth 
O(vfn logn) ,  at least ~ l o g 2 n -  O(logn) bits may be 
necessary. | 
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