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Abstract. We consider the problem of labeling the nodes of an n-node
graph G with short labels in such a way that the distance between
any two nodes u, v of G can be approximated efficiently (in constant
time) by merely inspecting the labels of u and v, without using any
other information. We develop such constant approximate distance la-
beling schemes for the classes of trees, bounded treewidth graphs, planar
graphs, k-chordal graphs, and graphs with a dominating pair (including
for instance interval, permutation, and AT-free graphs). We also estab-
lish lower bounds, and prove that most of our schemes are optimal in
terms of the length of the labels generated and the quality of the ap-
proximation.

Keywords: Local representations, approximate distance, labeling
schemes, distributed data structures.

1 Introduction

1.1 Motivation

Common network representations are usually global in nature; in order to derive
a useful piece of information, one must have access to a global data structure
representing the entire network, even if the sought piece of information is local,
pertaining to only few nodes.

In contrast, the notion of labeling schemes [2,1,12,17,11] [10] involves using
a more localized representation scheme for the network. The idea is to label the
nodes in a way that will allow one to infer information concerning any two nodes
directly from their labels, without using any additional information sources.

Clearly, for such a labeling scheme to be useful, it should use relatively short
labels (say, of length polylogarithmic in n), and yet allow efficient (say, polylog-
arithmic time) information deduction. Recently, this natural idea was studied
with respect to capturing distance information. This has led to the notion of
distance labeling schemes, which are schemes possessing the ability to determine
the distance between two nodes efficiently (i.e., in polylogarithmic time) given
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their labels [17]. The applicability of distance labeling schemes in the context
of communication networks has been illustrated in [17], and various aspects of
such schemes were further studied in [10].

Observe that efficient exact distance labeling schemes may not exist for ev-
ery graph family. In particular, for a family of Ω(exp(n1+ε)) non-isomorphic
n-vertex graphs, any distance labeling scheme must use labels whose total com-
bined length is Ω(n1+ε), hence at least one label must be of Ω(nε) bits. Specifi-
cally, for the class of all unweighted graphs, any distance labeling scheme must
label some n-vertex graphs with labels of size Ω(n) [10].

This raises the natural question of whether more efficient labeling schemes
be constructed if we abandon the ambitious goal of capturing exact informa-
tion, and settle for obtaining approximate estimates. This leads to the notion of
approximate distance labeling schemes, which are the topic of the current paper.

1.2 Labeling Schemes for Approximate Distance

Let us define the notion of approximate distance labeling schemes more precisely.
Given a connected undirected graph G and two nodes u and v, let dG(u, v) denote
the distance between u and v in G. A node-labeling for the graph G is a non-
negative integer function L that assigns a label L(u, G) (in the form of a binary
string) to each node u of G.

A distance decoder is an integer function f responsible for distance compu-
tation; given two labels λ1, λ2 (not knowing which graph they are taken from),
it returns f(λ1, λ2). We say that the pair 〈L, f〉 is a distance labeling for G if
f(L(u, G), L(v, G)) = dG(u, v) for any pair of nodes u, v ∈ V (G). We say that
〈L, f〉 is an (s, r)-approximate distance labeling for G if

dG(u, v) 6 f(L(u, G), L(v, G)) 6 s · dG(u, v) + r (1)

for any pair of nodes u, v ∈ V (G). More generally, 〈L, f〉 is an (s, r)-approximate
distance labeling scheme for the graph family G if it is an (s, r)-approximate
distance labeling for every graph G ∈ G. This paper concerns the existence
of approximate distance labeling schemes which use short labels. Let |L(u, G)|
denote the length of the binary label L(u, G) associated with u in G ∈ G, and
denote

`〈L,f〉(G) = max
G∈G

max
u∈V (G)

|L(u, G)| and `(s,r)(G) = min
〈L,f〉

{
`〈L,f〉(G)

}

where the minimum is taken over all (s, r)-approximate distance labeling schemes
〈L, f〉 for G.

We focus on two important special cases of (s, r)-approximate distance la-
beling schemes. An (s, 0)-approximate distance labeling scheme is referred to as
a s-multiplicative distance labeling scheme. Analogously, a (1, r)-approximate
distance labeling scheme is referred to as an r-additive distance labeling scheme.
A 0-additive (or 1-multiplicative) distance labeling is termed an exact distance
labeling scheme.
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One may consider two variations on the distance labeling definition: the dis-
tinct label model and the non-distinct label model. The latter allows two differ-
ent vertices to have the same labels, and thus lets us build schemes with sub-
logarithmic label size. In the extreme case, graphs of constant diameter D enjoy
a D-additive distance labeling scheme with no labels at all in the non-distinct
label model: it suffices to return the estimate D to satisfy Eq. (1). In contrast,
log n is a lower bound on the size of labels in the distinct label model, even in
the case of an n-node clique. We remark that any distance labeling scheme in the
non-distinct label model can be transformed into a scheme in the distinct label
model (with the same estimate quality) by adding a unique log n bit identifier
to each of the nodes. The notations `〈L,f〉(G) and `(s,r)(G) are defined for the
non-distinct label model, and thus differ from the distinct label model by an
additive log n factor.

We are also interested in the query time, i.e., the worst-case time complexity
of the distance decoder. We assume a ω-bit word RAM model of computation.
Each memory word can contain an integer in the range [0, 2ω). The instruction
set available consists of standard arithmetic, bitwise logical and comparison op-
erations on words, all assumed to require constant time. For the use of bucketing
and perfect hashing functions, we assume that the arithmetic operation set con-
tains integer multiplication and integer division. Denoting the size of the input
graph by n, we assume that ω > log n.

1.3 Related Work

An exact distance labeling scheme for weighted n-node trees with integral
weights from the range [0, W ) using O(log2 n + log n log W ) bit labels has been
given in [17], and O(log2 n) bit labeling schemes for interval graphs and permu-
tation graphs were presented in [11], all with O(log n) query time. The Squashed
Cube Conjecture of Graham and Pollak [8], proved by Winkler [19], implies an ex-
act distance labeling scheme for arbitrary n-node graphs with n log2(3) ≈ 1.58n
bit labels for general graphs, although with a prohibitive Θ(n) query time to
decode the distance. With a different approach, [10] presented a distance la-
beling scheme with label size 11n + o(n) and with O(log log n) query time.
An 8k-multiplicative distance labeling scheme, for each integer k > 1, is built
in [17], using O(k n1/k log n log W ) bit labels with query time linear in the label
size, where W stands for the integral weighted diameter. For unweighted n-
node graphs, this yields a O(log n)-multiplicative distance labeling scheme using
O(log3 n) bit labels with polylog query time.

Some bounds on the size of the labels are established in [10] for several fam-
ilies of n-node graphs. In particular, it is shown that `(s,0)(Gn) = Ω(n) for every
s < 3, where Gn denotes the family of all connected graphs. For the family
Gr(n),n of graphs of treewidth bounded by r(n), it is shown that `(s,0)(Gr(n),n) =
Ω(r(n)), for all s < 3 and r(n) < n/2. On the other hand, an exact distance la-
beling scheme is proposed for Gr(n),n, with O(R(n) log n) bit labels and O(R(n))
query time, where R(n) =

∑log n
i=1 r(n/2i). (We have R(n) 6 r(n) log n, and for
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monotone r(n) > nε with constant ε > 0, R(n) = O(r(n)).) It follows, for
instance, that planar graphs support an exact distance labeling scheme with
O(

√
n log n) bit labels, and that trees and bounded treewidth graphs support

exact distance labeling schemes with O(log2 n) bit labels.
It is also proved in [10] that `(1,0)(Bn) = Ω(

√
n) for the family Bn of bounded

degree graphs, and that `(1,0)(Pn) = Ω(n1/3) for the family Pn of bounded degree
planar graphs. (For the family PW,n of weighted bounded degree planar graphs
with weights in the range [0,

√
n ], it is proved that `(1,0)(PW,n) = Ω(

√
n).)

Finally, for the family Tn of binary trees, it is shown that `(1,0)(Tn) > 1
8 log2 n−

O(log n). (For the family TW,n of weighted binary trees with weights in the range
[0, W ), it is proved that `(1,0)(TW,n) > 1

2 log n log W − O(log W ).)

1.4 Our Contribution

Section 2 deals with bounds on s-multiplicative distance labeling schemes. It is
first shown that planar graphs have a 3-multiplicative distance labeling scheme
with O(n1/3 log n) bit labels. This should be contrasted with the upper and lower
bounds of [10] mentioned above for exact distance labeling schemes for planar
graphs.

Then, we propose a (1 + 1/ log W )-multiplicative distance labeling scheme
using O(log n · log log W ) bit labels for the family of weighted n-node trees
with weighted diameter bounded by W . More generally, we show that the
family of n-node graphs of treewidth at most r(n) and weighted diameter
bounded by W has a (1 + 1/ log W )-multiplicative distance labeling scheme us-
ing O(R(n) log log W ) bit labels and with O(r(n)) query time, assuming that
W = nO(1). Hence, unweighted trees (and bounded treewidth graphs) enjoy a
(1 + 1/ log n)-multiplicative distance labeling scheme using O(log n · log log n)
labels with constant query time.

We then turn to lower bounds on s-multiplicative distance labeling schemes.
We establish, for every s > 1, a lower bound on such schemes on general n-
node graphs. Specifically, it is shown that for general graphs, Ω(n1/(3s/4−O(1)))
bit labels are required in the worst-case. The current upper bound is
O(s n1/ds/8e log2 n), derived from the result of [17] mentioned previously. Also,
for trees, we show a lower bound of Ω(log n · log log n) bit labels for every
(1 + 1/ log n)-multiplicative scheme, thus proving that the scheme establishing
our upper bound is optimal. For the class of weighted trees, whose weights
are in the range [0, Z), we show for sufficiently large Z a lower bound of
Ω(log n · log log Z) for (1 + 1/ log Z)-multiplicative schemes (which is again an
optimal bound). For lack of space, the lower bounds for trees are not presented
in this abstract. Full proofs can be founded in [9].

In Section 3.1, we turn to r-additive distance labeling schemes. We consider
the family of k-chordal n-node graphs of diameter D, and show that they enjoy a
bk/2c-additive distance labeling scheme with labels of size O(log n log D). In par-
ticular, the family of n-node chordal graphs has an 1-additive distance labeling
scheme with O(log2 n) bit labels. Moreover, these schemes are polynomial-time
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constructible, and have O(1) query time. We then consider the class of graphs of
diameter D which have a dominating pair. This class includes, for instance, AT-
free, permutation and interval graphs. We show that this class enjoys a 2-additive
scheme, and even a 1-additive scheme for interval graphs, with log D + O(1) bit
labels in the non-distinct label model, and O(log n) bit labels otherwise.

We then turn to lower bounds for r-additive distance labeling schemes. We
show, for every r > 0, a lower bound of Ω(

√
n/(r + 1)) on the required label size

for r-additive distance labeling schemes over general n-node graphs. The bound
is Θ(n) if r < 2. We also show a Ω(log2 (n/(r + 1))) lower bound on the label size
for r-additive schemes on k-chordal graphs, proving that our scheme for k-chordal
graphs is optimal in the label size and in the quality of the approximation. We
also notice that exact distance labeling schemes for AT-free graphs or k-chordal
graphs require Ω(n) bit labels.

2 Multiplicative Approximate Schemes

2.1 A Scheme for Planar Graphs

This section presents a 3-multiplicative distance labeling scheme with
O(n1/3 log n) bit labels for the family of planar graphs. Let us start with some
background concerning partitions of planar graphs. A region is a connected sub-
graph of a planar graph. One can distinguish two kinds of nodes: internal (be-
longing to only one region) and boundary nodes (that belong to two or more
regions). The following decomposition lemma has been established in [5] using
the O(

√
n)-separator theorem.

Lemma 1. [5] For every n-node planar graph G and integer k > 0, it is possible
(in polynomial time) to partition the nodes of G into k regions, each of O(n/k)
nodes and with O(

√
n/k) boundary nodes, such that any path connecting an

internal node of one region to an internal node of another must go through at
least one boundary node of each region.

Setting k =
⌈
n1/3

⌉
, we get O(n1/3) regions R1, . . . , Rk, each with O(n2/3) nodes

and O(n1/3) boundary nodes. Each region Ri is partitioned again into O(n1/3)
subregions Sj of O(n1/3) (internal and boundary) nodes. Each node is given
a unique integer identifier I(v) ∈ {1, . . . , n}, as well as a pair r(v) = (i, j),
indicating its region number i and its subregion number j. (For boundary nodes,
choose a valid pair (i, j) arbitrarily.)

Consider a node u that belongs to a region Ri and to the subregion Sj within
Ri. For every other region Ri′ of G, i′ 6= i, let pu(Ri′) denote the closest node
to u in Ri′ . Note that pu(Ri′) is necessarily a boundary node in Ri′ . Similarly,
for every other subregion Sj′ of Ri, j′ 6= j, let pu(Sj′) denote the closest node
to u in Sj′ .

The label L(u, G) assigned to the node u consists of the following fields:

[a] its identifier I(u) and pair r(u) = (i, j);
[b] the distance from u to all the nodes in Sj ;
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[c] the identifier of pu(Ri′) and the distance dG(u, pu(Ri′)), for every region Ri′

of G, i′ 6= i;
[d] the identifier of pu(Sj′) and the distance dG(u, pu(Sj′)), for every subregion

Sj′ of Ri, j′ 6= j;
[e] the distance from u to all the boundary nodes in its region Ri.

The number of bits in the resulting label is bounded by O(n1/3 log n). The
distance between u and v is computed from the labels L(u, G) and L(v, G) as
follows:
1. Extract the region and subregion numbers of u and v from field [a] of the two
labels.
2. If u and v belong to the same subregion Sj in the same region Ri, then do:

[a] extract dG(u, v) from field [b] of L(v, G) using I(v);
[b] set d̃(u, v) = dG(u, v).

3. If u and v are in the same region Ri but in different subregions, say u ∈ Sj

and v ∈ Sj′ , then do:
[a] extract z = pu(Sj′) and dG(u, z) from field [d] of L(u, G);
[b] extract dG(z, v) from field [b] of L(v, G);
[c] set d̃(u, v) = dG(u, z) + dG(z, v).

4. If u and v belong to different regions, say u ∈ Ri and v ∈ Ri′ , then do:
[a] extract z = pu(Ri′) and dG(u, z) from field [c] of L(u, G);
[b] extract dG(z, v) from field [e] of L(v, G);
[c] set d̃(u, v) = dG(u, z) + dG(z, v).

5. Return d̃(u, v).

Theorem 1. There exists a 3-multiplicative distance labeling scheme using la-
bels of size O(n1/3 log n) for the family of n-node planar graphs. Moreover, the
labels are polynomial time constructible and the distance decoder is O(1)-time
complexity.

(All proofs are omitted and can be founded in [9].)

2.2 A Scheme for Trees and Bounded Treewidth Graphs

A pair of integer functions 〈λ, φ〉 is an (s, r)-estimator of {1, . . . , W} if λ :
{1, . . . , W} → {1, . . . , 2α} (where typically 2α � W ), φ : {1, . . . , 2α} → N,
and for every x ∈ {1, . . . , W}, x 6 φ(λ(x)) 6 s · x + r. Intuitively, we think of λ
as a function “compacting” x, and of φ as a function attempting to reconstruct
x from λ(x). The size of the estimator is α, and its time complexity is the
worst-case time complexity of the function φ.

Lemma 2. For every k 6 O(ω), and for every m ∈ {0, . . . , k}, there ex-
ists a constant time (1 + 2−m, 0)-estimator of

{
1, . . . , 2k

}
of size α = m +

dlog(k − m + 1)e.
Given a binary string S of length k, let rankS(i) denote the function that returns
the number of 1’s up to and including position i, for i ∈ {1, . . . , k}, and let lsbk(S)
denote the position p of the least significant bit in S set to 1, p ∈ {0, . . . , k}
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(p = 0 if S is null). The following two results require constant time integer
multiplications and divisions on O(log n)-bit words, which are allowed in our
computational model.

Lemma 3. 1. [16,15] For every integer k 6 n, and for every binary string
S of length k, the operation rankS(·) can be performed in O(1) worst-case time
with o(k) pre-computed auxiliary bits, and k + o(k) bits in total.
2. [6] For every integer k 6 O(log n), the operation lsbk(·) can be performed in
O(1) worst-case time with O(k) pre-computed auxiliary bits.
We state the main result for weighted trees. Given an integer W > 0, a W -tree
is a weighted tree whose weighted diameter is bounded by W . Note that an
unweighted tree T of diameter D is a particular case of a W -tree, for W > D.

It is well-known that every n-node tree has a node, hereafter called a sepa-
rator, which splits tree into connected components each of at most n/2 nodes.

Let T be any n-node W -tree, and u ∈ V (T ), and let 〈λ, φ〉 be an (s, r)-
estimator of {1, . . . , W}. Apply the above separator property to T , and let s1 be
the obtained separator. With each connected component F of T \ {s1}, we asso-
ciate a unique label c(F ) ∈ {1, . . . ,deg(s1)} such that for every two components
A, B of T \ {s1}, if |V (A)| > |V (B)| then c(A) 6 c(B). Let T1 be the connected
component of T \ {s1} containing u, and let c1 = c(T1).

We recursively apply this decomposition scheme to Ti, i > 1, in order to
obtain si+1, Ti+1 and ci+1 such that u ∈ V (Ti+1) and ci+1 = c(Ti+1), until we
have u = si+1. Let h be the index such that u = sh+1. Note that h + 1 6 log n.
We set the label of u in T to be

L(u, T ) = 〈(c1, . . . , ch), (λ(dT (u, s1)), . . . , λ(dT (u, sh))〉 .

Given two nodes u, u′ of labels 〈(c1, . . . , ch), (λ1, . . . , λh)〉 and 〈(c′
1, . . . , c

′
h′),

(λ′
1, . . . , λ

′
h′)〉 respectively, we compute the distance as follows:

1. compute the lowest index i0 such that ci0 6= c′
i0

;
2. return φ(λi0) + φ(λ′

i0
).

Theorem 2. Let α be the size of an (s, r)-estimator of {1, . . . , W}, and let t
denote its time complexity. Then the above scheme is an (s, 2r)-approximate
distance labeling scheme using labels of size α log n + O(log n) for the family of
n-node W -trees. Moreover, the distance decoder is O(t)-time complexity.

In particular, choosing k = dlog W e and m = dlog log W e in Lemma 2, we have
the following (noting that if W = nO(1), then k = O(ω) and thus all the distances
can be estimated in constant time).

Corollary 1. 1. There exists a (1 + 1/ log W )-multiplicative distance labeling
scheme using labels of size O(log n · log log W ) for the family of n-node W -trees.
Moreover, the distance decoder is O(1)-time complexity for W = nO(1).
2. There exists a (1+1/ log n)-multiplicative distance labeling scheme using labels
of size O(log n · log log n) for the family of n-node unweighted trees. Moreover,
the distance decoder is O(1)-time complexity.
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The scheme for trees can be applied together with the tree-decomposition scheme
for bounded treewidth graphs [18] (see also Section 3.1). In [10] it is shown that
graphs of treewidth bounded by r(n) have exact distance labeling scheme using
O(R(n) log n) bit labels, for every monotone function r(n), and with O(R(n))
query time, where R(n) =

∑log n
i=0 r(n/2i). Using the above scheme for trees, this

result can be extended as follows.

Corollary 2. There exists a (1+1/ log W )-multiplicative (resp., exact) distance
labeling scheme using labels of size O(R(n) log log W ) (resp., O(R(n) log W )) for
the family of weighted n-node graphs of treewidth at most r(n) and of weighted
diameter W . Moreover, the distance decoder is O(r(n))-time complexity for W =
nO(1).

It follows that n-node trees and bounded treewidth graphs enjoy exact distance
labeling with O(log2 n) bit labels with constant query time (improving the query
time of the scheme of [17]).

2.3 A Lower Bound for Multiplicative Schemes

To prove a lower bound on s-multiplicative distance labeling schemes on general
graphs, we need the following concept introduced in [10]. For every graph family
F under consideration, we assume that each n-node graph of F is a labeled
graph on the set of nodes Vn = {1, . . . , n}. Let A ⊆ Vn, and let k > 1 be a
real number (k can be a function of n). F is an (A, k)-family if for every two
distinct graphs G, H ∈ F there exist x, y ∈ A such that dG(x, y) > k · dH(x, y)
or dH(x, y) > k · dG(x, y). The following lemma is shown in [10] and is useful to
prove Lemma 5.
Lemma 4. [10] Let F be an (A, k)-family for k > 1. Then for any s < k,
`(s,0)(F) > (log |F|)/|A|.
Lemma 5. Let G be any connected graph with n nodes, m edges and girth g.
Then the family SG composed of all the n-node connected subgraphs of G satisfies,
for every real number 1 6 s < g − 1, `(s,0)(SG) > m/n − O(1).

In particular, Lemma 5 implies that, for every s < g−1, `(s,0)(Gn) > m(g, n)/n−
O(1), where m(g, n) denotes the maximum number of edges in an n-node graphs
of girth g. In [4] it is conjectured that m(2k + 2, n) = Ω(n1+1/k), proving later
for k = 1, 2, 3 and 5. In [14], it is shown that m(4k + 2, n) = Ω(n1+1/(3k−1)) and
that m(4k, n) = Ω(n1+1/(3(k−1))). Therefore,

Theorem 3. For every s > 1, `(s,0)(Gn) = Ω
(
n1/(3s/4−O(1))

)
.

3 Additive Approximate Schemes

3.1 A Scheme for k-Chordal Graphs

A graph is k-chordal if it does not contain any chordless cycles of length larger
than k (where a chord is an edge joining two non-neighbors of the cycle). Chordal
graphs are exactly 3-chordal graphs.
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We use the notion of tree-decomposition used by Roberston and Seymour in
their work on graphs minors [18]. A tree-decomposition of a graph G is a tree T
whose nodes are subsets of V (G), such that

1.
⋃

X∈V (T ) X = V (G);
2. for every {u, v} ∈ E(G), there exists X ∈ V (T ) such that u, v ∈ X; and
3. for all X, Y, Z ∈ V (T ), if Y is on the path from X to Z in T , then X∩Z ⊆ Y .

For every S ⊆ V (G), denote diamG(S) = maxu,v∈S dG(u, v). We denote by G\S
the subgraph of G induced by the set of nodes V (G) \ S.

S is a separator of G if G \ S is composed of two or more connected com-
ponents. Moreover, S is said to be minimal if every proper subset of S if not a
separator of G. Given x, y ∈ V (G), S is an x, y-separator if x and y belongs to
two distinct connected components in G \ S. We have the following.

Lemma 6. For every k-chordal graph G, there exists a tree-decomposition T
such that |V (T )| 6 |V (G)|, and such that, for every X ∈ V (T ), diamG(X) 6
k/2. Moreover, T is polynomial-time constructible.

Using the scheme for trees, we have the following result:

Theorem 4. There exists a bk/2c-additive distance labeling scheme with labels
of size O(log n log D) for the family of k-chordal n-node graphs with (weighted)
diameter D. Moreover, the scheme is polynomial-time constructible, and the dis-
tance decoder is O(1)-time complexity.

Corollary 3. There exists a 1-additive distance labeling scheme with labels of
size O(log2 n) for the family of n-node chordal graphs. Moreover, the scheme is
polynomial-time constructible, and the distance decoder is O(1)-time complexity.

The previous bound is optimal with respect to both the approximation ratio
and the label size. Indeed, as seen later in Section 3.3, every 1-additive distance
labeling scheme on the family of trees (that are chordal) requires some labels of
size Ω(log2 n). Moreover, every exact distance labeling scheme on chordal graphs
of diameter 3 requires label of size Ω(n) (cf. Theorem 6).

3.2 Dominating Pair

Our next goal is to show that in certain cases (including for instance interval,
permutation, and AT-free graphs), Theorem 4 can be improved upon. A pair of
nodes {x, y} in a graph G is called a dominating pair if for every path P in G
between x and y, and for every u ∈ V (G), there exists a node of P at distance
at most 1 of u (we say that P dominates u).

Consider any graph G having a dominating pair {x, y}, and let δ = dG(x, y).
The distance labeling scheme for graphs having a dominating pair is based on the
decomposition by distance layers from node x. Let us define Lt = {u ∈ V (G) |
dG(x, u) = t}, for every t > 0. Note that for every 0 < t < δ, Lt is a x, y-
separator. Let St denote a minimal x, y-separator in Lt, for every 0 < t < δ. We
set S0 = {x}, Sδ = {y} and Sδ+1 = ∅. An x, y-path is a loop-free path between
x and y. We establish a number of claims useful for our analysis.
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Claim. Let Cx and Cy be the connected components of G \ St, for 0 < t < δ,
containing respectively x and y. For any node z ∈ St, there exists an x, y-path
contained in Cx ∪ Cy ∪ {z}, composed of a shortest x, z-path and of an induced
z, y-path (i.e., a chordless z, y-path) called hereafter an x, z, y-path.

Claim. (1) Let t, t′ such that 0 < t 6 t′ < δ. Let P be a x, z, y-path with z ∈ St.
Then, every w′ ∈ Lt′ \ St′ has no neighbors in P ∩ Lt′+1.
(2) For every t > 1, and every w ∈ Lt, w has a neighbor in St−1.

Let us now consider two distinct nodes u and v, and let tu = dG(x, u) and
let where tv = dG(x, v). W.l.o.g., assume that tu 6 tv. The next claim gives
approximations of dG(u, v) depending on the respective positions of u and v in
the distance layer decomposition. It allows us to prove Theorem 5.

Claim. (1) If tu = 0, then dG(u, v) = tv.
(2) If 0 < tu = tv 6 δ + 1, then 1 6 dG(u, v) 6 2.
(3) If 0 < tu < tv 6 δ + 1, then tv − tu 6 dG(u, v) 6 tv − tu + 2.

Theorem 5. Let G be a graph of diameter D with a dominating pair. Then G
has a 2-additive distance labeling with labels of size log D + O(1). Moreover, the
distance decoder is O(1)-time complexity.

An asteroidal triple of a graph G is an independent triple of nodes, each two
of which are joined by a path of G that avoids the neighborhood of the third
node [13]. Graphs without asteroidal triple are termed AT-free graphs. This class
includes, in particular, the classes of interval, permutation, bounded tolerance
and co-comparability graphs (see [7]). It is well-known that AT-free graphs have
a dominating pair [3] that can be founded in linear time. We thus have the
following.

Corollary 4. There exists a 2-additive distance labeling scheme with labels of
size log D + O(1) for the family of AT-free graphs of diameter D. Moreover, the
scheme is polynomial-time constructible, and the distance decoder is O(1)-time
complexity.

To get a 1-additive scheme for a subclass of AT-free, we examine in more de-
tail the situation described by the last claim in case (3), namely, tu < tv, i.e.,
dG(x, u) < dG(x, v). Indeed, thanks to the case (1) of the same claim, we al-
ready have a 1-additive scheme for tu = tv. We can show (details can be founded
in [9]):

Lemma 7. Let G be a graph that has a dominating pair {x, y}. For any two
nodes u and v of G, with dG(x, u) 6 dG(x, v), if u does not belong two a chordless
cycle Ck, k > 4, then dG(u, v) 6 d̃(u, v) 6 dG(u, v) + 1.

Since interval graphs are 3-chordal AT-free graphs, the following corollary holds:

Corollary 5. There exists a 1-additive distance labeling scheme with labels of
size log D + O(1) for interval graphs of diameter D. Moreover, the scheme is
polynomial-time constructible, and the distance decoder is O(1)-time complexity.
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3.3 Lower Bounds for Additive Schemes

In this section we establish some lower bounds on r-additive distance labeling
schemes. For general graphs we show that labels of size Ω(

√
n/r) are required

in the worst-case (the lower bound can be improved to Θ(n) for r < 2), and that
every r-additive distance labeling on k-chordal graphs must use labels of length
Ω(log2 n), for every constant r > 0. Moreover, there is no exact distance labeling
scheme with labels shorter than Ω(n) bits, proving that the scheme presented
in Section 3.1 is optimal (cf. Theorem 4 and Corollary 3).

Let us now show that the labeling scheme of Section 3.1 for k-chordal graphs
with bounded k is optimal in terms of the length of its labels. First, let us show
that there is no exact distance labeling scheme for chordal graphs using “short”
labels. Consider the family Sn of connected split graphs, namely, all the n-node
graphs composed of a clique C, and of an independent set I of n − |C| nodes,
such that each node of I is connected to at least one node of C. Let Cn,k be
the class of connected n-node k-chordal graphs. Clearly, Sn is a subclass of Cn,3
(because every cycle of 4 or more nodes has a chord belonging to C) and Sn is
connected (in fact, it contains only graphs of diameter at most three).

Recall that `(s,r)(·) is related to the non-distinct label model.

Theorem 6. For every k > 3 and s < 2, `(s,0)(Cn,k) > `(s,0)(Sn) > n/4−O(1).
On the other hand, the family Sn supports a 1-additive distance labeling scheme
with 1 bit labels (or dlog ne + 1 bit label, if we insist on distinct labels).

Similarly, we have the following for AT-free graphs.

Theorem 7. Let An be the class of connected n-node AT-free graphs. For every
s < 2, `(s,0)(An) > n/4 − O(1).

We now give a bound of Ω(
√

n/r) on the label size for general graphs. We
start with a simple observation: `(s,r)(F) > `(s+r,0)(F), for all s > 1, r > 0,
and graph family F . Thus, for general graphs, since `(s,0)(Gn) = Θ(n) for every
s < 3 (cf. [10]), we have `(1,r)(Gn) = Θ(n) for every r < 2.

We complete Theorem 3, by showing that even for r > bk/2c, every r-additive
scheme for k-chordal graphs requires labels of length Ω(log2 n). Let T be the
family of trees, and let Tn ⊂ T denote n-node trees. Since Tn ⊆ Cn,k, it suffices
to show that `(1,r)(Tn) = Ω(log2 n) for every constant r. Using subdivision of
edges, one can easily show:

Corollary 6. For every r > 0, `(1,r)(Tn) = Ω(log2(n/(r + 1)), and thus, for
every k > 3, `(1,r)(Cn,k) = Ω(log2(n/(r + 1))).

We also improve the lower bound on r-additive schemes on general graphs.

Corollary 7. `(1,r)(Gn) = Θ(n) if r < 2, and `(1,r)(Gn) = Ω(
√

n/r), if r > 2.
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