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Consider shortest path inter̈ al routing, a popular memory-balanced method for
Ž .solving the routing problem on arbitrary networks. Given a network G, let IRS G

denote the maximum number of intervals necessary to encode groups of destina-
tions on an edge, minimized over all shortest path interval routing schemes on G.

Ž .In this paper, we establish tight worst case bounds on IRS G . More precisely for
Ž . Ž .any n, we construct a network G of n nodes with IRS G g Q n , thereby

Ž .improving on the best known lower bound of V nrlog n . We also establish a
worst case bound on bounded degree networks: for any D G 3 and any n, we

Ž .construct a network G of n nodes and maximum degree D with IRS G gD D

Ž Ž .2 .V nr log n . Q 1998 Academic Press

1. INTRODUCTION

The shortest path routing problem for an arbitrary network of processors
is to design a uniform strategy that the router of each processor will follow
upon reception of a message to decide to which of its neighboring nodes
the message should be sent next such that the message arrives at its
destination after passing through as few nodes as possible. The routing
strategy should be simple and distributed so as to limit the costs of routing
Ž .space, time, and complexity and uniform to reduce the costs of building
hardware routers, over a potentially great number of nodes. We want to
minimize the local memory requirement for a distributed routing strategy.
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Table routing is a standard solution to the shortest path routing problem
for arbitrary networks. At each node in the network is stored a table listing
for each possible destination the output port that should be used to send a
message to that node along a shortest path. That solution guarantees

Ž .shortest paths but requires Q n log D bits of space per node, where n is
the number of nodes and D is the maximum degree of a node.

To alleviate the space requirements of routing tables, compact routing
w x w xschemes were introduced: in SK85 for arbitrary networks and in FJ88 ,

w x w xFJ89 , and FJ90 for planar and c-decomposable networks. Trade-offs
between the space requirements for every node and the length of the

w x w x w xroutes were proposed in ABNLP90 , AP92 , and PU88 . A popular
compact routing method, inter̈ al routing, is to group together the destina-
tion nodes corresponding to the same output port of a given node in
intervals. Just as for table routing, this method requires that a header of

Ž .only O log n bits be added to the forwarded message. This routing
w x w xscheme was introduced in SK85 and generalized in vLT87 , and shortest

w x w x w xpath interval routing was discussed in BvLT91 , FJ88 , and vLT87 .
Let us model a network of processors as a connected, simple and

Ž . Ž . Ž .loopless symmetric digraph G s V, E , i.e., x, y g E implies y, x g E,
Ž . Žand x, x f E. V denotes the set of vertices of G corresponding to the

. Žrouters and E the set of arcs of G corresponding to the set of directed
.links of the symmetric network . We assume that the cost of sending a

w xmessage along any arc of G is uniform. An inter̈ al a, b of the set
� 4 � 41, . . . , n is the set of consecutive integers a, . . . , b cyclically. For exam-

w x � 4 � 4ple, 7, 2 is the subset 7, 8, 1, 2 of 1, . . . , 8 .
Ž .Given a symmetric digraph G s V, E of n vertices, an inter̈ al routing

Ž .scheme R s LL , II for G consists of:

� 41. a one-to-one labeling function of the vertices, LL : V ª 1, . . . , n ;
� 4 � 42. a family II s I N e g E , where I is a set of intervals of 1, . . . , ne e

associated with arc e.

Moreover LL and II must be such that the following properties hold:

Ž . � Ž . 4 � 4 Ži. for every x g V, LL x j I N x, y g E s 1, . . . , n i.e., weŽ x, y .
.know how to route messages from x to every node in G ;

Ž . Ž .ii. for every two distinct arcs x, y and x, z of E, I l I s BŽ x, y . Ž x, z .
Ž .i.e., the routing scheme is well defined .

We say that a routing R is a shortest path routing scheme if the
node-to-node routes induced by R always use a shortest path in G. From
now on, we will only consider shortest path interval routing schemes.

If such an interval scheme R is defined on a graph G, then message
routing is performed as follows: upon receipt of a message, vertex x first
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Ž . Ž .compares the message header, LL y with its own label, LL x , to check if
the message has arrived at its destination. If not, then the message and its

Ž . Ž .header are forwarded through the unique arc x, z such that LL y g I .Ž x, z .
Consider Fig. 1 as an example of a shortest path interval routing

scheme. In this example, the labeling function LL maps vertices a, b, e,
g, d, f , c to integers 1, . . . , 7, respectively. In this graph, which is shown

Ž .with undirected edges, the set of intervals I assigned to arc x, y isŽ x, y .
w x w xplaced close to vertex x. For example, the intervals 1, 2 and 5 that are

� 4close to vertex 7 correspond to the set of integers 1, 2, 5 and form the set
Ž .I that labels the arc 7, 1 . Accordingly, if the vertex b wants to send aŽ7, 1.

Ž . Ž .message to vertex f under R, the message will follow arcs b, a , a, c ,
Ž .and c, f in order. Note that, in this model, the label of the node may or

Žmay not belong to an interval of one of its outgoing arcs e.g., for this
.graph, the node labeled 5 does, while the node labeled 3 does not . A

labeling such that no interval contains the label of its own node is called
strict. It may happen that the number of intervals increases by 1 if we
decide to split the intervals containing the label of its own node in order to
make the labeling strict.

Routing strategies that do not require shortest paths have been studied
w x w x w xin BvLT91 , FG94a , and SK85 , where the authors give a complete

characterization of the graphs requiring a small number of intervals for
different restricted versions of interval routing. A hardware solution to the
routing problem based on intervals was proposed by INMOS with its C104

Ž w x.chip see MTW93 .
Given a graph G of n vertices and an interval routing scheme R for G,

Ž .we define IRS R to be the maximum over all the arcs of G of the number

FIG. 1. A graph G and an interval routing scheme for G.
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of intervals required to encode the destinations associated with that arc
Ž Ž . < < .IRS R s max I such that I g II . We define the compactness of ae e e

Ž . Ž .graph G, denoted IRS G , as min IRS R for all shortest path intervalR
Ž .routing schemes R on G. In a sense, IRS G is the maximum number of

intervals required by the ‘‘most compact’’ shortest path interval routing
scheme on G. Note that we consider in the following that graphs have at
least one arc and thus the compactness of a graph is always greater than or
equal to 1. Since interval routing was introduced in the hope of reducing

Ž .the amount of space required, IRS G is an important parameter to
consider. In fact, given a graph G, there is a node of G that requires
Ž Ž . .V IRS G log n bits of local memory under a shortest path interval routing

scheme.
Most of the work in the literature on shortest path interval routing has

Ž .been concerned with finding IRS G for specific networks: chordal rings
w xFGS94 ; trees, hypercubes, d-meshes, d-tori, and r-complete-bipartite

w xgraphs BvLT91, FG94c, KKR93 ; unit-interval and unit-circular networks
w x w x Ž .FG94c . It is shown FG94b, FvLMS94, KKR93, Ruz88 that IRS G is notˇ
bounded by a constant in the general case. In this paper we are interested
in finding a worst case graph G with a large compactness. For every

Ž . Ž .integer n we define IRS n s max IRS G such that G has n vertices.G
Ž .IRS n is the maximum compactness for graphs of n vertices. That is, for

each n, and some graphs of n nodes, any interval routing scheme uses at
Ž .least IRS n intervals for some edges.

w x Ž . Ž 1r3.It was shown in KKR93 that IRS n g V n . The result was then
w x Ž . Ž .improved in FvLMS94 , where it was shown that IRS n g V nrlog n . In

this paper, we present a general technique for proving lower bounds on
Ž .IRS n and for every n, we exhibit a graph G of n nodes for which we can

Ž . Ž .prove that IRS G g Q n . We then extend the techniques introduced to
construct for every fixed D and every n a graph G of maximum degreeD

Ž . Ž Ž .2 .D G 3 and of n nodes for which IRS G g V nr log n .D

Ž .More precisely, if we let n k denote the number of nodes of the
Ž . Ž .smallest network G for which IRS G G k, we show that 2k q 1 F n k F

Ž .12k y 11 for every integer k G 2, and thus that IRS n G nr12. The lower
Ž . w xbound of 2k q 1 on n k was obtained in FG94a with the following

simple argument: by the pigeon hole principle, any integer labeling on
?Ž . @n y 1 nodes can give at most n y 1 r2 wrap around intervals of consec-

Ž . Ž .utive integers. This lower bound on n k proves that our bound on IRS n
Ž .is asymptotically tight. Now let IRS n, D denote the largest compactness of

a graph of n vertices and of maximum degree D. We adapt the construc-
Ž . Ž 2 .tion to show that IRS n, D is greater than nr 12 log n , for sufficiently2

large n and for every D G 3.
In the next section, we introduce the matrices of constraints, which

Ž . Ž .provide a general tool for proving lower bounds on IRS n and on IRS n, D .
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In the same section, we describe how to construct a graph of p q 2 q
vertices from a p = q boolean matrix such that if this matrix requires k
blocks of consecutive 1s in one of its columns, then the constructed graph

Ž .G satisfies IRS G G k. In Section 3, we present results from coding theory
that we apply to produce suitable matrices that we use together in Section

Ž .4 with our construction of Section 2.2 to establish a lower bound on IRS n .
In Section 5, we adapt the construction of Section 2.2 to obtain a graph GD

of at most 6 pq y 4 p y 4q vertices and of maximum degree D, from any
p = q boolean matrix. Then we use suitable matrices to establish a lower

Ž .bound on IRS n, D , for any n and any D G 3.

2. MATRICES, CODES, AND GRAPHS OF CONSTRAINTS

2.1. Matrices and Codes of Constraints

Ž .Given an arbitrary connected graph G, computing IRS G is generally
w xdifficult. In fact, the problem has been shown to be NP-hard FGS95 .

There seems to be no other way than checking the minimum number of
intervals required by each shortest path interval routing scheme on G. In
this section, we introduce a tool that is helpful in establishing lower

Ž .bounds on IRS G . More precisely, this tool is a way of reducing the
problem of finding the compactness of a graph G to a problem on boolean
matrices. This tool is based on the notion of a matrix of constraints, a
concept that we now introduce.

Consider vertex b in the graph G drawn on the left-hand side of Fig. 1.
Note first that the shortest path from vertex b to vertices a, c, d, e, and g

Ž .is unique. The shortest path from b to a, c, and d must use arc b, a , and
Ž .the shortest path from b to e and g must use arc b, e . There is a shortest

Ž . Ž .path from b to f that uses arc b, a , and another that uses arc b, e .
Either path may be used, and this choice depends on the routing scheme.

Ž .In general, for every triple of vertices u, ¨ , w of a graph G where u and
¨ are adjacent vertices and u / w, three cases may occur for shortest
paths:

Ž .1. Every shortest path from u to w must use arc u, ¨ .
Ž .2. Every shortest path from u to w must not use arc u, ¨ .
Ž .3. There are shortest paths from u to w that use arc u, ¨ and there

Ž .are shortest paths from u to w that do not use arc u, ¨ .

Ž .For the first two cases, arc u, ¨ forms a constraint for the vertex w on
Ž .the graph G. Note that u, ¨ is not a constraint for vertex u, since there is

no shortest path from u to u.
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Ž .A matrix of constraints of a symmetric digraph G s V, E is a p = q
Ž .boolean matrix M s m whose rows are labeled with vertices of ai, j

� 4subset ¨ , . . . , ¨ of V and whose columns are labeled with arcs of a1 p
� 4subset e , . . . , e of E, such that:1 q

1. m s 1 if and only if every shortest path from the tail of e toi, j j
vertex ¨ uses arc e .i j

2. m s 0 if and only if no shortest path from the tail of e toi, j j
vertex ¨ uses arc e .i j

Ž .Consider a column u, ¨ of a p = q matrix of constraints and suppose
that the vertices of the graph have been labeled with integers by a shortest

Ž .path interval routing scheme R s LL , II . If there is a 1 at the intersec-
tion of the column with the row labeled by vertex w, then the label of w

Ž . Ž .must be on arc u, ¨ in R, i.e., LL w g I . Similarly, if there is a 0 thenŽu, ¨ .
Ž . Ž .the label of w cannot be on arc u, ¨ in R, i.e., LL w f I . If weŽu, ¨ .

permute the rows of the matrix such that the integer labels of the rows are
placed in ascending order in the matrix, then clearly the number of blocks

Ž .of consecutive 1s in column u, ¨ is a lower bound on the number of
intervals for that arc in R. Table 1 shows a matrix of constraints for the
graph of Fig. 1.

Of course for a given graph, a matrix of constraints is not unique. In
particular every submatrix of M is also a matrix a constraints of the graph
depicted in Fig. 1.

Note that a matrix obtained by permuting the rows of a matrix of
constraints is also a matrix of constraints for the same graph and corre-

Žsponds to a relabeling of the vertices the integer labels have to be in
.ascending order . If we can show that under any permutation of the rows

of the matrix there must be at least one column with a certain number k
of blocks of consecutive 1s, then the graph must require at least k
intervals. Finding a matrix of constraints for a graph G and establishing a
bound on the maximum number of blocks of consecutive 1s in a column,

TABLE 1
A Matrix of Constraints for the Graph of Fig. 1

Ž . Ž . Ž . Ž . Ž . Ž . Ž .c, a e, b g, d c, f e, g g, e g, f

1 1 0 0 0 1 0 b
1 1 1 0 0 0 0 a

M s
1 0 1 0 1 0 0 d
0 0 0 1 1 0 1 f
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minimized over all permutations of the rows of the matrix, therefore yields
Ž .a lower bound on IRS G . We now formalize these ideas.

Ž .A p, q -code is a non-empty family C of p = q boolean matrices such
Ž . Xthat i if M is in C then any other matrix M of C can be obtained by

Ž .permuting the rows and columns of M and ii all the matrices obtained by
Ž .permuting the rows and columns of M are in C. A p, q -code can be seen

as an equivalence class of the set of p = q boolean matrices, using row
and column permutation as a congruence operator. It therefore makes
sense to specify a code for C with a representative matrix from C.

Ž .Given a boolean matrix M, let I M denote the compactness of M, that
is, the maximum, over all columns of M, of the number of blocks of

Žconsecutive 1s cyclically the first and the last bit in the boolean word
.formed by a column of M are considered consecutive . For example, in the

boolean matrix of Fig. 2, the first and second columns have one block of
Ž X.consecutive 1s, while the third has two. Therefore I M s 2 for this

Ž .matrix, while I M s 1 for the matrix of constraints of Table 1. Note that
Ž . w xI M s 0 if and only if M s 0 .

We extend our definition of compactness to codes by defining the
Ž . Ž . Ž .compactness of a p, q -code C, denoted I C , to be the minimum of I M

over all matrices M in C. If M is a matrix of constraints of a graph G,
then we call the family of matrices obtained by permuting the rows and

Ž .columns of M a p, q -code of constraints of G. We are now ready to
w xintroduce the next result proved in FvLMS94 .

w xLEMMA 1 FvLMS94 . If C is a code of constraints of graph G then
Ž . Ž .IRS G G I C .

Ž .FIG. 2. A graph for a 4, 3 -code of compactness 2.
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Proof. Let R be any shortest path interval routing for a graph G and
let C be any code of constraints of G. Consider the set of integers used by
R to label the vertices that label the rows of every matrix in the code. Let
M be a matrix of C for which the integers, which now label the rows, are

Žin ascending order from top to bottom. Note that any matrix of C
.obtained by permuting only the columns of M satisfies this condition.

Ž .Since there is a column of M with at least I C blocks of consecutive 1s by
definition, it follows that the arc corresponding to the column has at least
Ž . Ž Ž .I C intervals under routing scheme R there are at least I C ‘‘holes’’

.when we list the integers corresponding to the arc . Since R is an arbitrary
Ž . Ž .routing scheme for G, it follows that IRS G G I C .

Unfortunately we do not know of a better relation between the compact-
ness of a graph and the compactness of the ‘‘less compact’’ code of

Ž .constraints of the graph. The graph drawn in Fig. 3 see Section 4 is an
example where there exists a code of constraints with the same compact-

Ž w xness as the graph itself it has already been proved FG94c that the
.compactness of this graph is 2 . But Proposition 1 of Appendix A estab-

lishes that, in general, there is no code of constraints with the same
compactness as that of the graph.

Ž .Also, it is not necessarily easy to compute I C in general. Indeed, it is
w x Ž . Ž .proved FGS93 that, given a p, q -code C, computing I C is NP-hard.

This result is derived from the consecutive 1s submatrix NP-complete
w xproblem in GJ77 . However, it can be decided with a polynomial time
Ž . Ž w x.algorithm if I C s 1 see BL76 . Anyhow, the result of Lemma 1 is

useful for constructing graphs for which we want to guarantee a given
number of intervals.

This idea of matrix of constraints was independently introduced in
w xFvLMS94 , where the authors deal with the concept of unique matrix of
shortest path representation. With this concept, they construct a graph of

Ž .n vertices that requires V nrlog n intervals on one specific arc. In the
following section we extend this concept to the idea of graphs of con-
straints, a more powerful tool to improve their lower bound.

2.2. Graphs of Constraints

In the previous section we saw how to lower bound the compactness of a
graph by finding a suitable matrix of constraints. The technique we
propose is to build a graph from an arbitrary matrix M providing a graph
having exactly M as matrix of constraints. It turns out a more powerful
result since in such situation it suffices to prove that matrices of high
compactness exist.

Ž .We describe below how to construct a symmetric digraph G s V, E
Ž .from a p = q boolean matrix M s m such that M is a matrix ofi, j
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constraints of G. To simplify presentation, we consider G to be undi-
rected. Refer to Fig. 2 for an example of the construction using a 3 = 4
matrix. We get:

LEMMA 2. For e¨ery p = q boolean matrix M, there exists a graph G of
p q 2 q ¨ertices such that M is a matrix of constraints of G.

Ž .Proof. Let M s m be any p = q boolean matrix. We construct ai, j
graph G composed of two layers. The bottom layer is a set of p indepen-

� 4 Ždent vertices ¨ , . . . , ¨ , and the top layer consists of q copies of K the1 p 2
.complete graph of two vertices . We denote a and b the two vertices ofj j

the jth copy of K , for 1 F j F q. Hence the set of vertices of G is2
� 4¨ , . . . , ¨ , a , b , . . . , a , b ; G has p q 2 q vertices.1 p 1 1 q q

We connect the vertices belonging to different layers as follows. If
1 ² :m s 1 then add the edge b , ¨ , and if m s 0 then add the edgei, j j i i, j

² : ² :a , ¨ . For each of the q edges a , b , we add exactly p edges and so Gj i j j
has pq q q edges. It is clear that G thus constructed is connected and has
a diameter at most 4.

We prove that the graph G that we constructed from boolean matrix M
has M as matrix of constraints. We first construct a p = q matrix of

X X Ž .constraints M of G as follows: label column j of M with arc a , b , forj j
1 F j F q, and label row i of M X with vertex ¨ , for 1 F i F p. Byi
construction M X is a matrix of constraints of G. Indeed the shortest path
from any a to any ¨ is unique: it cuts b if m s 1, and uses anotherj i j i, j

Ž ² :edge otherwise actually the edge a , ¨ because a and ¨ are neighborsj i j i
. Xif m s 0 . We get M s M. Therefore M is a matrix of constraints ofi, j

the graph G.

The graph built in the proof of Lemma 2 from a boolean matrix M is
called a graph of constraints of the matrix M. Since a permutation of the
rows and columns of a matrix of constraints of a graph can be seen as a
relabeling of the vertices and arcs, respectively, then for a code C and for
any two matrices M and M X in C, if G is a graph of constraints of matrix
M then it is also a graph of constraints of matrix M X. Thus we can speak of
a graph of constraints of a code C.

3. CODES WITH LARGE COMPACTNESS

Ž .In this section we present a method for constructing p, q -codes C with
Ž . Ž .a large value of I C as a function of p, q . We first extend our definition

Ž . Ž .of code as follows. A p, q, d -code C is a p, q -code such that, for every

1 ² :To avoid a confusion with intervals, we denote by a, b the edge connecting vertices a
and b.
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Žmatrix M in C, every two rows of M differ in at least d places d may be
. Ž p .0 . For example the well-known Gray codes of length p are the 2 , p, 1 -

w x Ž .codes MS77 . We use A q, d to denote the largest value of p for which
Ž . Ž .there is a p, q, d -code. Note that, in general, the exact value of A q, d is

Ž w x.unknown, but tables can be found in the literature e.g., MS77 . The
Ž .following lemma is useful in finding a lower bound on I C for a given

code C.

w x Ž . Ž . Ž .LEMMA 3 FvLMS94 . For e¨ery p, q, d -code C, I C G pdr 2 q .

Ž .Proof. Consider a boolean matrix M of the p, q -code C. For i g
� 41, . . . , p , let d be the Hamming distance between the two consecutivei

Žrows, i and i q 1 of M modulo p, i.e., the last and the first row are
. � 4consecutive , and for j g 1, . . . , q let k denote the number of blocks ofj

consecutive 1s in column j of M. We call D s Ý p d the total Hammingis1 i
distance over all rows of M and K s Ýq k the total number of blocks ofjs1 j
consecutive 1s in M. It is easy to see that each increasing by 1 of a block of
consecutive 1s provides an increment of 2 on the total distance D, i.e.,
2 K s D. Since d G d for every i, we have 2 Ýq k s Ý p d G pd. By thei js1 j is1 i
pigeon hole principle, since M has q columns, there must be a column j,

Ž .1 F j F q, such that k G pdr 2 q .j

The fact that the Hamming distance yields a lower bounds on the
w xnumber of intervals was due to Fla94 .

COROLLARY 1. For e¨ery integer k, if there exist integers p, q, and d such
Ž . Ž . Ž .that A q, d G p ) 2 q k y 1 rd, then there exists a p, q -code C such that

Ž .I C G k.

Ž .Proof. Assume that, for some integer k, there exists a triple p, q, d
Ž . Ž . Ž .such that A q, d G p ) 2 q k y 1 rd. Since p F A q, d , then there ex-

Ž . Ž .ists, by definition of A q, d , a p, q, d -code C. Applying Lemma 3,
Ž . Ž .I C G pdr 2 q G k.

Therefore, to find a code with large compactness using Lemma 3, we
Ž . Ž .may use a p, q, d -code maximizing pdr 2 q . With the next lemma we

Ž . Ž . Ž . Ž .will see that there exists a p, q -code C with q g Q p and I C g Q p .

Ž dq2 dq1 d .LEMMA 4. For e¨ery integer d G 0, there exists a 2 , 2 , 2 -code.

Ž dq2 dq1 d .Proof. We describe a representative matrix M of a 2 , 2 , 2 -d

code, by induction. For every matrix M, we denote by M the matrix M
w xwith every bit complemented. Moreover, if M s X Y , where X and Y
Ž . w xare two matrices of the same dimensions, we write x M s Y X , i.e., the

matrix obtained from M by exchanging the columns of X with the ones of
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Ž .Y. The construction of M is summarized by Eq. 1 :d

0 0 0 0
0 1 1 0M s , x M s ,Ž .0 01 1 1 1
1 0 0 1 1Ž .

M Md d
M s ,dq1 x M x MŽ . Ž .d d

Ž . Ž dq2 dq1 d .M is a 4, 2, 1 -code. Let us assume M is a 2 , 2 , 2 -code. M is0 d dq1
Ž dq3 dq2 . da 2 , 2 -code. Let d s 2 . Let us show that any pair of rows of Mdq1

w xdiffer in 2 d places. Two rows of the matrix A s M M differ, byd d

construction, in 2 d places. Similarly, two rows of the matrix B s
w Ž . xx M x M differ by 2 d places. Let us show that any row u of A alsoŽ .d d

differs by 2 d places of any row ¨ of B. Without loss of generality,
dq2u s xyxy, and ¨ s yxyx, where x and y are binary words of length 2 r4

s d bits. If x and y differ by r places, then u and ¨ differ by r q r q
Ž . Ž .d y r q d y r s 2 d places. Indeed, x and y, and similarly y and x,
differs by d y r places. Therefore, any pair of rows of M differ by 2dq1

dq1
dq3 dq2 dq1Ž .places, and thus M is a 2 , 2 , 2 -code.dq1

Ž dq2 dq1 d .The 2 , 2 , 2 -code constructed in the proof of Lemma 4 will be
Ž . ddenoted C from now on. Lemma 3, we know that I C G 2 . One cand d

Ž . d Žcheck by induction that, in fact, I C s 2 by use of the constructiond

Ž ..given in Eq. 1 .
w x Ž .Actually, MacWilliams and Sloane MS77 proved that a 8d , 4d , 2d -

code exists if there exists an Hadamard matrix of dimension 8d = 4d .
According to them, Hadamard matrices were known in 1977 for every d
less than 70.

Ž .4. A LOWER BOUND FOR IRS n

Ž .Let us recall that n k denotes the minimum order of a graph G such
Ž .that IRS G G k.

Ž . u log 2 k vq2 Ž .LEMMA 5. For e¨ery k G 2, n k F 2 q 4k y 3 s O k .

Ž .Proof. Let k G 2. By Corollary 1 there exists a p, q, d -code C with
Ž . Ž . Ž .I C G k if A q, d G p ) 2 q k y 1 rd. Let M be a p = q boolean

Ž .matrix of such a p, q, d -code C. Lemma 2 guarantees the existence of a
graph of constraints G of the matrix M and, applying Lemma 1, such that

Ž . Ž .IRS G G I C G k. Hence the number of vertices of G is an upper bound



GAVOILLE AND GUEVREMONT´12

Ž . Ž . < Ž . < Ž .on n k , i.e., n k F min V G , if I C G k. Thereforep, q

;k G 2, n k F min p q 2 q ,Ž . Ž .
p , q , d

where p , q , d satisfies A q , d G p ) 2 q k y 1 rd.Ž . Ž . Ž .

Ž dq2 dq1 d . u v dq1Using the 2 , 2 , 2 -code C of Lemma 4 with d s log k , q s 2d 2
d Ž . Ž . dq2and d s 2 , we obtain A q, d G p ) 2 q k y 1 rd if and only if 2 G p

Ž . Ž dq1 d . dq2) 4 k y 1 . Indeed, Lemma 4 shows that A 2 , 2 G 2 and, by
w x Ž .applying Plotkin’s bound MS77 , which states that A 2 i, i F 4 i for i

Ž dq1 d . dq2even, we get that A 2 , 2 s 2 . As p should be the smallest integer
dq2 Ž . Žsuch that 2 G p ) 4 k y 1 , we can choose p s 4k y 3 i.e., we can

.remove three rows at least of C to yield the desired result.d

Ž . Ž .Lemma 5 is enough to prove that n k g Q k for all k G 2, because we
Ž .have shown 2k q 1 F n k . The following theorem is a direct consequence

of Lemma 5.

Ž .THEOREM 1. For e¨ery integer n G 2, IRS n G nr12.
u log 2 k v Ž .Proof. Since for any k G 2, 2 F 2 k y 1 , from Lemma 5 we get

Ž . Ž .that n k F 12k y 11. By definition of n k , we derive that for every
Ž .integer n G 2 there exists a graph G with n vertices such that IRS G G k

?Ž . @ Ž .G n q 11 r12 . Therefore IRS G G nr12.

Ž . Ž .It is easy to see that Q n arcs need Q n intervals, since from Lemma
Ž 2 .3, the total number of intervals required on q arcs is pd s Q n .

Remark. We can see that the graph G built in Lemma 5 has an
Ž dq2 dq1.unbounded maximum degree. G was obtained using the 2 , 2 -code

Ž .C , which contains the same number of 0 and 1 entries. Let D G denoted

the maximum degree of graph G. Let M be a p = q boolean matrix, and
G its graph of constraints, built as in Lemma 2. It is easy to see that
Ž . � 4D G G max zrq, p y zrq , where z is the total number of 0 entries in

Ž ² : .the matrix M consider any edge a , b of the construction . It followsi i
Ž . dthat D G G 2 q 1r2. Indeed we remove some rows of C , but at leastd

dq2 dq1Ž dq2 .2 r2 q 1 rows of C are left, and thus at least 2 2 r2 q 1 r2 0 ord

1 entries are left. Since the number of vertices of G is n s 2dq2 q 4k y 3
dy1 d Ž .and k is such that 2 - k F 2 , then D G G nr8.

Ž .We now show that it is possible to tighten the upper bound on n k . For
Ž .k a power of 2, we obtained n k F 8k y 3 in Lemma 5. If we consider

Ž .the case where k s 2, for example, the upper bound on n 2 of Lemma 5
Ž . u log 2 2 vis obtained by using a 5, 4, 2 -code: d s 2 s 2, q s 2 d s 4, and

Ž .p s 4k y 3 s 5. Thus the bound of Lemma 5 states that n 2 F p q 2 q s
Ž .5 q 2 ? 4 s 13. But if instead we would use the 4, 3, 2 -code of Fig. 2, then
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Ž .we would find, by applying Lemma 3, that n 2 F p q 2 q s 4 q 2 ? 3 s 10,
an improvement. As another example, consider the case k s 5. The bound

Ž . Ž .of Lemma 5 gives n 5 F 49 by using a 17, 6, 3 -code. But we can use a
Ž . 2 Ž .25, 6, 2 -code instead to find n 5 F p q 2 q s 25 q 2 ? 6 s 37. There-
fore, Lemma 5 does not provide an optimal result and it can be improved
upon.

Ž .We can compute a smaller upper bound on n k using the construction
Ž .of a graph of constraints of Lemma 2, based on the fact that n k F

Ž . Ž . Ž .min p q 2 q such that A q, d G p ) 2 q k y 1 rd. Using a table ofp, q, d
Ž . w xthe best lower bounds known on A q, d taken from MS77 , we find the

Ž . Ž .following upper bounds on n k , for k F 21 see Table 2 , by applying the
above minimization on a computer with a systematic search. This table

Ž . Ž .also gives the values p, q, d of the p, q, d -code C used for the con-
struction of a graph of constraints of code C. The graph corresponding to

Ž . Ž .the first row of this table, k s 2 using an 4, 3, 2 -code and given n 2 F 10,
is shown in Fig. 2.

Remark. We showed that, by using techniques from coding theory, we
were able to obtain asymptotically tight bounds on the size of the smallest
graph which requires at least k intervals to route along shortest paths
using interval routing. Nevertheless, we believe that our bound can be
improved upon. For example, consider once more the case k s 2. Applying

Ž .the general result of Lemma 5, we showed that n 2 F 10. However, it was
Žshown by a case analysis that there exist a graph of seven vertices see

. Ž .Section 2.1 and Fig. 3 of compactness 2, and therefore that n 2 F 7. In

2 Ž 6 . ŽTake a 2 , 6, 1 -code, and write it like a Gray code. Remove half of the entries e.g., the
. Ž 5 . Ž .odd rows in order to have a 2 , 6, 2 -code see Lemma 7 . It suffices to remove seven

Ž .arbitrary rows to have a 25, 6, 2 -code.

TABLE 2
Ž .Upper Bound on n k for Small Values of k

Ž . Ž .k d q p Upper bound n k k d q p Upper bound n k

Ž .2 2 3 4 10 7 12 6 14 52 80
Ž .3 2 5 11 21 10 13 6 14 57 85

4 2 5 16 26 14 6 14 61 89
5 2 6 25 37 15 8 18 64 100
6 2 6 31 43 16 6 15 76 106
7 4 10 31 51 17 6 15 81 111
8 4 10 36 56 18 6 15 86 116
9 6 14 38 66 19 6 15 91 121

10 6 14 43 71 20 6 15 96 126
11 6 14 47 75 21 6 15 101 131
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Ž . Ž .FIG. 3. A code of constraints C for a graph G with IRS G s I C s 2.

Ž .Appendix B we prove that in fact n 2 s 7. The exact compactness of the
Žexample of Fig. 2 is 3, by considering all the nodes and the arcs it has

. Ž .been computed by exhaustive analysis . It shows that n 3 F 10. Though
asymptotically tight, there still exist a small gap between our upper bounds

Ž .and the exact values of n k .

5. WORST CASE GRAPHS OF BOUNDED DEGREE

Ž .We have seen that our lower bound on IRS n , in Lemma 5, is achieved
Ž .with a graph of constraints of order n with a maximum degree in Q n . In

Ž .this section, we establish a lower bound on IRS n, D for shortest path
interval routing schemes on graphs of order n and of maximum degree D.

Ž . Ž Ž .2 .We will prove that IRS n, D g V nr log n , for every integer n and for
every integer D G 3. We assume, in the following, that D G 3 because
graphs with maximum degree less than 3 clearly have a compactness of 1
Ž w x w x .see SK85 for trees and vLT87 for rings . In this section, we will
construct a graph of constraints G with maximum degree D from an
arbitrary p = q boolean matrix M, such that M is a matrix of constraints

Ž .of G. We will then prove our bound on IRS n, D by using the results of
Section 2.1.

Refer to Fig. 4 for an illustration of the construction. Assume that we
are given a p = q boolean matrix M and an integer D G 3. The symmetric
digraph G, which we describe as undirected, is composed of three main
levels of vertices denoted Low, Medium, and High, and of intermediary

Ž .vertices drawn in black in Fig. 4 . The Low level is a set of p independent
vertices that we denote ¨ , 1 F i F p; the High level consists of q copies ofi

² :K that we denote a , b , 1 F j F q; the Medium level is composed of2 j j
pq vertices labeled w , 1 F i F p and 1 F j F q.i, j

These three levels are connected with trees of maximum degree D. Let
us first describe how the Low and the Medium levels are connected. At
every vertex ¨ of the Low level, we root a tree T whose leaves are thei ¨ i
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FIG. 4. Graph of constraints of the matrix M with n s 80 vertices and with a maximum
degree D s 3.

� 4w s, for j g 1, . . . , q . All the trees T are isomorphic. They are minimali, j ¨ i

undirected trees of maximum degree D with exactly q leaves. In each T ,¨ i
� 4 � 4 Xi g 1, . . . , p , the leaves w , j g 1, . . . , q , are all at a distance h s 1 qi, j

u Ž .vlog qrD from the root ¨ . We denote by r the number of vertices inDy1 i
� 4 Ž .any tree T , i g 1, . . . , p all trees have the same number of vertices .¨ i

To connect the Medium and High levels, we use a second type of tree.
Ž . � 4 Ž . ŽAt vertex a resp. b , j g 1, . . . , q , we root a D y 1 -ary tree T resp.j j a j

.T the root has maximum degree D y 1 while the other vertices havebj
Ž . � 4maximum degree D. In T resp. T , j g 1, . . . , q , the leaves are thea bj j

Ž .vertices w , for every i such that m s 0 resp. m s 1 . Furthermore,i, j i, j i, j
Ž . uevery leaf of the tree T resp. T is at distance h s loga b Dy1j j

Ž � 4.v Ž .max max z , p y z from a resp. b , where z is the number of 0s ini i i j j i
column i of the p = q matrix M. T and T have the smallest possiblea bj j
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number of vertices necessary to satisfy these requirements. We denote by
r and r , respectively, the number of vertices of trees T and T ,a b a bj j j j

� 4j g 1, . . . , q .
In fact, the vertices w can be seen as a grid, where the w s of row ii, j i, j

are connected by tree T , while some of the w of column j are¨ i, ji

connected by tree T and the others by tree T . The total number ofa bj j
q Ž . Žvertices in graph G is equal to Ý r q r q pr y pq the w s arejs1 a b i, jj j

.counted twice .

LEMMA 6. For e¨ery p = q boolean matrix M and e¨ery integer D G 3,
there exists a graph of constraints of matrix M of maximum degree D and with
6 pq y 4 p y 4q ¨ertices at most.

Proof. Let us consider the preceding construction of the graph of
constraints G of M. The trees T and T can be constructed as follows:a bj j

Ž . Ž .starting from the leaves at most p , construct a full D y 1 -ary tree,
adding intermediary nodes as required. From the root of that tree, con-

Ž . Ž .struct a path to a or b , so that T and T has height h. To built T ,j j a b ¨j j i

Ž .we start from the root ¨ with D children or q if q F D and then we root,i
Ž .in each child, q full D y 1 -ary trees of height h y 1. Then we can

Ž .hy1remove D D y 1 y q leaves from the last stage. T , T , and T¨ a bi j j

therefore always exist, and so the above construction guarantees that we
obtain a graph G that is connected and has a maximum degree D.

We now prove that M is a matrix of constraints of G. We will first
construct a p = q matrix of constraints of G, M X, and we will then show

X X Ž X .that M and M are equal. Label the p rows of M s m with the pi, j
Ž . Xvertices of the Low level the ¨ s and label the q columns of M with thei

Ž . � 4 Ž .arcs a , b of the High level. For each j g 1, . . . , q , let A resp. B bej j j j
Ž .the set of ¨ s such that w is a leaf of the tree T resp. T . Clearly treesi i, j a bj j

T and T are disjoint and thus A and B partition the Low levela b j jj j

vertices.
We now compute the entries of matrix M X, according to the definition

of matrix of constraints. We first show that if ¨ g B , then every shortesti j
Ž .path from a to ¨ must use the arc a , b . Indeed, the path from a to ¨j i j j j i

X Žhas a length of h q h q 1 go to b in one step, take h steps down T toj b jX .reach w , and then h steps up T to ¨ . If we assume, for the sake ofi, j ¨ ii

contradiction, that the shortest path between a and ¨ leaves through anj i
arc of T , then the length of the path must be at least h using tree T toa aj j

reach a vertex w X , then 2 at least using tree T X to reach a vertex w X X ,i , j ¨ i , ji

then 2 at least using tree T or T to reach vertex w X , and finally hX,X Xa b i, jj j

using tree T to reach the vertex ¨ . The path would therefore at least be¨ ii

of length h q hX q 4, greater than h q hX q 1. Hence mX is 1.i, j
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Now, suppose that vertex ¨ g A . We will show that the shortest pathi j
Ž .from a to ¨ must use an arc of T , i.e., it must not use arc a , b . First,j i a j jj

it is simple to see that there is a path from a to ¨ of length h q hX: take hj i
steps down T to vertex w , and then hX steps up T to ¨ . Following ana i, j ¨ ij i

Žargument similar to the one given above about the path of length
X . Ž .h q h q 4 one can see that a path from a to ¨ that uses arc a , b mustj i j j

have a length of 1 q h q 2 q 2 q hX at least. Hence mX is 0. Thereforei, j
M X is a matrix of constraints of G since all its entries are well defined. It is

X Ž X .now easy to see that M s M: if ¨ g B and m s 1 , then by definitioni j i, j
of the set B , vertex w is a leaf of T . But by construction of G, this isj i, j b j

Ž X .possible only if m s 1. Similarly, if ¨ g A and m s 0 then m s 0.i, j i j i, j i, j
Let us now compute the number of vertices of G. We first consider T ,¨ i

the smallest tree with q leaves at equal distance from the root, with
Ž Ž .maximum degree D T differs from a D y 1 -ary tree in that its root can¨ i

. Ž . iy1have degree D . This tree can have at most D D y 1 nodes a level i
hXy2 Ž . iaway from the root, and thus r F 1 q D Ý D y 1 q q. By choosingis0

X u Ž .v hXy1h s 1 q log qrD and D s 3, then r F 3 ? 2 q q y 2. Note thatDy1
Ž .to have a p, q -code with compactness k G 2 we must have p G 4 and

q G 3. The reader can check the fact that no smaller boolean matrix has a
u log 2Žqr3.v Ž .compactness of k G 2. But since 3 F q F 3 ? 2 F 2 q y 1 , it fol-

lows that r F 3q y 4.
� 4We now need to bound the value of r q r , j g 1, . . . , p . T is thea b aj j j

Ž . u Ž .vsmallest D y 1 -ary tree of height h s log p with z leaves, each atDy1
distance h from the root, where z is the maximum number of 0s in a

Ž .column of M, over all columns of M z F p . We already described Taj
Ž .and T at the beginning of the proof. In a D y 1 -ary tree there are atbj

Ž . i Ž .h Žmost D y 1 nodes at level i, and thus p F D y 1 we remove some
.vertices to the last level if necessary . Let z be the number of 0s inj

u Ž .vcolumn j of M. The height of the tree T is h s log z or 1 ifa a Dy1 jj j
u Ž .vz s 0, and the height of tree T is h s log p y z or 1 if z s p.j b b Dy1 j jj j

h a y1 Ž . i
jNote that h q h G 2. Hence r F Ý D y 1 q z q h y h , wherea b a j ais0j j j j

h y h is the length of the added path from the root of the full tree to a .a jj hb y1 Ž . i
jSimilarly, r F Ý D y 1 q p y z q h y h . Set D s 3. If 1 - z -b j b jis0j j

p, then we have

r q r F 2 u log 2Ž z j.v q 2 u log 2Ž pyz j.v y 2 q p q 2 log p y 2.u va b 2j j

And since log p F pr2,2

r q r F 2 z y 1 q 2 p y z y 1 q p y 4 q 2 pr2 .u vŽ . Ž .a b j jj j
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u vSince 2 pr2 F p q 1, it follows that r q r F 4 p y 7. If z F 1 or ifa b jj jh a hb Ž .j jz s p, then 2 q 2 F 1 q 2 p y 1 , and thus r q r F 4 p y 4.j a bj j
Ž .In any case, r q r F 4 p y 1 and r F 3q y 4. Thus we obtain thea bj j

desired result on the number of vertices of G.

Ž .The following lemma gives a construction of p, q -codes for particular
values of p and q.

Ž dy1 .LEMMA 7. For e¨ery integer d G 2, there exists a 2 , d , 2 -code.

Ž .dProof. Let P s ¨ , . . . , ¨ be a hamiltonian path in the hypercube of1 2
Ž dy1 .dimension d G 2. Let C be the 2 , d -code such that row r of C,i

� dy14i g 1, . . . , 2 , is the standard binary representation of the vertex ¨ 2 iy1
of P. By construction, any two rows r and r of C, i / j, differ by at leasti j
two places, since two adjacent vertices in the hypercube are at an odd

Ždistance in P two vertices at even distance in P are not adjacent in the
dy1. Ž .hypercube, thus at distance at least 2 . Thus C is a 2 , d , 2 -code.

Finally we derive the following theorem:

THEOREM 2. For e¨ery integer n and e¨ery D G 3,

n n
IRS n , D ) g V .Ž . 2 2ž /12 log n log nŽ . Ž .2

Proof. Let n be a sufficiently large integer, let p s 2 qy1, and let q be
q qq1 Ž . qq1such that 6 pq y 4 p y 4q s 3q2 y 2 y 4q F n - 3 q q 1 2 y

qq2 Ž . Ž .2 y 4 q q 1 . Applying Lemma 6, for every p, q -code C there exists
a graph of constraints G of the code C of maximum degree D and with nX

vertices, nX F n. We construct a graph GX with a maximum degree D from
G with exactly n vertices by adding a path of n y nX vertices connected to

Ž X .one of the w vertices of G, which are all of degree 2. Clearly IRS G Gi, j
Ž . X Ž w x.IRS G , since G is a subgraph of shortest paths of G see FG94c . Hence,

Ž . Ž .for every D G 3, IRS n, D G IRS G . Thus, by applying Lemma 1, for every
Ž qy1 . Ž . Ž .2 , q -code C, IRS n, D G I C . Applying Lemma 7, let C be a
Ž qy1 . Ž . Ž .2 , q, 2 -code for q G 2. Therefore, applying Lemma 3, I M G I C G
2 qy1rq;

n - 3 q q 1 2 qq1 y 2 qq2 y 4 q q 1Ž . Ž .
2 qy1

« n q 4q q 5 F 4q 3q q 1Ž .
q

n q 5 1
« q F I C .Ž .

4q 3q q 1 3q q 1Ž .
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By assumption, n G 3q2 q y 2 qq1 y 4q G 2 qq2, for q G 3 and n G 44.
Ž . Ž .2Therefore log n G q q 2 and 4q 3q q 1 - 12 log n . Finally,2 2

n q 5 1 n
IRS n , D G q ) .Ž . 24q 3q q 1 3q q 1Ž . 12 log nŽ .2

Ž .2To complete the proof, we remark that, for n - 44, 12 log n ) n, thus2
the result holds for every integer n.

The same techniques as in Section 4 can be used to improve the general
Ž .upper bound for n k , the number of vertices of the smallest graph GD D

Ž .with maximum degree D for which IRS G G k. We would have toD

< Ž . < Ž .compute min V G such that I C G k and such that G is a graph ofp, q
Ž .constraints of p, q -code C with maximum degree D.

6. CONCLUSION

From a local memory requirement point of view, we have seen that, for
a graph G of n vertices, the minimum number of intervals required to

Ž .perform shortest path interval routing on G, IRS G , is an important
parameter to consider, since at least one router of G needs to store
Ž Ž . . Ž .V IRS G log n bits of information. By proving upper bounds on n k , the

smallest number of vertices of a graph of compactness greater than k, we
showed that there exist a worst case graph that requires a router to have
Ž .Q n log n bits of local memory, whenever intervals of integers are repre-

Ž .sented in extenso on Q log n bits each. Therefore, interval routing schemes
are not better than routing tables in the general case of unbounded degree
graphs. However, for bounded maximum degree graphs, our worst case still

Ž . Ž .uses only V nrlog n bits locally, compared to O n bits for routing tables
for the bounded degree case. It would be interesting to determine whether
or not there is a graph G of n vertices and of degree bounded by aD

Ž . Ž .constant D such that IRS G g V nrlog n . If no such graph exists, thenD

the class of bounded degree graphs is a large class of graphs for which
interval routing schemes are better than tables.

APPENDIX A: COMPACTNESS OF CODES AND GRAPHS

Ž . Ž .PROPOSITION 1. There exists a graph G such that IRS G ) I C for e¨ery
code of constraints C of G.

Proof. Consider the graph G of seven vertices drawn in Fig. 1. We have
to construct all the codes of constraints of G and check that each code has

Ž .a compactness of at most 1. In fact it is enough to check for p, q -codes
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with p G 4 and q G 3 since it is easy to see that any smaller code has a
compactness of at most 1. Furthermore, we only need to check for p F 6

Ž .because we assumed that any arc u, ¨ is not a constraint for the vertex u.
Therefore the number of rows p of any code of constraint of G is at most

Ž .6. We leave it to the reader to check that every p, q -code of constraints
C of G with 4 F p F 6 and 3 F q has a compactness of at most 1, i.e.,
Ž .I C F 1.

Ž .We now prove that IRS G s 2. Assume that there exists a shortest path
Ž . Ž .interval routing scheme on G, R s LL , II , with IRS R s 1. To simplify

Ž . � 4the presentation of the proof, we set x s LL x , for x g a, b, c, d, e, f , g .
Also, if X and Y are two subsets of vertices of G, we say that X - Y if,

Ž .for every x, y g X = Y, x - y. Since vertices b and c are isomorphic,
assume without loss of generality that b - c. The order d - b - a - c
Ž .circular order modulo 7 is impossible because the interval assigned to arc
Ž .g, d , I , must contain d and a but neither b nor c. Thus we haveŽ g , d.
� 4 Ž . Ž . � 4a, d - b - c. Arcs d, a and d, g establish the condition e, f , g -
� 4 � 4a, b, c . Therefore a, e, f , g, d - b - c. I must contain f and c butg , f
neither d nor b, thus f - d - b - c. Moreover I must contain e and bg , e
but neither d nor c, thus d - e - b - c. And finally we have f - d - e -

� 4b - c. Now we must have f - d, g - e - b - c, since I must containa, d
d and g but neither f nor e nor b nor c. Similarly we must have

� 4f - a, d, g - e - b - c, because I must contain d and a but neither fg , d
nor e nor b nor c. But this last condition is incompatible with the

� 4 � 4 Ž .condition e, f , g - a, b, c . This contradiction shows that IRS G ) 1.
Ž .Figure 1 gives a shortest path interval routing scheme R with IRS R s 2,

Ž .and therefore IRS G s 2.

APPENDIX B: SMALLEST GRAPHS OF COMPACTNESS 2

In this appendix we prove that the minimum graph of compactness 2 has
Ž .seven vertices, i.e., n 2 s 7. For this, we use the list of all graphs of order

w xless than 7, which can be found in Har69 . The following lemmas will
reduce the number of cases to consider. In the following, all graphs are
described as symmetric digraphs.

LEMMA 8. Let G be a 1-¨ertex-connected graph. The compactness of G is
the maximum of the compactness o¨erall subgraphs of G composed of one
2-¨ertex-connected component of G and of its neighbor cuẗ ertices in G.

Ž .Proof. Let G s V, E be a 1-vertex-connected graph. A subgraph of G
composed of one 2-vertex-connected component of G and of its neighbor
cutvertices in G, is denoted a 2-component of G. Let A be a 2-component

w xof G. Clearly A is a subgraph of shortest paths FG94c of G, i.e., a
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subgraph that contains all the shortest paths between any pair of vertices
Ž .of A. Let k s max IRS S , for any 2-component S of G. Therefore,S

w x Ž . Ž .applying Theorem 2 of FG94c , we get that IRS G G k G IRS A .
Ž . Ž .We now prove that IRS G F k. The proof is constructive: 1 decom-
Ž .pose G in 2-components; 2 successively merges these 2-components and

their shortest path interval routing scheme to obtain a shortest path
Ž .interval routing scheme on G. Phase 2 merges two 2-components at the

first step. It results in a subgraph of G that is no more a 2-component of
G. In fact, in the remaining merging, we merge subgraphs that are
non-2-components of G but that have a cutvertex in common. Let us show
how to do a merging in general.

Since G is a 1-vertex-connected graph, there exists a cutvertex x of G
Ž .and we can decompose G in two subgraphs, A s V , E and B sA A

Ž . � 4V , E , such that V j V s V and V l V s x . We assume by induc-B B A B A B
tion that A and B are of compactness at most k, and we will prove that

Ž .IRS G F k.
< < < < Ž . Ž .Let n s V and n s V . Let R s II , LL and R s II , LL beA A B B A A A B B B

two shortest path interval routing schemes on graphs A and B, respec-
Ž . Ž . Ž .tively, such that LL x s n and LL x s 1. Conditions LL x s n andA A B A A

Ž .LL x s 1 are not restrictive, since clearly every circular permutationB
composed with the labeling function defines an interval routing scheme
with the same compactness and isomorphic set of routing paths.

Ž .We define a shortest interval routing scheme R s LL , II on G as
Ž . Ž . Ž . Ž .follows: LL ¨ s LL ¨ for all vertices ¨ of graph A, and LL w s LL w qA B

n y 1, for all vertices w / x of graph B. We shift also any single intervalA
w x X wa, b g II to get a new set II of intervals of the form a q n y 1, b qB B A

x Xn y 1 . We extend sets II and II to obtain a set of intervals II for G asA A B
w x Xfollows: for any single interval I s a, b of II or of II containing theA B

X w x Xinteger n , let I s I j n , n q n y 1 . I is composed of only oneA A A B
interval since all its elements are consecutive. We finally set II as the
union of extended interval sets of II and II

X . It is easy to see that theA B
shortest path defined by R between two vertices of the same subgraphs A
or B are the same as in R or R , and any shortest path between a vertexA B
u of A and a vertex w of B, must travel the cutvertex x, which belongs to
the set of vertices of A and of B.

� Ž . Ž .4The compactness of R is less than max IRS A , IRS B , therefore
Ž .IRS G s k.

The following lemma will be useful to check quickly if a graph with
many edges has compactness 1.

LEMMA 9. Let G be a connected graph of n ¨ertices ha¨ing d ¨ertices of
degree n y 1. Let m be the number of edge-connected components ha¨ing at
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Ž .least two ¨ertices in the complement graph of G. If d G n y m r2 then the
compactness of G is 1.

Proof. Let G be a connected graph of n vertices. Assume that G has d
vertices of degree n y 1. Let G denote the complement graph of G. G is
composed of m connected components A , . . . , A of order at least 2 and1 m

Ž .of d single vertices. Assume that d G n y m r2. Without loss of general-
ity, we assume that m G 1, since otherwise G is simply the complete

� 4graph. For each connected component A , i g 1, . . . , m , we root ai
spanning tree T at any vertex of A . Let n denote the number of verticesi i i
of A .i

Ž .We now construct a shortest path interval routing scheme R s LL , II

� 4 Ž .on G. For i g 1, . . . , m and for every vertex x of A , we set LL x s 2 ji
y 1 q Ýiy1 n in a depth first search scheme according to T , for allks1 k i

� 4 Ž .j g 1, . . . , n . Since n y d G 2m, m G 1, and d G n y m r2, then d Gi
n y d y m G 1, and thus we can label n y d y m of the d single vertices

Ž . � 4y of G with LL y s 2 j, for all j g 1, . . . , n y d y m . For the other
X XŽ . � Žsingle vertices y of G, if they exist, we set LL y s k, for all k g 2 n y d

. 4y m q 2, . . . , n . The set II is defined as follows:

Ž .i For the d vertices x of G of degree n y 1, we assign I sŽ x, y .
w Ž .xLL y for the n y 1 vertices y connected to x.

Ž .ii For vertices of G with a degree strictly lower than n y 1, we
� 4assign intervals as follows: let i g 1, . . . , m and let x be a vertex of A .i

Ž . w Ž . Ž .xFor every arc x, y of G, we assign the interval I s LL y y 1, LL yŽ x, y .
w Ž .xif x and y are not adjacent in G, and I s LL y otherwise.Ž x, y .

Hence all vertices of G are labeled and the compactness of R is 1.
To prove that R is connected and define a shortest path routing scheme,

consider any two vertices x and y of G. Since n ) d G 1, i.e., G has at
least one vertex of degree n y 1 and G / K , then G has diameter 2.n
Hence either x and y are adjacent or there is a third vertex z of G such
that z is connected to both x and y. If x and y are adjacent, then we have
Ž . Ž . Ž . Ž .LL y g I in both cases i and ii , and by symmetry LL x g I .Ž x, y . Ž y, x .

Otherwise x and y are not adjacent in G and thus there exists an
� 4 Ž .i g 1, . . . , m such that x and y together belong to A . Therefore LL y gi

w Ž . Ž . Ž .x Ž .I s LL z s LL y y 1, LL y , by ii since neither x nor y is ofŽ x, y .
Ž .degree n y 1. And by symmetry we also get that LL x g I . We haveŽ y, x .

thus proved that all paths built by R are shortest paths.

Ž .THEOREM 3. n 2 s 7, which implies that e¨ery graph on six ¨ertices or
less has compactness 1.

Ž . ŽProof. We have already showed that n 2 F 7 Fig. 1 and refer to
. Ž . Ž .Proposition 1 . Moreover n 2 G 5 since n k G 2k q 1 for any k G 2. We
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will check for every graphs of 5 and 6 vertices that they admit a shortest
path interval routing scheme of compactness 1. Since outerplanar graphs

w xhave a compactness of 1 FJ88 , we need not check them. Since any
connected graph of 4 vertices or less has a compactness of 1, then,
applying Lemmas 8 and 9, only 2 graphs of 5 vertices must be checked:
K and the graph composed of a cycle of 4 vertices with K connected2, 3 1, 3

wby its 3 vertices. Referring to the representation of these graphs Har69, p.
x217 , a circular labeling and a straightforward assignment of intervals give

Ž .a shortest path interval routing scheme of compactness 1. Hence n 2 G 6.
Similarly, since every connected graph of 5 vertices has a compactness of 1,

wthen, applying Lemmas 8 and 9, only 43 graphs of 6 vertices Har69, pp.
x220]224 , must be checked. A circular labeling and a straightforward

assignment of intervals give a shortest path interval routing scheme of
compactness 1 for all these graphs, except for the one composed of a cycle
of 4 vertices and a path of length 3 connecting two non-adjacent vertices.

Ž .For this graph, we can label the vertices 1, 2, 6, 5, 4, 3 given the circular
w x Ž .representation of this graph Har69, p. 220 . Therefore n 2 G 7.

The corollary shows that not only the graph depicted in Fig. 1 represents
Ž .the graph of compactness 2 with the smallest number of nodes seven , but

Ž .also the graph of compactness 2 with the smallest number of edges eight .

COROLLARY 2. E¨ery graph on se¨en edges or less has compactness 1.

Proof. Every graph on six vertices has compactness 1. It follows that if
a graph with seven edges would have compactness 2, it would have seven

Ž .or eight vertices after it is not connected . Clearly, in both the cases the
graph is an outerplanar graph, thus of compactness 1.
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