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Abstract

We consider small world graphs as defined by Kleinberg (2000), i.e., graphs obtained from a
d-dimensional mesh by adding links chosen at random according to the d-harmonic distribution.
In these graphs, greedy routing performs in O(log2 n) expected number of steps. We introduce
indirect-greedy routing. We show that giving O(log2 n) bits of topological awareness per node

enables indirect-greedy routing to perform in O(log1+1/d n) expected number of steps in d-
dimensional augmented meshes. We also show that, independently of the amount of topological
awareness given to the nodes, indirect-greedy routing performs in Ω(log1+1/d n) expected number
of steps. In particular, augmenting the topological awareness above this optimum of O(log2 n)
bits would drastically decrease the performance of indirect-greedy routing.

Our model demonstrates that the efficiency of indirect-greedy routing is sensitive to the
“world’s dimension”, in the sense that high dimensional worlds enjoy faster greedy routing
than low dimensional ones. This could not be observed in Kleinberg’s routing. In addition to
bringing new light to Milgram’s experiment, our protocol presents several desirable properties.
In particular, it is totally oblivious, i.e., there is no header modification along the path from the
source to the target, and the routing decision depends only on the target, and on information
stored locally at each node.

Keywords: Small World Graphs, Routing, Milgram’s Experiment.

∗A preliminary version of this paper appeared in the proceedings of the 23rd ACM Symp. on Principles of
Distributed Computing (PODC), St.Johns, Newfoundland, Canada, July 25-28, 2004.
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1 Introduction

We consider small world graphs as defined by Kleinberg [7], i.e., graphs obtained from a d-
dimensional mesh, for some fixed d ≥ 1, by adding long-range links chosen at random according to
the d-harmonic distribution (cf. Sections 5.1 and 5.2 for more details). This model aims at giving
formal support to the “six degrees of separation” between individuals experienced by Milgram [14],
and recently reproduced by Dodds, Muhamad, and Watts [5] (see also [1]). In a social context,
professional as well as leisure occupation, citizenship, geography, ethnicity, and religiousness are
all intrinsic dimensions of the human multi-dimensional world, playing different roles with possibly
different impact degrees [6]. Each of these dimensions should be used as an independent criterion
for routing in the social graph. In this context, one would thus expect that the more criteria used
the more efficient the routing should be. Surprisingly however, Kleinberg’s model does not reflect
this fact, in the sense that greedy routing has the same performance whether the number of mesh
dimensions considered is one, two, or more. Indeed, Kleinberg has shown that greedy routing in the
n-node d-dimensional mesh augmented with long-range links chosen according to the d-harmonic
distribution performs in O(log2 n) expected number of steps, i.e., independently of d (note that this
bound is tight as it was shown in [3] that greedy routing performs in at least Ω(log2 n) expected
number of steps, independently of d). Kleinberg has also shown that augmenting the d dimensional
mesh with the r-harmonic distribution, r 6= d, results in poor performance, i.e., Ω(nαr) expected
number of steps for some positive constant αr. Furthermore, it is shown in [2] that, in the 1-
dimensional mesh augmented according to any probabilistic distribution, greedy routing performs
in Ω(log2 n/ log log n) expected number of steps, and this lower bound is conjectured to hold in
higher dimensions.

In light of the previous lower bounds combined with the fact that the expected diameter of
augmented meshes is O(log n) (cf. [13]), one can conclude that the absence of the dimension
parameter from the complexity of greedy routing in augmented meshes is a problem of the greedy
routing specification, and not of the links distribution. We thus propose a new greedy protocol,
called indirect-greedy routing, based on additional topological awareness given to the nodes, meaning
that every node x is aware of the existence of a list Ax of long-range links. (Hence note that
by additional topological awareness we do not mean adding more long-range contacts to nodes).
Kleinberg’s model can actually be seen as a special case of our model in which the awareness of
every node is reduced to its own long-range contact, i.e., to O(log n) bits. At every step of indirect-
greedy routing toward a target t, there are two phases. In the first phase, the current node x uses its
awareness Ax to select an intermediate destination x̂, i.e., a node such that its long-range contact is
close to t. In the second phase, x applies greedy routing toward x̂, and forwards to some neighbor
y. In y, the same process is applied, a new intermediate destination ŷ is selected (thanks to y’s
awareness Ay), and greedy routing is applied toward ŷ. And so on. The intermediate destination
may or may not remain the same at every step of indirect-greedy routing. Once the routing reaches
a node x for which x = x̂, greedy routing applies, and forwards to the neighbor of x that is closest
to the target t. The same actions are repeated at every node until the routing eventually reaches
the target.
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Routing algorithm Expected #steps Amount of
awareness (#bits)

Greedy [7] O(1
c log2 n) O(c log n)

Greedy [3, 13] Ω(1
c log2 n) O(c log n)

Greedy [2] Ω(1
c log2 n/ log log n) O(c log n)

NoN-greedy [12] O( 1
c log c log2 n) O(c2 log n)

Decentralized algorithm [10] O( 1
log2 c

log2 n) O(c log n)

Non oblivious [13] O( 1
c1/d log1+1/d n) O(log2 n)

Indirect-greedy [This paper] O( 1
c1/d log1+1/d n) O(log2 n)

Table 1: Performance of variants of greedy routing in d-dimensional meshes augmented using d-harmonic
distributions, with c long-range contacts per node.

Our results

We show that if every node is given a topological awareness of size O(log2 n) bits or, more specif-
ically, if every node is aware of the long-range contacts of its O(log n) closest nodes in the d-
dimensional mesh, then indirect-greedy routing performs in O(log1+1/d n) expected number of steps.
Comparing the indirect-greedy protocol with other greedy protocols of the literature (cf. Table 1)
demonstrates that, for an awareness of Θ(log2 n) bits, our protocol is the fastest. Indeed, this table
displays the performances of variants of greedy routing in d-dimensional meshes augmented using
d-harmonic distributions, with c long-range contacts per node1. For d ≥ 2, indirect-greedyrouting
performs faster than any other greedy algorithm, for any value of c such that the amount of
awareness is Θ(log2 n) bits, i.e., c = log n for Kleinberg’s greedy routing and Decentralized al-
gorithm, and c =

√
log n for NoN-greedy routing [12], defined in the percolation model of [4].

For c =
√

log n, indirect-greedy performs in O(log1+1/2d n) expected number of steps, that is faster
than O(log3/2 n/ log log n) steps for NoN-greedy. For c = log n, indirect-greedy performs in O(log n)
steps, as Kleinberg’s greedy routing. The Decentralized algorithm [10] visits O(log2 n/ log2 c) nodes,
and distributively discovers routes of expected length O(log n(log log n)2/ log2 c) links using headers
of size O(log2 n) bits.

The algorithm in [13] has the same performance as indirect-greedy. It is however not oblivi-
ous. In contrast, our protocol is totally oblivious, i.e., there is no header modification along the
path from the source to the target, and the routing decision depends only on the target, and on
information stored locally at each node. Obliviousness is a desirable property for a routing proto-
col because the decisions are taken locally at each node independently of the past, hence insuring
better fault-tolerance. (This is of course true up to a reasonable tradeoff between performance
and simplicity/fault-tolerance). Our interest in obliviousness is actually motivated by Milgram’s
experiment in which the intermediate persons performed in an oblivious manner.

Surprisingly, the positive impact of additional topological awareness reaches a certain limit, as

1The coefficient 1/c1/d in front of the performance of indirect-greedy routing comes from the fact that if every
node has c long-range contacts, then to get an awareness of O(log n) long-range links, every node just needs to be
aware of the long-range contacts of all nodes at distance O(( log n

c
)1/d) from it. (The same holds for [13]).
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far as indirect-greedy routing is concerned. Indeed, if the number c of long-range contacts of each
node is constant, then indirect-greedy routing performs in Ω(log1+1/d n) expected number of steps,
independently of the topological awareness given to the nodes, that is independently of the lists Ax,
and of their sizes. Above a certain limit, augmenting the topological awareness of the nodes not
only becomes useless, but also degrades the performance of indirect-greedy routing. Precisely, this
limit is Θ(log2 n) bits of topological awareness per node (i.e., the awareness of Θ(log n) long-range
links).

These results prove that there is no trade-off between the amount of topological awareness
given to the nodes and the performance of indirect-greedy routing, and demonstrate an intrinsic
limitation of this strategy in augmented graphs. In particular, if every node has a topological
awareness of size n, i.e., is aware of all long-range contacts, then indirect-greedy routing would not
perform better than Kleinberg’s greedy routing, leading to an Ω(log2 n) expected number of steps.

More importantly, our study captures the trade-off that we expected: if social entities are
living in a d-dimensional world, then giving additional topological awareness of O(log2 n) bits to
these entities enables indirect-greedy routing to perform in O(log1+1/d n) expected number of steps.
(Again, this is in contrast with Kleinberg’s greedy routing which performs in Θ(log2 n) number of
steps, independently of the world’s dimension.) In particular, our model demonstrates a significant
difference between routing using one criterion (i.e., in the 1-dimensional mesh), which performs
in O(log2 n) expected number of steps, and routing using two criteria (i.e., in the 2-dimensional
mesh), which performs in O(log3/2 n) expected number of steps. (Note that in both cases, every
node has only one long-range contact). The relative improvement decreases when the number of
dimensions increases, which is consistent with what was observed by Killworth and Bernard [6].

To summarize, given a fixed number of ”acquaintances” 2d + c per node in an augmented
d-dimensional mesh with c long-range contacts per node, greedy routing performs in O(1

c log2 n)

expected number of steps, whereas indirect-greedy routing performs in O( 1
c1/d log1+1/d n) expected

number of steps. These results lead to the conclusion that the variety d of our relationships seems
to have more impact on the distance between people than the number 2d + c of these relations,
as far as Milgram’s experiment is concerned. Our investigation is perhaps a first step toward the
formalization of arguments in favor of the sociological evidence stating that eclecticism shrinks the
world.

Organization

The paper is organized as follows. The next section precisely describes indirect-greedy routing,
including the notion of topological awareness. Then, in Section 3, we give a necessary and sufficient
condition for indirect-greedy routing to converge, and we compute an upper bound on the expected
number of steps of indirect-greedy routing when nodes are aware of the long-range contacts of
their O(log n) closest neighbors in the mesh. In Section 4, we compute a tight lower bound on
the expected number of steps of indirect-greedy routing, independently of the amount of awareness
given to the nodes. Finally, in Section 5, we give further motivations to our model, by revisiting it
in the context of Milgram’s experiment. In particular:

• we will expand on the surprising fact that giving more awareness does not necessarily improve
performances, at least as far as Milgram’s experiment is concerned, and
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• we will motivate our interpretation of the dimensions of the mesh in terms of criteria based
on which routing is performed.

The reader unaware of the details of Milgram’s experiments and of Kleiberg’s results can consult
Sections 5.1 and 5.2 respectively.

2 Topological awareness and indirect-greedy routing

We address the following question: is there some additional “topological awareness” that could be
given to nodes so that greedy-like routing performs in less than Θ(log2 n) expected number of steps
in the augmented d-dimensional mesh, at least for d > 1? By additional topological awareness
we do not mean adding long-range contacts to nodes (in the remainder, there is only one long-
range contact per node). Obviously, if nodes are given more than one long-range contact, then the
performance of greedy routing can be improved, however to a limited extent only. For instance, with
c long-range contacts per node, Kleinberg’s greedy routing would perform in Ω(1

c log2 n) expected
number of steps [3], which remains Ω(log2 n) for c = O(1). We propose a model in which the log2 n
barrier can be overcome, with a constant number c (say, c = 1) of long-range contacts per node.

Kleinberg’s ”traditional” greedy routing fails to discover short routes for at least two reasons.
First, the path toward the target may never pass exactly by nodes possessing long-range links
leading close to the target, and, second, the path toward the target does not consider long-range
links for which a small detour is necessary. To address these two problems, indirect-greedy routing
considers more long-range links (thanks to the ”awareness” of each node), and allows detours going
away from the target when this enables to find a long-link leading close to the target.

2.1 Topological awareness

In our model, we assume that, in addition to the underlying graph, and to its long-range contact
in the augmented graph, every node is aware (say, assuming that the nodes model social entities,
thanks to some rumors) of some list of ”acquaintances” between pairs of other nodes. This idea is
formalized as follows.

Definition 1 The topological awareness of a node x is a list Ax of long-range links in the aug-
mented graph.

In Kleinberg’s model Ax = {ex} where ex is the long-range link of x. We consider the case
in which Ax = {e1, e2, . . . , ek} with ex ∈ Ax and where, for every i, ei is a long-range link not
necessarily incident to x. Note that the degree of x remains unchanged compared to Kleinberg’s
model, i.e., the number of long-range contacts of every node x is the same in our model than
in Kleinberg’s model. For instance, in Fig. 1, node x has four neighbors in the 2-dimensional
mesh: a, b, c, and d. It also has one long-range contact x′. The topological awareness of x is
Ax = {(x, x′), (a, a′), (d, d′), (y, y′)}. This means that node x is aware that there is a long-range
link from a to a′, from d to d′, and from y to y′. Note that x does not have any long-range link to
either y or y′, but is just aware that there is a long-range link from y to y′. On the other hand, x
does not know the long-range contacts of b and c.
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Figure 1: Long-range links in the 2-dimensional mesh. The topological awareness of node x is
composed of the four plain long-range links.

This gives rise to the following: how to benefit from the additional topological awareness given
to the nodes to perform simple (i.e., greedy) routing in the augmented d-dimensional mesh? To
answer this question, we define indirect-greedy routing.

2.2 Indirect-greedy routing

To define indirect-greedy routing, let us introduce some notation. For a directed edge e = (u, v), we
denote u = tail(e), and v = head(e). The 2d neighbors of the current node x in the d-dimensional
mesh are denoted by w1, . . . , w2d, and the long-range contact of x is denoted w0. Finally, let t be
the target node, t 6= x. The function dist(u, v) is the Manhattan distance between nodes u and v
in the mesh.

Phase 1. Among all edges in {(x,w1), . . . , (x,w2d)} ∪ Ax, x selects an edge e such that head(e)
is closest to the target t in the mesh (according to the Manhattan distance). If there are
several such edges e, x selects one such that tail(e) is the closest to x in the mesh. Possible
remaining ties are broken arbitrarily. If tail(e) = x or if dist(x, tail(e)) ≥ dist(x, t), then set
x̂ = t, otherwise set x̂ = tail(e).

Phase 2. Node x selects, among its 2d + 1 neighbors w0, w1, . . . , w2d, the one that is the closest
to x̂, and forwards to that neighbor.

In the following, the node x̂ selected during Phase 1 is called the intermediate destination for
x. Note that we set x̂ = t if dist(x, tail(e)) ≥ dist(x, t). We could replace this latter condition by
dist(x, tail(e))+dist(head(e), t) ≥ dist(x, t) but this would not improve the performance of indirect-
greedy routing. In fact, the condition dist(x, tail(e)) ≥ dist(x, t) is somewhat more consistent with
the fact that routing from x to tail(e) is performed by traditional greedy routing, whereas routing
from head(e) to t is performed by indirect-greedy routing.
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Remark 1. Indirect-greedy routing is totally oblivious, i.e., there is no header modification along
the path from the source to the target, and the routing decision depends only on the target, and
on information stored locally at each node. That is, in contrast with non-oblivious protocols (see,
e.g., [10, 13]), the computation of the intermediate destination is performed at every node involved
in the routing process. In particular, if x is the current node, and if wi is the neighbor of x to
which it forwarded during Phase 2, then the intermediate destination ŵi for wi may be different
from the intermediate destination x̂ for x.

Let us take two extreme examples to illustrate the behavior of indirect-greedy routing:

(a) If the topological awareness of every node is reduced to its own long-range contact, then
the edge e selected during Phase 1 is necessarily incident to the current node x, i.e., tail(e) = x
and thus x̂ = x. Thus, during Phase 2, x forwards to head(e). Therefore, indirect-greedy routing
reduces to greedy routing in this case.

(b) If the topological awareness of every node is the whole graph, i.e., if every node is aware of
all long-range contacts (a very unrealistic hypothesis), then let e1, . . . , ek be the k ≥ 1 long-range
links such that, for every i, 1 ≤ i ≤ k, dist(head(ei), t) is minimum among all long-range links.
At every node involved in routing, the intermediate destination is yi = tail(ei) for some i. (The
intermediate destination may change if the current node is at equal distance from two intermediate
destinations.) For a source s, let m = min1≤i≤k dist(s, yi). Most of the process actually consists in
traveling distance m in the mesh, from s to one of the yi’s, using Kleinberg’s greedy routing. Hence,
indirect-greedy routing also reduces to greedy routing in this case. Obviously, in this example, a
faster routing would be obtained by computing a shortest path from the source to the target in
the augmented mesh, but this would be a quite unrealistic model as far as social networks are
concerned (see Section 5).

Remark 2. As opposed to Kleinberg’s greedy routing, the Manhattan distance to the target is not
strictly decreasing at each step of indirect-greedy routing. Indeed, an intermediate destination can
be farther from the target than the current node, and thus going to this intermediate destination
may result in increasing the Manhattan distance to the target. We will see in the next section
that, under a weak condition, this phenomenon has little impact on the expected performance of
indirect-greedy routing because it is counter balanced by the fact that the intermediate destination
has a long-range contact leading close to the target.

3 Performance of indirect greedy routing

In this section, we give a sufficient condition for indirect-greedy routing to converge, i.e., to always
route correctly for any setting of the long-range links. We later prove that if every node is aware of
the long-range contacts of its O(log n) closest nodes in the d-dimensional mesh, then indirect-greedy
routing performs in O(log1+1/d n) expected number of steps.

Let Ax be the topological awareness given to every node x. The set {Ax | x ∈ V } is called the
system of awareness of the augmented mesh H = (V,E). Now, for every node x, let us denote
by Nx the set of x’s neighbors in H (thus including x’s long-range contact). For every link e with
tail(e) 6= x, we then define

Nx(e) = {y ∈ Nx | dist(y, tail(e)) ≤ dist(z, tail(e)) for every z ∈ Nx}.
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Nx(e) is the set of neighbors of x closest to tail(e), i.e., those nodes to which x forwards when
applying Kleinberg’s greedy routing toward tail(e). Our condition for convergence of indirect-
greedy routing is based on the following definition.

Definition 2 A system of awareness {Ax | x ∈ V } is monotone if, for every x, and for every
e ∈ Ax \ {ex} where ex is the long-range link of x, we have e ∈ Ay for every y ∈ Nx(e).

Remark 3. If all sets Sx = {tail(e) | e ∈ Ax} have the same shape S for all nodes x, in the sense
that S = Sx0 = {tail(e) | e ∈ Ax0} for some fixed node x0, and Sx is obtained by translating Sx0

along the vector x0 → x, then monotonicity is equivalent to the fact that every shortest path in the
mesh from x0 to any node in S is included in S. “Being monotone” is more general than “having
the same shape” because it does not require the structure of the topological awareness to be the
same for all nodes.

Lemma 1 If the system of awareness is monotone then indirect-greedy routing converges.

Proof. Let s be the current node, and let t be the target. Let u be the current intermediate
destination, and let v be the long-range contact of u. We define the potential of s with respect to
destination t as:

φt(s) = dist(s, u) + n · dist(v, t)

From s, the route goes to some node s′ on a shortest path from s to u. If the intermediate
destination at s′ is the same as the one at s, then φt(s

′) ≤ φt(s)−1. If the intermediate destination
changes, then let u′ be the new intermediate destination, and let v′ be its long-range contact. Since
the system of awareness is monotone, we have (u, v) ∈ As′ . Therefore dist(v′, t) ≤ dist(v, t).

– If dist(v′, t) < dist(v, t) then

φt(s
′) = dist(s′, u′) + n · dist(v′, t) ≤ (n − 1) + n · (dist(v, t) − 1) = dist(v, t) − 1 < φt(s).

– If dist(v′, t) = dist(v, t) then Phase 1 of indirect-greedy routing specifies that since s′ chooses
u′, u′ is at least as close to s′ as u. Therefore,

φt(s
′) = dist(s′, u′) + n · dist(v′, t) ≤ dist(s′, u) + n · dist(v, t) ≤ φt(s) − 1.

Therefore, in all cases, the potential is strictly decreasing after each step of indirect-greedy
routing. Thus indirect-greedy routing eventually reaches the target.

Now, we prove the following. Let d be any fixed positive integer (the dimension of the mesh).
We have:

Theorem 1 In the d-dimensional mesh augmented with one long-range link per node chosen ac-
cording to the d-harmonic distribution, if every node is aware of the long-range contacts of all nodes
at Manhattan distance ≤ log1/d n in the mesh, then indirect-greedy routing performs in O(log1+1/d n)
expected number of steps.
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The remainder of this section is dedicated to the proof of Theorem 1. Notice that the system
of awareness induced by balls of the same radius is monotone (cf. Remark 3). Therefore, thanks to
Lemma 1, indirect-greedy routing converges. We compute the expected number of steps to reach
any target from any source. Let x be the current node, and t be the target node. First, we consider
the case where x is far from the target t in the mesh, that is dist(x, t) > λ · log1/d n for a sufficiently
large constant λ that will be determined later.

Remark 4. The general argument of the proof consists in computing the expected number of steps
for reducing the distance to the target by a factor at least 2, and to reapply iteratively this argument
every time the distance to the target has been reduced by a factor at least 2. It is crucial to note
that the decision taken by the algorithm at the current node is independent from the history of the
algorithm to reach this node. Moreover, the harmonic distribution is such that finding a long-range
link halving the distance m to the target is independent from m. Therefore, the expected number
of steps to decrease the distance to the target by a factor at least 2, conditioned to the fact that
the current node is x, is in fact independent from x. This is why we can sum up the conditional
expectations to get the total expected number of steps for reaching the target. On the other hand,
the number of fresh long-range links in the awareness of the current node x depends on how x was
reached. For instance, if x is reached via a link of the underlying mesh, then there are less fresh
long-range links in the awareness of x than if x would have been reached via a long link. This type
of dependency is taken into account in our analysis of indirect-greedy routing.

Lemma 2 Starting at a node x at Manhattan distance m > λ log1/d n from the target, λ > 1,
indirect-greedy routing reaches a node at Manhattan distance ≤ λ log1/d n from the target in at
most O(log1+1/d n) expected number of steps.

Proof. Let m = dist(x, t) > λ1 log1/d n for some λ1 > 1, and let us compute the expected number
of steps required by indirect-greedy routing for reaching a node x′ at Manhattan distance ≤ m/2
from t. Let

B = {u | dist(u, t) ≤ m/2}.
For any node u, let

V (u) = {v | dist(u, v) ≤ log1/d n}.
V (u) corresponds to the set of all possible tails of the long-range links known by u. We define the
subset V ′(u) of V (u) as follows:

V ′(u) = {v ∈ V (u) | dist(v, t) ≤ m}.

For two node sets X and Y , let Pr(X → Y ) be the probability that at least one node in X has its
long-range contact in Y .

Claim 1 Pr(V (x) → B) is asymptotically at least some constant β > 0 (depending only on the
dimension d of the mesh).

Proof. We have Pr(V (x) → B) ≥ Pr(V ′(x) → B). Note that |V ′(x)| ≥ 1
2d |V (x)| as t 6∈ V (x)

since λ1 > 1. Therefore, |V ′(x)| = Θ(log n). Let a > 0 and n1 > 0 be such that |V ′(x)| ≥ a log n
for any n ≥ n1. For any node u, let Eu be the event “u has its long-range contact in B”. We
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Figure 2: Intermediate destinations before jumping into B.

have Pr(V ′(x) → B) = 1 − Πu∈V ′(x)(1 − Pr(Eu)). Let p = Pr(Ex). Since Pr(Ex) ≤ Pr(Eu) for any

u ∈ V ′(x), we get Pr(V ′(x) → B) ≥ 1 − (1 − p)|V
′(x)|. Now, we have

p =
∑

u∈B

h(x, u) =
1

Zx

∑

u∈B

1/dist(x, u)d

where Zx =
∑

w 6=x 1/dist(x,w)d.

On one hand Zx =
∑

i≥1 |Si|/id where Si is the set of nodes at Manhattan distance exactly i

from x. We have |Si| = O(id−1) for any i. Thus Zx = O(log n).

On the other hand,

∑

u∈B

1/dist(x, u)d ≥ |B|/(3m/2)d ≥ Ω(md)/(3m/2)d ≥ Ω(1).

Therefore p is at least Ω(1/ log n). Let b > 0 and n2 ≥ n1 be such that p ≥ b/ log n for any n ≥ n2.
We have

(1 − p)|V
′(x)| ≤ (1 − b/ log n)a log n

for any n ≥ n2. Since (1 − b/z)az ≈ e−ab for large z, we get that 1 − (1 − p)|V
′(x)| ≥ f(n) where

f(n) ≈ 1−e−ab for large n. Let 0 < β < 1−e−ab. There exists n3 ≥ n2 such that Pr(V (x) → B) ≥ β
for any n ≥ n3. ♦

Let x1 ∈ V (x) be the intermediate destination selected by x = x0 during phase 1 of indirect-
greedy routing. In phase 2, the route goes from x0 to x1 according to Kleinberg’s greedy routing.
However, on the way to x1, new long-range links are discovered, and possibly a new node x2

whose long-range contact is a node closer to t than the long-range contact of x1 is discovered (see
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Fig. 2(a)). If such a new node x2 is discovered (on Fig. 2(a), x2 is discovered at node s1), x1 is
discarded, and the new intermediate destination becomes x2. In this case, x2 is discovered after
performing at most log1/d n steps of routing toward x1 in the worst-case. Indeed, every node is
aware of the long-range contacts in a ball of radius log1/d n. Again, on the way to x2, possibly a
new node x3 whose long-range contact leads to a node closer to t than the long-range contact of x2

is discovered, and routing switches to x3. This phenomenon may occur many times, constructing
a sequence x0, x1, x2, . . . of intermediate destinations, with x0 = x (see Fig. 2(a)). More formally,
we define the following:

Definition 3 An intermediate destination v is good if (1) the path constructed by indirect-greedy
routing reaches v, (2) the intermediate destination v̂ for v satisfies v̂ = t, and (3) the long-link of
v is used by indirect-greedy routing at v. The intermediate destination v is bad otherwise.

In the sequence (xi)i≥0 of intermediate destinations defined above, since xi+1 is the intermediate
destination for xi, the Manhattan distance between every two consecutive intermediate destinations
xi and xi+1 satisfies

dist(xi, xi+1) ≤ log1/d n for every i ≥ 0. (1)

Claim 2 The expected number of successive bad intermediate destinations xi is asymptotically a
constant γ (depending only on the dimension of the mesh).

Proof. Let si be the node where indirect-greedy routing switches from xi to xi+1, with possibly
si = xi if xi is bad. Let Ci be the set of all tails of the new long-range links discovered while going
from si to xi+1, and let a0, a1, a2, . . . , al be the path from si toward xi+1 generated by Kleinberg’s
greedy routing, where a0 = si and al = si+1. This path is the one generated by Phase 2 of indirect-
greedy routing. By definition, we have Ci = (∪l

j=1V (aj)) \ V (si). The path a0, a1, a2, . . . , al is
included in the ball centered at xi+1 and of radius dist(si, xi+1) because Kleinberg’s greedy routing
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always decreases the distance to the target (here the target is xi+1). This inclusion holds even if
the path contains long-range links (aj , aj+1). Hence |Ci| ≤ (2d − 1) log n (see Fig. 3). Let E be the
event ”there is a long-link e such that tail(e) ∈ Ci and head(e) is closer to t than the long-range
contact of xi+1”. One cannot directly state that

Pr(E) ≤ |Ci| / (|V (si)| + |Ci|)

because the probability of having a long-range contact close to t changes with the distance to the
target. Nevertheless, since Ci is included in the ball centered at xi+1 and of radius log1/d n, the
maximum distance between two nodes in Ci is only a small fraction of m if m = Ω(log1/d n), and
thus this probability does not change much along the path a0, a1, a2, . . . , al. More formally, for any
ǫ > 0, there exists λǫ > 0 such that

Pr(E) ≤ (1 + ǫ) · |Ci| / (|V (si)| + |Ci|)

for every i such that dist(si, t) > λǫ · log1/d n. Therefore, since |V (si)| = log n and |Ci| ≤ (2d −
1) log n, we get that for any ǫ > 0, there exists λǫ > 0 such that, if dist(si, t) > λǫ · log1/d n, then
the probability that, while going from si to xi+1, a better intermediate destination is discovered is
at most

pǫ = (1 + ǫ) · 1

1 + 1
2d−1

.

Let ǫ < 1/(2d−1) so that pǫ < 1. The expected number of successes of trials which succeed each
with probability at most pǫ is constant γ (i.e., depending only on d and ǫ but not on n). Therefore,
by setting λ2 = max{λ1, λǫ}, we get that starting from x at distance λ2 · log1/d n from the target,
the expected number of bad intermediate destinations xi’s is at most γ (or routing reaches a node
a node at distance ≤ λ2 log1/d n from the target). ♦

From Equation 1 and Claim 2, after at most γ log1/d n expected number of steps, one eventually
reaches a good intermediate destination y1 (see Fig. 2(a)). Since y1 is good, the long-link is used,
leading to some node z1 (see Fig. 2(b)). If z1 ∈ B then we are done. Otherwise, starting from
z1, indirect-greedy routing eventually reaches another good intermediate destination y2. Since y2

is good, the long-link is used, leading to some node z2. And so on. We construct in this way the
sequence z1, z2, . . . of the long-range contacts of the good intermediate destinations y1, y2, . . . that
are reached during indirect-greedy routing (see Fig. 2(b)). Let Ei be the event “at least one node
in V (zi) has its long-range contact in B”.

Claim 3 The expected number of good intermediate destinations yi that are visited before the event
Ei holds is constant (i.e., depending only on the dimension of the mesh).

Proof. We observe the two following points.

(1) By construction, the long-range contact z1 of y1 is not farther to t than any other node that
was visited by indirect-greedy routing before. Actually, z1 is not farther to t than any end-point of
long-range links in the awareness of nodes visited before.
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(2) The expected distance between y1 and z1 is at least log1/d n. Indeed, the expected distance
between y1 and z1 is

∑

i≥1

iPr(dist(y1, z1) = i) ≥
∑

i≥dist(x,t)/2

iPr(dist(y1, z1) = i)

≥ dist(x, t)

2
Pr(dist(y1, z1) ≥ dist(x, t)/2)

≥ dist(x, t)

2
Pr(dist(z1, t) ≤ dist(x, t)/2)

and the latter is at least β dist(x, t)/2 from Claim 1 since y1 has its long-range contact not farther
to t than the one of x. Setting λ3 = 4/β, and assuming that dist(x, t) ≥ λ3 log1/d n, the expected
distance between y1 and z1 is such that the two balls centred at y1 and z1, and of radius log1/d n
does not intersect.

Combining these two observations, we get that the long-links whose tails are in V ′(z1) have
never been considered so far by indirect-greedy routing. Therefore, Claim 1 can be applied to z1

and we get that Pr(V ′(z1) → B) ≥ β. Thus we can repeat the same analysis for z1 as we did for
x, yielding that after at most γ log1/d n expected number steps indirect-greedy routing reaches y2,
and from there z2. By repeating the same analysis at every zi, we get that

Pr(V ′(zi) → B) ≥ β

for every i ≥ 1. Therefore the number of good intermediate destinations visited before Ei holds is
1/β. ♦

Set λ = max{λ1, λ2, λ3}. From Claim 3, starting from x at Manhattan distance m > λ log1/d n
from t, it takes at most 1

β log1/d n expected number of steps to reach a node in B, or a node

at distance ≤ λ log1/d n from the target. In other words, decreasing the Manhattan distance by
a factor of 2 takes at most O(log1/d n) expected number of steps. Therefore, from any source at
Manhattan distance m > λ · log1/d n from t, it takes O((log m) ·(log1/d n)) = O(log1+1/d n) expected
number of steps to reach a node at Manhattan distance ≤ λ · log1/d n from t. This completes the
proof of Lemma 2.

It remains to consider the case where the current node x is close to the target t, i.e., m =
dist(x, t) ≤ λ · log1/d n for some constant λ.

Lemma 3 Starting at a node x at distance ≤ λ log1/d n from the target, indirect-greedy routing
reaches the target in at most O(log1+1/d n) number of steps on expectation.

Proof. Let u be the current intermediate destination (i.e., the one selected by x), and let v be the
long-range contact of u. We proceed similarly as in the proof of Lemma 1, and define the potential
of x as

φt(x) = dist(x, u) + dist(v, t) · (1 + log1/d n).

From x, the route goes to some node x′ on a path from x to u. If the intermediate destination at x′

is the same as the one at x, then φt(x
′) ≤ φt(x) − 1. If the intermediate destination changes, then
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let u′ be the new intermediate destination, and let v′ be its long-range contact. Since balls form a
monotone system of awareness, we have (u, v) ∈ Ax′ . Therefore dist(v′, t) ≤ dist(v, t).

If dist(v′, t) < dist(v, t) then

φt(x
′) = dist(x′, u′) + dist(v′, t) · (1 + log1/d n) ≤ log1/d n + (dist(v, t) − 1) · (1 + log1/d n) < φt(x).

If dist(v′, t) = dist(v, t) then Phase 1 of indirect-greedy routing specifies that since x′ chooses u′,
dist(x′, u′) ≤ dist(x′, u). Therefore,

φt(x
′) = dist(x′, u′) + dist(v′, t) · (1 + log1/d n) ≤ dist(x′, u) + dist(v, t) · (1 + log1/d n) ≤ φt(x) − 1.

Therefore, in all cases, the potential is strictly decreasing after each step of indirect-greedy routing.
The potential of a node x at distance m from t is at most log1/d n+m · (1+ log1/d n). Thus, a node
at distance at most λ · log1/d n from t has potential ≤ O(log2/d n) ≤ O(log1+1/d n). Therefore, the
target is reached after at most O(log1+1/d n) steps, which completes the proof of Lemma 3.

Theorem 1 directly follows from Lemmas 2 and 3.

4 Lower bounds for indirect-greedy routing

Theorem 1 shows that indirect-greedy routing with topological awareness of the O(log n) closest
neighbors in the mesh routes faster than greedy routing. Hereafter, in Theorem 2, we show that the
expected number of steps of indirect-greedy routing is Ω(log1+1/d n) for any amount of awareness.
More interestingly, Theorem 2 demonstrates that log n links is an optimum for the awareness. If
the amount v(n) of awareness is smaller than log n links then the expected number of steps is a
decreasing function of the awareness (see Fig. 4). However, after the threshold of v(n) = log n, the
expected number of steps is an increasing function of the amount of awareness (see Fig. 4).

Theorem 2 In the d-dimensional mesh augmented with one long-range link per node chosen ac-
cording to the d-harmonic distribution, for any 1 ≤ v(n) ≤ n, if every node is aware of the
long-range contacts of its v(n) closest nodes in the mesh, then indirect-greedy routing performs in
Ω(log1+1/d n) expected number of steps. More precisely, if d > 1, and v(n) = logα n for some α ≥ 0,
then a performance of O(log1+1/d n) expected number of steps cannot be reached if α 6= 1.

To prove Theorem 2, we first prove the following:

Lemma 4 Reaching a node at distance m using (Kleinberg’s) greedy routing requires:

• at least m expected number of steps if m = logα n for some α < 1;

• at least log m log n expected number of steps if m = logα n for some α > 1:

Proof. Let s be the source node, t be the target node, and m = dist(s, t). Assume first that
m = logα n for some α < 1. Let r ≤ m, and let B be the ball of radius 2r centered at x. By
definition of the d-harmonic distribution, we have

Pr(x → B) =
∑

b∈B

Pr(x → b) ≈ 1

log n

∑

b∈B

1

dist(x, b)d
≈ 1

log n

2r∑

i=1

|Si|
id
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Figure 4: The expected number of steps vs. the awareness v(n) = (log n)α. The expected number
of steps is Ω((log n)2+α/d−α) if α < 1 (by Lemma 5), and Ω((log n)1+α/d−o(1)) if 1 ≤ α < d (by
Lemma 6). For α > d, the expected number of steps is Θ(log2 n) (by Lemma 6).

where Si is the set of nodes at distance exactly i from x. Thus

Pr(x → B) ≈ 1

log n

2r∑

i=1

id−1

id
≈ log r

log n
≤ log m

log n
.

Therefore, while going from s to t using Kleinberg’s greedy routing, the expected number of discov-
ered long range links that connect to nodes closer to t than the current node is O(m log m

log n ). Since
m = logα n with α < 1, this number goes to zero as n goes to infinity, and thus no long range link
is used between s and t, resulting in m expected routing steps.

Assume now that m = logα n for some α > 1. Then, for i ≥ 0, let

Bi = {u | dist(u, t) ≤ m/2i}.

For any node x ∈ B0 \ B1, and any i ≥ 1, we have (ignoring the constant depending on d only):

Pr(x → Bi) =
∑

b∈Bi

Pr(x → b) ≈ 1

log n

∑

b∈Bi

1

dist(x, b)d
≤ 1

log n
· |Bi|
md(1 − 1

2i )d

The latter inequality follows from the fact the d-harmonic distribution decreases with the distance.
Since |Bi| ≈ (m/2i)d, we get that, up to a constant,

Pr(x → Bi) ≤ 1

log n
· (m/2i)d

md(1 − 1
2i )d

=
1

(2i − 1)d log n
.

Therefore, while traveling in B0 \ B1, the probability to visit a node whose long-range contact is
in B1 is only O(1/ log n). Thus while traveling in B0 \ B1, the expected number of steps before
visiting a node whose long-range contact is in Bi is Ω(log n) for any i ≥ 1. Since m ≫ log n, such
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a node will eventually be visited. However, since Pr(x → Bi) decreases exponentially with i, the
expected value of the index i such that greedy routing reaches a node in Bi while entering B1 for
the first time is a constant. As a consequence, an expected number of Ω(log n) steps are required
to decrease the distance to the target by at most a constant expected factor. Therefore, starting
from a node at distance m from the target, at least Ω(log m log n) expected number of steps are
required.

To prove Theorem 2, we consider separately the cases v(n) ≪ log n, and v(n) ≫ log n. Intu-
itively, if every node is aware of the long-range contacts of its v(n) ≪ log n closest neighbors, then
reaching an intermediate destination is fast, but a large number of intermediate destinations must
be visited before expecting reaching a node whose long range-contact leads close to the target. In
fact, we show the following:

Lemma 5 If v(n) = logα n, for some 0 ≤ α < 1, then the expected number of steps to reach the
target is at least

Ω
(
((log n)/v(n))1−1/d · log1+1/d n

)
.

Proof. Let m = dist(x, t) be the distance between the current node x and the target t. We use
the same notations as in the proof of Theorem 1. Let B = {u | dist(u, t) ≤ m/2}, and, for any node
u, let V (u) = {v | dist(u, v) ≤ v(n)1/d}. From the definition of the d-harmonic distribution, an
expected number of Ω(log n) long-range contacts must be considered before finding one that leads
to a node in B. Hence, we compute the expected number of steps required to learn about Ω(log n)
long-range contacts. Starting from x, the route visits a sequence y1, y2, . . . of good intermediate
destinations (see Fig. 2).

Claim 4 The expected number of steps required to go from yj to yj+1 is Θ(v(n)1/d).

Proof. Let x0, x1, . . . , xℓ be the sequence of bad intermediate destinations that are considered
while traveling to yj+1 starting from yj, until the route eventually reaches the good intermediate
destination yj+1. I.e, x0 = yj and xℓ = yj+1. Let r = dist(x0, x1) (note that r ≤ v(n)1/d since
x1 ∈ V (x0)).

Since the expected Manhattan distance r̄ between x0 and x1 is Ω(v(n)1/d), and v(n) = logα n,
α < 1, it follows from Lemma 4 that the expected number of steps required to go from x0 to x1 is
Ω(v(n)1/d). Actually, the routing does not reach x1 if a new intermediate destination x2 is discov-
ered. However, a constant portion of the path from x0 to x1 must be traversed before expecting
to discover a new intermediate destination. Indeed, to discover the same order of magnitude of
new long-range links as v(n), one must go at expected distance Ω(v(n)1/d) from x0. Therefore, the
portion of the path from x0 to x1 that is traversed before possibly switching toward x2 requires
Ω(v(n)1/d) expected number of steps. Hence, the expected number of steps required to go from yj

to yj+1 is Ω(v(n)1/d).

On the other hand, by Claim 2, the expected number of steps required to go from yj to yj+1 is
actually O(v(n)1/d) because the sequence x0, x1, . . . , xℓ is of constant expected length. ♦

From Claim 4, dist(yj , yj+1) ≤ O(v(n)1/d). As a consequence, the expected number of long-
range contacts discovered while going from yj to yj+1 is O(v(n)). Therefore, learning about an
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expected number of Ω(log n) long-range contacts implies that the expected length k of the sequence
y1, y2, . . . , yk is Ω(log n/v(n)). Hence, starting from x at distance m from the target, the route visits
an expected number of Ω(log n/v(n)) good intermediate destinations y1, . . . , yk, and, by Claim 4,
the expected number of steps required to go from yj to yj+1 is Ω(v(n)1/d). Therefore, the expected
number of steps required to reach B, and thus to reduce the distance to the target by a factor at
least 2, is Ω(log n/v(n)1−1/d). By the same arguments as in the second part of the proof of Lemma 4,
after this amount of steps from a node at distance m from the target t, the distance from t is reduced
by an expected constant factor. Therefore, starting from a node at Manhattan distance Θ(n1/d)

from the target, the expected number of steps to reach the target is Ω
(

log n
v(n)1−1/d · log n1/d

)
, which

completes the proof of Lemma 5.

Conversely, if every node is aware of the long-range contacts of its v(n) ≫ log n closest neighbors
in the mesh, then, intuitively, it is easy to find a long-range link that leads close to the target.
However, traveling from the current node to the intermediate destination that is the tail of this
long-range link requires a large number of steps. More precisely, we show the following:

Lemma 6 If v(n) = logα n for α ≥ 1, then the expected number of steps to reach the target is at
least

Ω

(
log n

log(v(n)/ log n)
· v(n)1/d

)
if α < d

and

Ω

(
log n

log(v(n)/ log n)
· log n log v(n)

)
if α > d.

Proof. Assume that the distance m = dist(x, t) between the current node x and the destination
t is > c · v(n)1/d where c is a constant large enough. Let B = {u | dist(u, t) ≤ m/2r(n)} where
r(n) = 1

d log(2dv(n)/ log n). We have r(n) ≥ 1. From the setting of r(n), we get:

Claim 5 Pr(V (x) → B) is asymptotically at least some positive constant.

Proof. We have Pr(V (x) → B) = 1 − Πy∈V (x)(1 − Pr(y → B)). Now, ignoring the constants, we
have

Pr(y → B) =
∑

b∈B

Pr(y → b) ≈ 1

log n

∑

b∈B

· 1

distd(y, b)

≥ 1

log n
· |B|
(m + v(n)1/d + m/2r(n))d

≈ 1

log n
· (m/2r(n))d

(m + v(n)1/d + m/2r(n))d

≈ 1

log n
· 1/2d·r(n)

(1 + v(n)1/d

m + 1
2r(n) )

d

≈ 1

v(n)
· 1

(1 + (v(n)/m)1/d)d

≥ 1

v(n)
· 1

(1 + 1/c)d
.
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Therefore Pr(V (x) → B) is lower bounded by a function of n that is ≈ 1 − (1 − 1
v(n))

v(n). The
latter is asymptotically constant, and the claim follows. ♦

From Claim 5, with constant probability, the current node x finds a long-range link leading to
B in its awareness, i.e., a long-range link decreasing the distance to the target by a factor 2r(n).
The expected Manhattan distance between x to a node in V (x) whose long-range contact is in B
is Ω(v(n)1/d). To travel such a distance using Kleinberg’s greedy routing, the expected number of
steps is, from Lemma 4, Ω(v(n)1/d) if α < d, and Ω(log n log v(n)) if α > d. Thus, reducing the
distance to the target by a factor 2r(n) requires Ω(v(n)1/d) expected number of steps if α < d, and
Ω(log n log v(n)) expected number of steps if α > d. Therefore, starting from a node at distance
Θ(n1/d) from the target, the expected number of steps to reach the target is Ω( log n

r(n) · v(n)1/d) if

α < d, and Ω( log n
r(n) · log n log v(n)) if α > d.

5 Social networks perspectives

The aim of this section is to give further motivations to our model, by revisiting it in the context
of Milgram’s experiment, and in light of Kleinberg’s results.

5.1 Milgram’s Experiment

Augmented graphs as defined in [17] have been introduced as a model for the ”small world phe-
nomenon”. They consist in families of graphs H = (G,D) obtained from a graph G by adding
links chosen at random according to a probabilistic distribution D. The graph G models an aware-
ness common to all the social entities represented by the nodes of H. In other words, nodes of
H are aware of the topology G. In particular, any node x can compute the distance distG(x, y)
from x to any other node y in G. The links in G model acquaintances between social entities that
can be easily deduced from characteristics of the social entities (geographical positions, hobbies,
professional activities, etc.). The added links, called long-range links, model acquaintances that
cannot be deduced globally because they correspond to random events which created acquaintances
between entities that have generally little in common. If (u, v) is an edge of G, then any node x is
aware that u and v have some acquaintance. However, if (u, v) is a long-range link non-incident to
x, then x does not know that there is an acquaintance between u and v. In particular, x cannot
compute the distance distH(x, y) from x to any other node y in H.

Milgram’s experiment reports that there are short chains of acquaintances between individuals,
and that these chains can be discovered in a greedy manner. Roughly speaking, given an arbitrary
source person s (e.g., living in Wichita, KA), and an arbitrary target person t (e.g., living in
Cambridge, MA), a letter can be transmitted from s to t via a chain of individuals related on a
personal basis. The transmission rule is that the letter held by an intermediate person x is passed
to the next person y who, as judged by x, is closer to the target among all persons x knows on a
first-basis. Milgram’s experiment conclusion is often summarized as the “six degrees of separation”
phenomenon because, for chains that reached the target2, the number of intermediate persons

2Many chains did not succeeded in Milgram’s experiment. Experiments by Dodds et al. [5] revealed
however that this is perhaps not due to the inability of reaching the target, but rather due to the fact
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between the source and the target ranged from 2 to 10, with a median of 5.

5.2 Greedy routing in Augmented Meshes

In his seminal work [7, 8] (see also [9]), Kleinberg gives a formal support to the six degrees of
separation phenomenon. He considers a d-dimensional mesh augmented with long-range links
chosen according to the d-harmonic distribution (see Fig. 1). More precisely, the underlying graph
G is the d-dimensional mesh n1/d × . . . × n1/d, and the augmented graph H is obtained by adding
exactly one out-going link to every node x. If there is a long-range link from x to y, then y
is called the long-range contact of x. The probability that x chooses y as long-range contact is
h(x, y) = 1/(Zx ·dist(x, y)d) where dist() is the Manhattan distance in the mesh (i.e., the distance in
the L1 metric), and the normalizing coefficient Zx satisfies Zx =

∑
z 6=x 1/dist(x, z)d. In Kleinberg’s

model, long-range links are directed, i.e., a long-range link from x to y does not imply a long-range
link from y to x. This is consistent with what can be observed in the human society. In particular,
human relationships are not always symmetric. More importantly, although directed long-range
links produce nodes with high in-degree, these “hubs” remain with only an out-degree of one. Hence
the impact of hubs is kept limited in the model3.

A salient property of Kleinberg’s model is that it is a ”small world”, i.e., a graph in which not
only the expected distance between nodes is small, but also greedy routing is able to discover short
routes between any pair of nodes.

Greedy routing is a metaphor of the way social entities proceed to search for resources or
information in the graph representing their acquaintances [1, 5, 15, 16]. These entities are given
very limited computational power. This restriction is motivated by the fact that social entities (e.g.,
humans) have bounded storage capability, and are usually unable to perform complex computations
involving more than a small number of objects. Typically, computing shortest paths in a graph
with more than few vertices is assumed to be a too complex task to be performed by social entities.
Greedy routing performs as follows: at the current node x, a search for a target node t is forwarded
to the neighboring node y of x, including its long-range contact, which is the closest to t in the
mesh. In other words, a social entity optimizes locally the discovery of the target by choosing,
among all its acquaintances, the one that is likely to be the closest to the target. The distance to
the target is however estimated using the Manhattan distance.

5.3 Criteria vs. dimensions

It was observed (cf., e.g., [6]) that searching for the target in Milgram’s experiment is performed
based on at least two criteria (e.g., geography and occupation), and that performing the search
based on one criterion only (e.g., geography) results in poorer performance. The estimation of
the distance to the target is performed thanks to all available criteria. In Kleinberg’s model, the
estimation of the distance to the target is performed based on the coordinates of the nodes in the
mesh. That is, the mesh is not aiming at modeling geography only, but at capturing all possible

that individuals do not necessarily benefit from their connectedness: they often stop retransmission simply
because they believe that there is no short chain to the target, although such a chain does exist.

3Dodds et al. [5] observed that, in contrast with what is often believed, the presence of hubs appears to
have a limited relevance to social search. Thus it is desirable that a model keeps the role of hubs limited.
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criteria used for the search. In other words, the mesh includes all criteria per se, and the long-range
links model random events capturing the fact that our acquaintances are not necessarily living close
to us, do not necessarily practice the same religion (if they do), do not necessarily occupy the same
social position, etc.

On the other hand, there is no one-to-one correspondence between the dimensions of the mesh
and the criteria used for the search. In particular, moving along one axis preserves all the co-
ordinates of the mesh, which is not perfectly true in real life. Nevertheless, most of the time,
our acquaintances have characteristics very similar to ours. (The rare cases of acquaintances with
characteristics very different from ours are modeled by long-range contacts.) A model aiming at
capturing the slight variations of the characteristics of our acquaintances could be obtained by in-
troducing some randomness in the Cartesian product operation, to locally shuffle the connections.
This would however significantly complicate the analysis of the model, without bringing new light
on Milgram’s experiment. Thus, in this paper we have chosen to stick to Kleinberg’s model for
analyzing the impact of the number of criteria on the performance of the search. Hence, for the
sake of simplicity, we have viewed every dimension of the mesh as a distinct criterion.

5.4 Substratum of topological awareness

Our model was based on the following observation: although every individual personally knows
a small number of other individuals only, he or she is often aware of a large number of personal
acquaintances between individuals that he or she does not personally know. Let us take a simple
example to illustrate this observation (see Fig. 5).

Consider Milgram’s experiment in which the goal is to send a letter to Joe Wilson, who is
located at Revelstoke, Alberta, Canada. In addition to Wilson’s location, we are also given the
facts that Wilson is a designer, and that he won a downhill ski Canadian championship in the 80’s.
The letter is currently held by Alice, a librarian in San Francisco. Alice has a friend, Mary, living
in Seattle, an uncle, Olson, living in Bergen where he is training the Norwegian cross country ski
team, and finally a former schoolfriend, Mark, who is a pianist in the Vienna symphony orchestra.

Based on her acquaintances, Alice may forward the letter either to Mary or to Olson. In the
former case, there is a geographical improvement. In the latter case, there is also an improvement
because a cross country ski trainer is somewhat close (in terms of occupation) to a downhill ski
champion. On the other hand, Alice would certainly not forward the letter to Mark because Mark
is geographically farther from Joe Wilson than Ann, and Mark’s vitae has little to do with Wilson’s
vitae.

Now, assume that in Alice’s recent phone conversation with Mark, she learned that Mark moved
to a new house, entirely designed by his new girlfriend, Ann, an architect who graduated from
Vancouver. Based on this “topological awareness”, it makes sense for Alice to forward the letter
to Mark, because he may then forward it to his girlfriend Ann. Once the letter will be in Ann’s
hands, the improvement will be significant because an architect who graduated from Vancouver
is reasonably close to a designer living in Alberta. Note that there is no personal acquaintance
between Alice and Ann (she hardly remembers her name). However, Alice is aware that there
is an acquaintance between Mark and some architect from Vancouver. This acquaintance is a
long-range link because an acquaintance between a member of the Vienna symphony orchestra and
a Canadian architect can be hardly guessed. The fact that Alice is aware of Mark’s long-range
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Figure 5: Searching for Joe Wilson.

contact significantly improves the search for Joe Wilson. This phenomenon cannot be captured by
Kleinberg’s model because, in his model, a social entity is not aware of any long-range links not
incident to it.

5.5 Substratum of indirect-greedy routing

Our model captures the “indirect” routing strategy based on Alice’s awareness of the social charac-
teristics of Mark’s long-range contact. In this model, we assumed that, in addition to the underlying
graph G, and to its long-range contact in the augmented graph H, every social entity is aware of
some list of acquaintances between pairs of other entities.

According to Kleinberg’s greedy routing, when Alice is searching for Joe Wilson, she chooses,
among all her personal acquaintances, the one who is most likely to know Wilson. As we mentioned
before, this strategy results in having Alice choosing either Olson or Mary, but not Mark, although
Mark is more likely to be closer to Wilson than both Olson and Mary. Being aware of Mark’s long-
range contact Ann, Alice may then decide to use Mark as an “intermediate destination”. Mark is
farther from the target Joe Wilson than Alice. However, from Mark, the search may be forwarded
close to Wilson, thanks to the long-range link Mark-to-Ann.

Obviously, a faster search would be obtained by computing short cuts from the source to the
target in the augmented mesh using the local awareness of every node. However, such a complex
computation is assumed to be beyond the computing capabilities of social entities. For instance,
although most humans would be able to go through a reasonably large directory to select one key
(say, the smallest), most humans would be unable to sort a directory based on the keys contained
into it.

The convergence of indirect-greedy routing requires the system of awareness to be monotone. It
is reasonable to assume that monotonicity is a property that a system of awareness usually satisfies.
Indeed, if a social entity x is aware of the acquaintance that some node u has with v, then a node
y that is closer to u than x is probably also aware if this acquaintance. For instance, if you become
aware that Bob, the companion of the sister Sophie of your friend Tom, meets some unrelated guy
Charles in a plane, then certainly Tom is aware of that, and this is even more certainly the case of
Sophie. One may argue the other way though, by saying that if you become aware of some relation
between two of your friends, your neighbor in the street may not know that, even if he lives closer
to your friends than you do. Nevertheless, our definition of convergence is very restrictive, and even
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if the system of awareness is not properly monotone, indirect-greedy routing will converge for most
setting of the long range contacts, and non convergence may occur for only few pairs source-target.

As a final remark concerning or model, note that we assumed that every social entitiy personnaly
knows a constant number of other entities (its 2d neighbors in the mesh plus it c long-range
contacts). In contrast we have assumed that every social entity is aware of log n long-range links.
This is of course debatable, but it is reasonable to assume that the number of people we know
personally is less impacted by the world population than the number of rumors we hear about
other people.

5.6 What did we learn out of indirect-greedy routing?

We have defined our model having in mind the way social entities may plausibly have routed the
letters in Milgram’s experiment, i.e., (1) by using intermediate destinations, and (2) in an oblivious
manner. The latter is imposed by the way the experiment was performed. The former is our
conjecture. By interpreting the dimensions of the mesh as many criteria on which greedy routing is
based, our model demonstrates that eclectic relationships are desirable, as far as connectedness to
other individuals is concerned. This is consistent with what can be observed in every-day life. In
particular, searching using two criteria is significantly faster than searching using only one criterion.
For instance, Killworth and Bernard [6] have observed that, in a search for an individual, at least two
criteria (occupation and geography) were used by the participants. Determining whether individuals
involved in Milgram’s experiment used intermediate destinations (consciously or unconsciously) to
route the letter to the target would allow us to validate our model.
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