WWW MATHEMATICSwEB.ORG

POWERED BY SCIENCE DIRECT® Journal of

Algorithms

ACADEMIC
PRESS Journal of Algorithms 46 (2003) 97-114

www.elsevier.com/locate/jalgor

Compact routing schemes with low stretch factor

Tamar Eilant: Cyril Gavoille? and David Pelefj**

aBM T.J. Watson Research Center, Yorktown Heights, NY, USA
b | aBRI, Université Bordeaux I, 351, cours de la Libération, 33405 Talence cedex, France
¢ Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science,
Rehovot, 76100 Israel

Received 28 October 2000

Abstract

This paper presents a routing strategy caRéebt Interval RoutingPIR), which allows message
routing on every weighted@-node network along paths whostretch factor(namely, the ratio
between the length of the routing path and the shortest path) is at most five, and whose average
stretch factor is at most three, with routing tables of @z(e/ﬁlog3/2n) bits per node. In addition,
the route lengths are at mosbZ[1.5D1 for uniform weights) where is the weighted diameter of
the network. Moreover, it is shown that the PIR strategy can be constructed in polynomial time and
can be implemented so that the generated scheme is in the fornirdéaral routing schem@RS),
using at mosO (,/nlogn) intervals per link. As a result, the schemes are simpler than previous ones
and they imply that the paths followed by messagedap-free On the other hand, we show that
there is no loop-free routing strategy guaranteeing a memory bound of at/mdsits per node for
all networks, regardless of the route lengths.

0 2003 Elsevier Science (USA). All rights reserved.

1. Introduction
1.1. Background

In point-to-point communication networks, a routing scheme is employed in order to
deliver messages between processors. As networks grow in size, it becomes important to

Y An extended abstract of this paper has appeared in the PODC '98 symposium.
* Corresponding author.
E-mail addressesilamt@us.ibm.com (T. Eilam), gavoille@labri.fr (C. Gavoille),
peleg@wisdom.weizmann.ac.il, david.peleg@weizmann.ac.il (D. Peleg).
1 Supported in part by grants from the Israel Science Foundation and from the Israel Ministry of Science and
Art.

0196-6774/03/$ — see front mattér 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0196-6774(03)00002-6

98 T. Eilam et al. / Journal of Algorithms 46 (2003) 97-114

reduce the amount of memory kept in each node for routing purposes. At the same time, it
is essential to route messages along paths that are as short as possible. The efficiency of a
routing scheme is often measured in terms o$itetch factoy namely, the maximum ratio
between the length of the path traversed by a message and the length of the shortest path
between its source and destination.

A universal routing strategis an algorithm which generates a routing scheme for every
given network. One type of trivial universal routing strategy is based on schemes that keep
in each node a full routing table, i.e., a table which specifies an output port for every
destination. Though this strategy guarantees routing along shortest paths, each router has
to store locally® (n logd) bits of memory, wherd is its degree (i.e., the number of output
ports) andu is the number of nodes in the network. Therefore, this scheme is impractical
when dealing with large networks.

It was shown in a series of papers (see, e.g., [1-3,20,22]) that there is a tradeoff
between the memory requirements of a routing scheme and the worst case stretch factor
it guarantees. In [20] it was shown that any universal routing strategy achieving stretch
factors > 1 must use a total o2 (n111/(&+9) pits of routing information in the network.
Stronger lower bounds hold for small stretch factors [7,13,16].

On the positive side, a number of hierarchical routing strategies have been proposed
that achieve almost optimal efficiency-space tradeoffs [2,20]. In particular, the scheme
presented in [2] guarantees a stretch factoOk?), while usingO (k n'/* log?n log D)
memory bits per node, for every > 1, where D is the weighted diameter of the
network. Another strategy presented in [22] guarantees a stretch factornof and
uses O (nY*1og°®) memory bits per node witlv(klog?n) bit names. The major
disadvantage of all the proposed hierarchical routing strategies is that they are rather
complex. Briefly, headers of messages are re-written, a message can bounce back to the
originator, and the decision function in each node is complex and does not depend solely
on the destination name.

Subsequently, considerable attention has been given recently to an opposing design
philosophy, focusing orsimple and uniform compact routing strategies. Many compact
routing strategies were proposed in the last decade (see, e.g., [6,9-11,21,24]). An important
property common to all of them is that they employ a simple “transmit and forget” type
decision function in the nodes, depending only on the destination of the message, and the
destination is the only information coded in the message header (which is determined once
and for all by the originating router, and is never changed afterwards).

The most popular such scheme is theerval routing schem@RS). It is presented in
[21,24] and implemented in the T9000 Transputer router chip of INMOS. The idea of this
scheme is to label nodes with unique integers ffdm .., n}, and to label the outgoing
arcs in every node with a set of destination labels in the form of a set of consecutive
intervals of the name segment. The collection of sets that label the outgoing arcs of a node
forms a partition of the name segment. When invoking the delivery protocol, a message
is sent on the unique outgoing arc labeled by a set that contains the destination label.
While the preprocessing stage of such a routing scheme (which is performed once in the
initialization of the network) might be complex, the delivery protocol consists of simple
decision functions in every node that depends only on the destination and thus implies
loop-free routing paths.

T. Eilam et al. / Journal of Algorithms 46 (2003) 97-114 99

One of the desirable goals in interval routing is to minimize the maximum number of
intervals that label an arc. Unfortunately, while many lower bounds are known for this
problem (see, e.g., [5,14,18,23]), few trade-off results between efficiency and space are
known for any of these strategies for general graphs. For interval routing, a universal
strategy which is based on routing on a BFS-tree is presented in [21,24]. This scheme
uses only one interval per edge, thus the memory in a node with dégeeé (d logn),
it guarantees that the length of routing paths is at méxst\@hereD is the diameter, but
it implies no upper bound on the stretch factor. On the other extreme, it is shown in [15]
that it is possible to generate for every network an interval routing scheme which uses
at mostn/4 + o(n) intervals per edge and guarantees stretch facterl. Lately, [18]
showed that for every graph there exists an interval routing scheme under which every
message traverses a path of length at mb&tD 1, and which labels every arc with at most
~nInn+ O(1) intervals. While this resultimplies an upper bound ondhation, i.e., the
length of paths traversed by messages, it does not imply any nontrivial upper bound on the
stretch factor. Moreover, the paper does not present any efficient (say, polynomial time)
preprocessing algorithm for generating such an interval routing scheme for a given graph.
The scheme presented in [4] us@$:2?/3log*3n) memory bits per node and guarantees
a stretch factoy = 3. While the scheme is loop-free, it is not an interval routing scheme,
and it uses 3log bit names.

1.2. Our results

A basic question which arises from the above discussion is whether it is possible to
design “simple” near-optimal routing strategies, which are still compact. By “simple” we
mean routing schemes in which the header is not allowed to be rewritten. Further, the
header contains only the destination of the message (where destinationgZre inn})
and the decision function depends only on the header (and not on the incoming port number
for example). We term routing methods that obey these restridioest Note that all the
proposed compact routing strategies (e.g., interval routing) are direct. In this paper we
analyze the power of direct routing strategies and give both positive and negative results
for this question.

Our main results are two polynomial time constructible direct universal routing
strategies, termeglivot interval routing(PIR, in short). The first one, PIR1, generates for
every weighted graph with arbitrary link costs, a routing scheme with stretch factér
that uses0 (/nlog*?n) bits per node, and requires(logn) latency (defined as the time
required to extract the outgoing link on which a message is to be forwarded in a node).
Also, we show that the average stretch factar i 3. Moreover, the PIR1 preprocessing
algorithm actually generates for every graph an interval routing scheme which labels every
arc with at mostr/nlogn intervals, wherer =~ 1.17. The dilation guaranteed by the PIR1
strategy is D, where D is the weighted diameter of the network. For the unweighted
case, we present a slightly different universal routing strategy hamed PIR2 (which also
generates for every graph an interval routing scheme withgsgilt fogn intervals per arc,
where 8 ~ 2.00), achieving the same memory requirements, stretch factor and average
stretch factor as the PIR1 algorithm while guaranteeing a better dilation bouddbdf].

We also provide a lower bound qfn on the number of bits kept locally in a node for

100 T. Eilam et al. / Journal of Algorithms 46 (2003) 97-114

every loop-free routing scheme that uses names from the fdnge, n} and for every
stretch factor. Thus our routing strategy cannot be generalized to obtain a family of routing
schemes with different values of stretch factor and memory such as the hierarchical routing
schemes (e.g., [1,22]).

A direction remaining for future research is to establish the best trade-off between the
memory requirements and the (average) stretch factor for direct routing schemes using
node labelsinarangd, ..., m}, withm > n.

The rest of the paper is organized as follows. In Section 2 we give a precise definition
of routing schemes and efficiency measures. We formally define interval routing and in
addition we overview some covering techniques, adopted from [1]. We make use of these
techniques for the proposed routing strategy. In Section 3 we present our PIR routing
strategies, prove their correctness and analyze their complexity measures. The lower bound
on the power of loop-free routing schemes is proved in Section 4.

2. Model and definitions
2.1. Routing schemes

A point-to-point communication network is modeled as a symmetric, weighted, finite
digraphG = (V, E, w), |V| = n, where the set of nodes represent the processors of the
network and every pair of two opposite arcs represents a bidirectional communication link.
Every arc of the network € E is associated with a nonnegative weighk) (i.e., its cost)
defining a metric. We assume that for every two opposite @r@ndes, w(e1) = w(e2).

(Our algorithm will not work correctly for the case of asymmetric weights. Whether it can

be generalized to handle that case requires further research.) In the special case of uniform
unit weight links, we say that the graphisweightedand denote it simply b = (V, E).

Graphs are connected and do not contain self-loops or multiple arcs. We assume that every
nodev is named with a unique identity integer. In what follows, we informally use the
nodev and its unique identity integer interchangeably. Note that the identities induce a
total order on the nodes, thus for every two nodes e V eitheru < v orv < u.

The length of a directed path in the graph is the sum of weights of its arcsliStamce
dg(u, v) between two nodes, v € V is the length of a shortest path connecting them. The
diameterof the graphG is defined as mg¥g (4, v) |u,v € V}. Foranodes € V, let E,
denote its set of outgoing arcs, and denotedgreeby dedqv) = |E,|.

A routing scheme® is a distributed algorithm whose role is to deliver messages between
nodes of the network. The routing scheme consists of cediatributed data structures
in the network, and alelivery protocol which can be invoked in any nodewith two
parameters: eouting labelof the destination node, and the message’s information field.
The message is delivereddovia a sequence of transmissions determined uniquely by the
distributed data structure.

The length of the route traversed by a message frdow in the graphG according to
the routing scheme is denoted byl (1, v). A universal routing strategis a function that
returns for every graply a routing scheme ofy. It is implemented by greprocessing

T. Eilam et al. / Journal of Algorithms 46 (2003) 97-114 101

algorithm, performed during set-up time in order to construct the distributed data structures
and the labels required for the routing scheme.

An interval routing schemeR on G is a routing scheme consisting of a pait, 7),
generated in the preprocessing step, whkiganode-labelingL: VvV — {1, ...,n}, andZ
is anarc-labeling Z: E — 2£() | that satisfy the following condition. For any nodgthe
collection of sets that label all the outgoing arcs:dbrms a partition of the name range
(possibly excluding itself?). Formally, for every: € V,

(1) Ueer, ZE@©UL@) =(1,....n};
(2) Z(e1) NZ(e2) < L(u) for every two distinct arcsy, e € E,,.

The delivery protocol is defined as follows. In every nadea message with destina-
tion v (L(v) written in its header) is sent on the arc which is labeled by a set that contains
the destination label (namelg(v) € Z(u, v)).

We denote by IRS the class of all the interval routing schemes on arbitrary graphs.
Clearly, every interval routing scheme is a direct routing scheme. Conversely, note that
every direct routing scheme can be implemented using interval routing by labeling every
outgoing arc in a node with the set of destinations for which a message will be sent on that
arc (encoded using a set of intervals). (This is not always possible for routing schemes that
are not direct since the output port does not necessarily depend only on the destination.)

2.2. Complexity measures

Let R be a routing scheme on annode graphG. Given a nodex, the memory
requirementof u, denoted by Memory(R, u), is the smallest number of bits that are
required in order to codR in u. Thelatencyof R in u, denoted by Latengy(R, u), is the
time complexity ofR per node in the standa@(logr)-word RAM-model. It corresponds
to the time required to extract from the outgoing link on which the message is forwarded
in u. The maximum and average stretch factor®afre respectively defined as

dr(u, v) dr(u,v)

1
Stretch; (R) = T;Z;X{ m} and AvStg(R) = "D u; Tow. D)’

A routing scheme of stretch factor 1 is termeshartest patlouting scheme. Theilation
of a routing scheme is the maximal length of a path traversed by a message. Formally,

Dilationg (R) = mfx{dR (u,v)}.
UuZFv

Given an integer and a subsetf C {1,...,n}, define thecompactness of w.r.t. n,
denotedc, (1), as the smallest integérsuch that/ can be represented by the union of
k intervals[a, b] of consecutive integers frofi, ..., n}, with n and 1 being considered
as consecutive (cyclically). Theompactnessf an interval routing schem® = (£, 7)
on G, denoted by Comg(R), is the maximum, over all arase E, of the compactness

2 A labeling excluding: from its arc-labels is termestrict. Although nonstrict labeling may produce more
compact schemes, in this paper we restrict our attention to strict labeling only.

102 T. Eilam et al. / Journal of Algorithms 46 (2003) 97-114

cn(Z(e)) of the setZ(e) labelinge. Intuitively, smaller compactness and degrees imply
smaller routing tables. For example, the interval routing strategy presented in [21], based on
routing on a minimum spanning tree, has compactness 1 (for every graph) but unbounded
stretch factor.

2.3. Balls, neighborhoods, and covers

Our routing scheme constructions are based on the notions of neighborhoods, balls, and
covers. For every node we can order all the nodes of the graph wa.ty increasing
distance fromv, breaking ties by increasing node identities. Formally, y if and only
if either dg (x, v) < dg(y,v), ordg(x,v) =dg(y,v) andx < y. Thez-ball B,(¢) of v,
is the set of the first nodes according to the node orderirg. Ther-neighborhoodf
a nodev € V is defined ad" (v, r) = {u € V | dg(v, u) < r}. Hence intuitively, a ball is
a neighborhood defined by volume rather than by radius.

Following is a simple fact which holds for both neighborhoods and balls.

Fact 2.1 (monotonicity).If u € B, (¢) (respectivelyu € I" (v, r)) then for every node on
a shortest path from to u, u € B, (¢) (respectivelyy € I' (x, r)).

Consider a collectiori of subsets of size of elements from a sét. AsetP CV is
said tocoverthe collectionH if for every A € H, AN P # @. We review two techniques
presented in [1] for generating relatively small covers for a given collection of sets of
equal size. The first technique is by using a greedy algorithm that startsPwitly and
iteratively adds to the se® an element inV occurring at the most uncovered sets. The
algorithm stops whe® becomes a cover. The sktis termed ayreedy covefor H.

Lemma 2.2 (Lovasz [19]).Let P be a greedy cover fok. Then|P| < |V|(In|H| + 1)/t.

The second method is randomized, and takes each eleméanttofthe setP with
probability (cIn|H|)/¢, for some constant > 1.

Lemma 2.3 (Awerbuch et al. [1])Let P be the set constructed by the randomized cover
algorithm under the assumptions that > 2¢ andIn |H| = o(¢). Then with probability at
leastl — 1/|H|°"L, P is a cover forH and|P| < (2¢|V|In|H])/t.

For our needs|H| = |V| = n. In this paper, we are interested in tha@eighborhoods
of nodes only for the case= [D/2], whereD is the diameter of the graph, and only
for unweighted graphs. In particular, we would like to use such neighborhoods in order
to construct a smalf D/2]-dominating set for our graph in the case where the graph is
unweighted (PIR2).

Foreverynode;, 1<i <n,letW; =TI (v;, [D/2]). Note that a cover for the set family
W={W,...,W,} (i.e., a setX C V whose intersection with eadlif; is nonempty) is a
[D/2]-dominating set for the graph. Also, note that (since the weights on the graph arcs
are uniform),W; N W; is nonempty for every # j, since otherwiselg (v;, v;) > D. It
is therefore easy to verify thad has a cover of cardinalit (,/nlogn). Note that this

T. Eilam et al. / Journal of Algorithms 46 (2003) 97-114 103

cannot be deduced directly from Lemma 2.2, sifi®g is not necessary i® (/nlogn).
Nevertheless, such a covErcan be constructed by the following algorithm.

First, note that sincé¥; N W; is nonempty for every # j, each set; is in itself
a cover for the set familyV. Hence if there exists some<li < n such that the seW;
of cardinality |W;| < +/n(1+ Inn) then we take the set = W; as our cover and we are
done. So now suppose thal';| > /n(1+ Inn) for every 1< i < n. In this case, the result
follows from observing that Lemma 2.2 holds also for a collection of sets of nonequal
sizes, provided is alower boundon the size of the sets in the collection. Hence the cover
X is found by setting = «/n(1+ Inn) and applying the above greedy algorithm. We thus
have the following.

Lemma 2.4. For everyn-node unweighted grap@i there exists d D/2]-dominating se
of cardinality| X| < +/n(1+ Inn). Moreover, this set can be constructed by a polynomial-
time algorithm(described above

3. Thepivot interval routing strategy

We present two routing strategies, ternf&igot Interval Routing The first one, PIR1,
generates an interval routing scheme for every weighted graph (Theorem 3.1) and the
second one, PIR2, generates an interval routing scheme for every unweighted graph with
improved dilation (Theorem 3.11).

Theorem 3.1. For everyn-node weighted grapty = (V, E, o) with weighted diameteb
there exists a interval routing scheme= (£, Z) on G such that

(1) Memory; (R, u) = O(/nlog¥?n) for everyu € V,
(2) Latency; (R, u) = O(logn) for everyu € V,

(3) Stretchy(R) <5,

(4) AvStrg(R) < 3,

(5) Dilationg(R) < 2D, and

(6) Comp;(R) < a/nlogn, wherea ~ 1.17.

Moreover,R can be constructed in time polynomialin

Intuitively, the idea of the PIR1 strategy is first to find the collection-bhlls of all the
nodes of the graph, then to cover this collection by a (comparatively small) set of nodes
termedpivots and finally to label the nodes and arcs of the graph in such a way that a
message with soureeand destinatiom will be routed on a shortest path if the destination
visinu's t-ball. Otherwise, it will traverse (in the worst case) a shortest path to the pivot
nearest tw, and then a shortest path from that pivoutitself.

We present the preprocessing algorithm of the PIR1 strategy for any given ball size
and for any given coveP of the collection oft-balls of nodes in the graph. The value
of ¢ is determined later (to roughl (,/nlogn)), in the proof of Theorem 3.1, where

104 T. Eilam et al. / Journal of Algorithms 46 (2003) 97-114

it is also shown how to construct a coversuch that PIR1 will satisfy the properties in
Theorem 3.1.

The preprocessing algorithm consists of three parts. In the first part, some preliminary
structures are constructed which are used later (in the second and third parts) to define the
node and arc labeling functiomsandZ.

3.1. Strategy PIR1: preprocessing and delivery protocol

We consider a weighted grajgh= (V, E, w). t, the size of the balls used, is a parame-
ter. We construct the interval routing sche®e- (£, Z) as follows.

3.1.1. The preprocessing algorithm
Preliminary constructions.

(1) Let P be a cover for the collection ofballs of the noded,B,(¢)},cv. Let£ = | P].

(2) Assign to every node its pivot p(v) € P, wherep(v) is the nearest node toin P
(breaking ties by increasing node identities).

(3) For every pivotp € P, let S, = {v | p(v) = p} be the set of nodes havingas their
pivot. (Observation 3.2 shows thi, } ,c p is a partition.)

(4) Forevery pivop € P, construct a minimum weight BFS spanning tigerooted atp,
and spanning the entire graggh (namely, in7), the unique path between any node
and p is a shortest path). Ld[’p be the subgraph df,, induced byp and its setS,,.
(Observation 3.2 shows that the subgr&phs actuaIIy atree.)

Labeling the nodes. Assume that = {p1, ..., p¢}. We start by labeling the nodesp, .

The labeling is performed by traversing the tr@g (i.e., the subtree spannirfy,), and
assigning the nodes dl’,,l a DFS (pre-order) numbering in sequential ascending order,
starting from 1. In order to give an efficient implementation of the scheme with low mem-
ory and low latency (see Proposition 3.10), we impose a DFS so that, at any mb('fgl,

the children ofx are visited in a nondecreasing order of their number of descendants in the
subtree. Once all the nodes §f, have been labeled, we continue by labeling the nodes
in 5, in the same manner (traversing the t#g), starting from the integer % |S,, .

Then we label the nodes 64, ..., S, in the same way, provided the node labelifig

Labeling the arcs. For every nodex € V, we label every are € E, by a set of
destination< (e) C {1, ..., n} in three main steps. We start by fixitfge) = @ for every

e € E,, and then at each step we add some node labels to thé€Zsej$.cx,, such that
labels are never deleted from the sétg), and the sets are mutually disjoint throughout
the process. Define for a satC V, L(A) = {L(a) | a € A}. Formally, we label the arcs
E, of every nodex as follows.

(0) FixZ(e) =¥, for everye € E.

(1) If x is not a leaf in the treé”p(x), letsq, ..., s; beits successors iﬁp(x) and IetT be
the subtree ofp(x) rooted ats;, for 1< < j. AssignZ(x,s;) ={L(w)|ve T, 1 for
every 1<i < j. DefineL1 = Ul<:</ I(x,s). f xisaleaf,L1=0.

T. Eilam et al. / Journal of Algorithms 46 (2003) 97-114 105

Fig. 1. The route fromx to a destinatiorv which is not inu’s ball.

(2) DefineLy = L(B,(t)) \ L1. For every node # x such thatC(v) € Ly, lete € E, be
an arc on a shortest path framto v (if there is more than one such arc, choose one
arbitrarily). AssignZ(e) =Z(e) U {L(v)}.

(3) Let Lz = L(V)\ (L1 U Lp). For everyp € P, lete, € E, be the arc fromr to its
predecessor on the trdg. AssignZ(e,) =Z(e,) U (L(S,) N L3).

3.1.2. The delivery protocol

In a nodex, a messag@#/ with destinatiorv # x is sent on the unique aece E,, such
that L(v) € Z(e). Figure 1 depicts the path of a message on the spannin@jrgdrom a
sourceu to a destination which is not inu’s ball.

3.2. Analysis of PIR1

We now prove that the PIR1 preprocessing algorithm generates an interval routing
scheme that satisfies (for specific possible values ahd ¢) the properties stated in
Theorem 3.1.

We start with some simple observations.

Observation 3.2. (1) For every node € V, p(v) € By(¢).

(2) For every nodey € V, and for every node on a shortest path from to its pivot
p), p(x) = p(v).

(3) {Sp} pep is a partition of the set of nodds.

(4) For every pivotp € P, T, is a connected tree.

Proof. The first observation follows from the definition &f as a cover of the collection

of ¢-balls and the choice of the pivgi(v) as the nearest pivot for every node The
second one is easily verified by the monotonicity property (Fact 2.1), and the choice of
p(v) for everyv. The third observation follows from the definition of the sés and

the last observation is easily verified using the definition of the Tigethe setsS,, and
Observation 3.2(2). O

In every nodex, define a level function on the labels of all other nodes. A lalie) of
anodev # x haslevel inx,i € {1, 2, 3},if L(v) € L;, i.e., if it was inserted to a sé&t(e),
for somee € E,, in Stepi of the arc labeling algorithm. Thievel of a messag#/ in a

106 T. Eilam et al. / Journal of Algorithms 46 (2003) 97-114

nodex is the level of the label of its destination in We first prove that the output of the
PIR1 preprocessing algorithm for every weighted grépfs an interval routing scheme
on G, and then analyze the routes taken by the messages.

Proposition 3.3. R = (£, Z) is an interval routing scheme a@. Specifically,

(@) Foreveryx e V,{Z(e) e Ex}UL(x)={1,...,n}.

(b) For every two distinct arcéx, y) and(x,z), Z(x, y)NZ(x,z) =0

(c) Foreverytwo nodes, v € V, there exists a sequence of nodes x1, ..., x, = v such
that L(v) € Z(x;, xi+1) for everyl <i < r, namely, every messag¢ with sourceu
and destinatiorv eventually arrives at its destination.
Moreover, the messag¥ will traverse a shortest path from to v if v € B, ().
Otherwise, it will traverse a shortest path g(v) or a prefix of that path, and then
a shortest path te.

Proof. In every step of the arc labeling algorithm, every label which is added to one of the
setsZ(e) did not belong to any of the sets in any former step. In addition, it is clear that in
every step a label is inserted only to one of the g&t9. Note that in Step 3 we rely on

the fact tha{S, } ,cp is a partition ofV. Proposition 3.3(b) follows. Since every label of

a node belongs to a (unique) st for somep € P, Step 3 of the arc labeling algorithm
guarantees that every node label will be contained in one of th& &tsProposition 3.3(a)
follows.

In order to prove Proposition 3.3(c), we show that the sequence of levels of a message
on the path traversed by it is nonincreasing. In addition, if the level of a message in a
node is 1 then eventually the destination is reached and if it is 2 or 3 then eventually the
destination is reached or the level of the message decreases.

Consider a messagé with sourcex and destinatiom. Assume that its level in a node
x #vis 1. L(v) € L1 in x implies thatx is not a leaf in the tre@l,(x) Let s; be the
successor af in the treeTp(x) such thaw belongs to the subtre®, of the treeTp(x) The
message is delivered tp which is strictly closer ta thanx and the same condition holds
for s;. Thus ins;, M is closer tov and has level 1, or the destinatiorns reached.

Now assume thaM has level 2 in a node. It follows thatv € B, (¢). Assume that
L(v) € Z(x,y). Then sincgx, y) is on a shortest path from to v, by Observation 3.2,

v € B, (z) andy is strictly closer tov thanx. It follows that either the level o3/ in y is 1,

and the claim follows by reduction to the former case, or the level remains 2. In any case,
since we advance towardsit is easy to verify by induction that eventuatlyis reached in

this case as well.

Finally, assume tha has level 3 in a node. Assume tha’(v) € Z(x, y). Thenitis
clear by the PIR1 preprocessing algorithm, thaty) is the arc in the tre&, () fromx to
its predecessor. It follows thatit is strictly closer top(v) and either the same conditions
as in the previous step hold or the level is smaller than 3 (either 2 or 1). Thus eventually
the destination is reached.

Note that if the level of a message in a nadis 2 or 1 then it is sent along an arc which
is on a shortest path to the destination. Thus in case the destination belongs to the source’s
t-ball, the message will traverse a shortest path. If the level of a message in a node is 3 then

T. Eilam et al. / Journal of Algorithms 46 (2003) 97-114 107

the message is sent on an arc which is on a shortest path to the destination’s pivot, thus
in this case a shortest path to the destination’s pivot is traversed until the level decreases.
Since whenp(v) is reached the level aff decreases to I/ will traverse in this case a
shortest path te@(v) or some prefix of that path, and then it will traverse a shortest path

to v. Proposition 3.3(c) follows. O

By Proposition 3.3(c) we have

Corollary 3.4. For everyu,v € V, dr(u,v) = dg(u,v) if v e B,(t), and dg(u, v) <
dg(u, p(v)) +dg(p(v), v) otherwise.

We now analyze the properties of the routing schégenerated by the PIR1 strategy.
Let D be the weighted diameter &f. By Corollary 3.4dg (u, v) < 2D for everyu,ve V.
Therefore we have

Proposition 3.5. Dilationg (R) < 2D.
Proposition 3.6. Stretch; (R) < 5.

Proof. Consider a messag® with sourceu and destinatiorw. By Corollary 3.4,

in casev € B,(t), the stretch factor is 1. It remains to bound the stretch factor in
casev ¢ B,(t). The length of the path traversed by the messafjén this case is
bounded by Corollary 3.4 a#g (u, v) < dg(u, p(v)) + dg(p(v), v). Sincep(u) € B, (1)

and p(v) ¢ B,(t), necessarilyls (u, p(u)) < dg(u, v). Thus, by the triangle inequality,
dg(v, pw)) < dg(v,u) + dgu, p(u)) < 2dg(u, v). Sincep(v) is the pivot minimizing
the distance t@ among all pivots inP, dg (v, p(v)) < dg v, p(u)) < 2dg(u, v). Finally,
dg(u, p(v)) <dgu,v) +dg (v, p(v)) < 3dg(u, v). It follows that

dR(u,v)<dg(u,p(v))+d(;(p(v),v) < 5dg(u, v). O
Proposition 3.7. AvStrg(R) < 3.

Proof. The claim is established by showing that for every two distinct nades V,

dr(u,v) dg(v,u)
do(u,v) dg(w,u)
We consider three cases.

Casel(u € B,(tr) andv € B, (t)). Then a message fromto v and a message fromto u
will both traverse a shortest path. Thus, the sum of the stretch factors of both paths is 2.

Case?2 (u € By(t) butv ¢ 1, (¢) (or vice-versa)). Then a message froro v will traverse,
by Proposition 3.6, a path of length at mosi&u, v), and the message fromto u will
traverse a shortest path. Thus, the sum of the stretch factors is at most 6.

108 T. Eilam et al. / Journal of Algorithms 46 (2003) 97-114

Case 3 (u ¢ B,(¥) andv ¢ B,(t)). We bound the stretch factor of the path of a mes-
sage from, sayu to v, and the same bound holds symmetrically for the path of
a message from to u. Sinceu ¢ B,(¢), and recalling thatp(v) € B,(t), we have
that dg(p(v), v) < dg(u,v). It follows that dg(u, p(v)) < dg(u,v) + dg(v, p(v)) <
2dg(u,v). Thus, dg(u,v) < dg(u, p(v)) + dg(v, p(v)) < 3dg(u,v). Symmetrically,
dr(v,u) < 3dg(u,v). Thus, in this case as well, the sum of the stretch factors of the
path of a message fromto v and fromv to u is at most 6.

It follows that
1 drpu,v) 1 dr(u,v) dr(v,u)
AVSH(R) = nn—1) Z dow,v) nn—-121 Z(d(;(u, v) dg(v, M))

u#v u<v

1
< 6<3. O
n(n—l)Z

u<v

Proposition 3.8. Comp; (R) <t +£/2+ 1.

Proof. We use the following facts, which are easily verified, in order to bound the
compactness of a s&f{¢) that labels an are.

Fact 3.9. For every two subsetd, B C {1, ..., n},

(@) cn(A) <minf|A], n/2}.
(b) cn(AU B) < cn(A) + ca(B).
() cn(A\ B) < cn(A) +cn(B).

Consider any are = (x, y). In order to provec,(Z(e)) <t + £/2+ 1, let us define
L;(e) =Z(e) N L; to be the set of labels assignedetavith leveli in x, i € {1, 2, 3}. By
constructiong, (Z(e)) = ¢, (L1(e) U L2(e) U L3(e)). Thus, by Fact 3.9(b),

en(Z(e)) < cn(L1(e)) + cn(L2(e) U L3(e)). ()

By the DFS ordering offp(x), we havec, (L1(e)) <1 andc,(L1) <1 as WE”. (We have
cn(L1(e)) =0'if y is a predecessor afin Ty,(y), andL1 = if x is a leaf ofT)(y).)

Assume that is the arc fromx to its predecessors in the treés, ,..., T, , and
let I = {i1,...,i,} be the set of pivot’s indices. Note thatC {1,..., ¢}. Finally, set
Se= Uiel ‘C(Spi)'

Step 3 of the arc-labeling implies thag(e) =S, N L3 =S, \ (L1 U L) = (Se \ L1) \
Lo. We can also writelLa(e) U La(e) = La(e) U ((S, \ L1) \ (L2 \ L2(e))). We have
cn(L2\ La(e)) < [L2\ La(e)| < |L2| — |L2(e)| using Fact 3.9(a), and thdf(e) < La.
Thus, by Fact 3.9, (a)—(c),

cn(Lale) ULs(e)) = cn(La(e) U ((Se\ L1) \ (L2 \ L2(e))))

< en(L2(e)) + cn(Se \ L1) + cn (L2 \ La(e))
< |La@)] + cn(Se) + cn(L1) + |1L2| — |La(e)|
< Cn('Se) +1+ |L2|-

T. Eilam et al. / Journal of Algorithms 46 (2003) 97-114 109

Thus Eq. (1) becomes,(Z(e)) < ¢, (Se) + |L2| + 2. Note that|Lo| < |B, (@) \ L(x)] <
t — 1. Moreover, since, (L£(S,)) = 1 for eachp € P, and{L(S,)},cp is a partition of
{1,...,n}, we have that, (U,c; £(S,,)) = c¢(I). Thus by Fact 3.9(a};, (Se) = c¢(I) <
¢/2,asl C{1,...,¢}. Therefore¢,(Z(e)) <t+£/2+ 1, asrequired. O

Proposition 3.10. Memory,;(R,u) = O((/n + t + €)logn), and Latency;(R,u) =
O (logn), for every noder € V.

Proof. Letu € V, and letd = dequ). SetK = ZeeEu cn(Z(e)) be the total number of
intervals assigned to the outgoing aecsf u. Naively, Memory; (R, u) < O(K logn) as
follows. We store in a node its label £L(u), and for each interval, the two boundaries
(using O(logn) bits) and the output port number associated with the arc labeled by this
interval (usingO (logd) bits). In total we need (logn) bits for every interval. Moreover,
this simple data structure allows a latency®flogn) assuming a binary search in the set
of intervals that are sorted according to their left boundary.

Decompose into K = K1 + K2 + K3, with K; = ZeeEu cn(Li(e)), whereL;(e) is
the set of labels assigneddat Stepi of the arc-labeling algorithm & 1, 2, 3), andL; =
UeeEu L;(e) (cf. Proposition 3.8). By the proof of Proposition 38; < d, K2 <t and
K3 <t + ¢, providing a rough bound of Memogy(R, u) < O(dlogn) + O((r + £) logn).

We now give a better implementation of the intervals contributing to thekget
especially whend > ./n. Towards that, we slightly modify the delivery protocol.
Specifically, upon reception of a message, we first decide whether the destinadian
Tp(u) (i.e.,L(v) € L1), as follows. As shown in the proof of Proposition 3c¢8(L1) <1,
thus this test can be performed in constant time, by sto@rlpgn) extra bits inu. If
vE Tp(u) then we use the implementation described hereafter in order to find the outgoing
arc on which to route the message. Otherwise, we use the usual delivery protocol which
performs a binary search on the set of intervals.

We now describe the implementation that we use for the destinations in the @et.,
the descendants in the tr@g(u)). We use the fact that output port numbersiofan be
chosen in advance in the ddt . .., d}. Note that if output ports are fixed arbitrarily or by
an adversary, no loop-free routing scheme with names in the rdnge, n} can avoid
the £2(n) memory lower bound in a tree node (cf. [8]). An even stronger lower bound of
2 (nlogn) bits holds if output ports are fixed by an adversary after the choice of the node
labels.

Note that routing a message to a destinatiohins equivalent to routing a message in
the tree?p(u) from a nodex to one of its descendants, such that the nodes of the tree
are labeled continuously in the rang&S,) = {m + 1,...,m 4+ S, !}, for somem.

This task can be achieved using a compact implementation of the standard interval routing
scheme on trees presented in [12, Section 2.3]. More precisely, it is showmat) bits

per node suffice instead of th@(d logn) bit data structure for the naive implementation.

To achieve that, we must label the nodes of the tree using a particular DFS, as done in the
node-labeling preprocessing stage of the PIR algorithms; i.e., the children are recursively
visited in increasing order of their number of descendants. However, in the implementation

of [12], the bound on the time to extract the output port number given the label of

110 T. Eilam et al. / Journal of Algorithms 46 (2003) 97-114

the destination is a priori exponential in Here we give another implementation using
O(4/nlogn) bits per node that guarantees@ilogn) query time.

Let vy, ..., vs be the descendants ofin ?p(u) (settingd = d if u is the root of?p(u),
ands = d — 1 otherwise). According to the node-labeling algorithm, the labels oftke
are ordered according to their number of descendan@(m, namely, lettingrs; be the
number of descendants of in the subtree rooted im;, we haven; < n;41 fori < 6.
Note thatn; = L(vi+1) — L(v;) for i < §. Fix the output port number of the are, v;)
to i. Clearly, to route a messagé to v it suffices to find the output pont such that
Yt < L) —m < Y7 ;. (Note that since(v) € L1, L) —m < Y2_; n;, thus
p exists.)

Consider the sequence$ = (a1,...,ar) and (r1,...,r;) such that the sequence
(n1, ...,ns) is described by a sequencerafrepetitions ofay, followed byr, repetitions
of ap, and so on, imposingy < a2 < --- < g (note that this is possible because
1< n1 < -+ < ng). Finally, fix the sequence® = (z1, ..., zx) With z; = Z’jzlrj, and
S = (s1,...,5:) Wheres; = Z?’:lnj, and fixsp = zo = 0. Storingm and the sequences
A, Z, S, costsO (klogn) bits, since all the integers are taken fr¢. .., n}. Moreover,

k < ~/2n because; > i, andY_*_, a; < n. Thus, the memory cost for this data structure
is O (y/nlogn) bits, and it takes polynomial time to set up all the tables.

To find p in O(logn) time, it suffices to perform a binary search ©fv) — m in the
sequences, ass; < --- < 5. Letg be such that,_1 < £(v) —m < s4. Then the required
output port number towards the destinatiopis- z,—1 + [(L(v) —m —s4-1)/ag]. O

Proof of Theorem 3.1. It remains to choose the sizeof the balls so as to minimize the
memory requirements and the compactness of the routing scRerard to determine

the size¢ of the cover. We use the greedy algorithm described in Section 2.3, where
|H| = |V| =n. By Lemma 2.2¢ = |P| < n(1+ Inn)/t. We note that the randomized
algorithm described in Section 2.3 could also be used in order to construct a Rover
of (asymptotically) the same size. Choosing /n(1+Inn)/2, the PIR1 preprocessing
algorithm will construct an interval routing schemRewhose compactness is bounded by
Proposition 3.8 by

Comp;(R) <t +£/24+1<+v/2n(1+1Inn)+ 1~ a/nlogn

whereax = +/2In2~ 1.17, and whose memory requirement for every nedse bounded
by Proposition 3.10 by

Memory; (R, u) = O((v/n +1 + £)logn) = 0 (Vnlog¥?n).
The length of the routes is bounded by Propositions 3.5-3.7. The lateidti§dgn) and
the time to construck and its associated data structures is polynomial inC
3.3. Strategy PIR2

Theorem 3.11. For everyn-node unweighted grapts = (V, E) with diameterD there
exists a interval routing schene= (£, Z) on G such that

(1) Memory; (R, u) = O(/nlog®?n) for everyu e V,
(2) Latency; (R, u) = O(logn) for everyu € V,

T. Eilam et al. / Journal of Algorithms 46 (2003) 97-114 111

(3) Stretch;(R) <5,

(4) AVStrg(R) < 3,

(5) Dilationg(R) < [1.5D1, and

(6) Comp;(R) < B+/nlogn, whereg ~ 2.00.

Moreover,R can be constructed in time polynomialin

Strategy PIR2 is very similar to PIR1, except that the preprocessing algorithm constructs
a pivot collection covering simultaneously the collectiorrdfalls and the collection of
[D/2]-neighborhoods around the nodes@®f Formally, the only necessary change is to
replace Step 1 of the preprocessing algorithm of PIR1 by the following step.

1. Let P; be a cover for the collection afballs of the nodeq,5, (1)} vev .
Let P> be a cover for the collection of thHeD /2]-neighborhoods of the nodes,
(I (v, [D/2])}vey. SetP = Py U Ps.

This change is responsible for the improvement in the dilation bound, as proved next.
Clearly, sinceP is a cover for the collection of-balls of the nodes, the PIR2 strategy
is a special case of the PIR1 strategy, thus Observation 3.2 and all the propositions in
Section 3.2 hold also when the PIR2 strategy is considered. We now prove a better upper
bound on the dilation of PIR2 in the case whérés an unweighted graph.

Proposition 3.12. Dilationg (R) < [1.5D1.

Proof. Clearly, the pivotp(v) of every nodev € V satisfies bothp(v) € B,(+) and
pW) € I'(v, [D/27). It follows that the distance betweenand its pivotp(v) is at most
[D/2]. By Corollary 3.4, for every two nodes v € V,

dr(u,v) <dg(u, p(v)) +dg(p(v), v) < [1.5D]. O

Proof of Theorem 3.11. It remains to select the size of the balland to show how to
construct “good” covers’; and P». First we determine and construct the coveP; as

in the PIR1 preprocessing algorithm. Thattiss © (v/nlogn), and Py is a greedy cover

of size O(y/nlogn) (by Lemma 2.2). As in the PIR1 preprocessing algorithm, here too
we can alternatively use the randomized algorithm in order to construct the &gver
Next, we use the same greedy algorithm in order to find the cBvdor the collection

of [D/2]-neighborhoods of the nodes. By Lemma 2.4, the size of such a cover satisfies
|P2| < /n(1+1Inn). More precisely, we have= |P| < |P1| + | P2, |P1]| <n(l+Inn)/t,
and|P>| < +/n(1+Inn). Therefore, choosing= +/n(1+Inn)/2, the compactness &
generated by the PIR2 preprocessing algorithm is bounded, by Proposition 3.8, by

Comp;(R) < t+ %(@ + 1+ Inn)> +1

< (V2+1)y/n@+Inn) + 1~ gy/nlogn

whereg = (v/24 1)+/In2~ 2.00, completing the proof. 0

112 T. Eilam et al. / Journal of Algorithms 46 (2003) 97-114

4. Lower bounds on loop-freerouting schemes

At this point, it is natural to ask whether our current boundoaf,/n log®?n) bits of
memory in each node for some stretch factds the best one can hope for in the case of
loop-free routing schemes. It turns out that a lower boun@ 6§/») memory bits holds for
any stretch factor for node labelsfih, . . ., n}. To prove it, we exploit the fact that loop-free
schemes (such as the PIR schemes) must route optimally on trees. Note that direct routing
schemes (including interval routing) are loop-free but the reverse does not hold.

Proposition 4.1. Let T be a tree, lek > 1 and letR be a loop-free routing scheme d@h
ThenStretch (R) < s if and only if Stretch-(R) = 1, i.e., R is a shortest path routing
scheme.

Theorem 4.2. For everys > 1, and for every loop-free routing schenkeof stretch factor
s onn-node trees that uses names taken ffdm. ., n}, there exists an-node treel’ and
anodeu in T such thaMemory; (R, u) > c4/n — O(logn), wherec ~ 3.70.

Proof. Let N denote the set of all partitions af — 1 into d integers, i.e., sequences

=(n1,...,ng) With 1 <ny <--- < nyg such thatZ _1ni =n — 1. For every coding
Q! N|—> {0 1}* of the sequences W let S‘,, be the sequencg e N with longest coding
l(S)]. Clearly,|<p(S¢)| > log, | V| for every codingp. Byt the Hardy—Ramanujan formula
[17, Eq. (4.2.7), p. 44], IW| ~ 7+/2n/3, and henc¢<p(S(p)| > c+/n for every codingp,
wherec = (n4/2/3)/In2~ 3.70.

Consider some loop-free routing schemeon trees. Note that for each partition
= (n1, ...,ny) € N there exists an-node treel’s with rootu of degreel whose children
induce subtrees of sizg, fori € {1, ..., d} (e.g., a tree of depth two). By Proposition 4.1,
the local routing functiorR in u routes along shortest paths, so the port number must be

the same for all the destination nodes that belong to the same subtree. Hence knaiving
andL(u) suffices for computing the sequenge- (n1, ..., ng) USingR.

It follows that R yields a codingy for N, which for everyS € N satisfies|vy(S)| <
Memory (R, u) + O(logn) (asn, d andL(u) can be stored using (logn) bits). Looking
at Sy, the worst sequence far, and constructing the corresponding trég,= Tg,, we

havec./n < |1ﬁ(§¢,)| < MemoryTw (R, u) + O(logn), completing the proof. O

Note that an upper bound of/» bits per node for trees has been established in [12,
Section 2.3] for shortest path routing scheme.

In contrast to the theorem, a universal strategy that 03és:*/ ¥ logn) bits of memory
per router and yields stretch factonk? 9%), for everyk > 1, is presented in [1]. Moreover,
the generated schemes arame-independent.e., node names do not change in the
preprocessing, so the destination’s routing label is simply its original name. It follows that
there exists a routing scheme using names taken {tom ., n} that guarantees(,/n)
bits per router and a constant stretch factor (e.g., chbes@) for any graph, including
graphs satisfying Theorem 4.2. However, that scheme cannot be loop-free, as the theorem
indicates that a loop-free routing scheme with such an efficiency-space tradeoff does not
exist for such graphs.

T. Eilam et al. / Journal of Algorithms 46 (2003) 97-114 113

One may ask whether the stretch factor guaranteed by the PIR strategy is the best
that can be achieved with memory requiremefits/nlog®?n). Actually, the smallest
possible stretch factor one can hope for when considering a routing scheme with memory
requirements ino(n) is s = 3, since as shown in [13], there exist some graphs on
which every routing scheme of stretch facto 3 requires at leas® (n) bits. Recently,

a new sampling algorithm for selecting the pivots has been presented in [22], allowing
improvements in the maximum stretch factor provided by our scheme. The new pivot set
P is such that, for every node the setC, = {w | dg(u, w) < dg(u, P)} of nodes closer

to u than any node of satisfies thatC,| + | P| = O (4 /nlogn). With the set<C,, playing

the role of balls in our scheme, this new sampling algorithm provides a routing scheme
(stillin the form of an IRS) with the same performances as ours but with a lower maximum
stretch factor. While the average stretch is sti#+ 3, the triangle inequality can be used
symmetrically betweent,, andC, (for a sourcex and a destinatiom) implying that the
maximum stretch factor is= 3 as well.

Acknowledgments

We thank Shlomo Moran, Shmuel Zaks, and Jean-Michel Couvreur for helpful discus-
sions.

References

[1] B. Awerbuch, A. Bar-Noy, N. Linial, D. Peleg, Improved routing strategies with succinct tables,
J. Algorithms 11 (1990) 307—-341.
[2] B. Awerbuch, D. Peleg, Sparse partitions, in: 31st Symp. on Foundations of Computer Science (FOCS),
1990, pp. 503-513.
[3] B. Awerbuch, D. Peleg, Routing with polynomial communication-space trade-off, SIAM J. Discrete Math. 5
(1992) 151-162.
[4] L.J. Cowen, Compact routing with minimum stretch, J. Algorithms 38 (2001) 170-183.
[5] T. Eilam, S. Moran, S. Zaks, Lower bounds for linear interval routing, Networks 34 (1999) 37-46.
[6] M. Flammini, G. Gambosi, U. Nanni, R.B. Tan, Multidimensional interval routing schemes, Theoret.
Comput. Sci. 205 (1998) 115-133.
[7] P. Fraigniaud, C. Gavoille, Universal routing schemes, J. Distrib. Comput. 10 (1997) 65-78.
[8] P. Fraigniaud, C. Gavoille, Routing in trees, in: 28th Int. Colloquium on Automata, Languages and
Programming (ICALP), in: Lecture Notes in Comput. Sci., Vol. 2076, Springer-Verlag, 2001, pp. 757-772.
[9] G.N. Frederickson, R. Janardan, Separator-based strategies for efficient message routing, in: 27th Symp. on
Foundations of Computer Science (FOCS), 1986, pp. 428-437.
[10] G.N. Frederickson, R. Janardan, Designing networks with compact routing tables, Algorithmica 3 (1988)
171-190.
[11] G. Gambosi, P. Vocca, Topological routing schemes, in: 10th Int. Workshop on Distributed Algorithms
(WDAG), in: Lecture Notes in Comput. Sci., Vol. 1151, Springer-Verlag, 1996, pp. 206-219.
[12] C. Gavoille, A survey on interval routing, Theoret. Comput. Sci. 245 (2000) 217-253.
[13] C. Gavoille, M. Gengler, Space-efficiency of routing schemes of stretch factor three, J. Parallel Distrib.
Comput. 61 (2001) 679-687.
[14] C. Gavoille, E. Guévremont, Worst case bounds for shortest path interval routing, J. Algorithms 27 (1998)
1-25.
[15] C. Gavoille, D. Peleg, The compactness of interval routing, SIAM J. Discrete Math. 12 (1999) 459-473.

114 T. Eilam et al. / Journal of Algorithms 46 (2003) 97-114

[16] C. Gavoille, S. Pérennés, Memory requirement for routing in distributed networks, in: 15th Annual ACM
Symp. on Principles of Distributed Computing (PODC), ACM Press, 1996, pp. 125-133.

[17] M.J. Hall, Combinatorial Theory, 2nd edition, Wiley—Interscience, 1986.

[18] R. Krdovi¢, P. Ruzika, D. Stefankod, The complexity of shortest path and dilation bounded interval
routing, Theoret. Comput. Sci. 234 (2000) 85-107.

[19] L. Lovasz, On the ratio of optimal integral and fractional covers, Discrete Math. 13 (1975) 383-390.

[20] D. Peleg, E. Upfal, A trade-off between space and efficiency for routing tables, J. ACM 36 (1989) 510-530.

[21] N. Santoro, R. Khatib, Labelling and implicit routing in networks, Comput. J. 28 (1985) 5-8.

[22] M. Thorup, U. Zwick, Compact routing schemes, in: 13th Annual ACM Symp. on Parallel Algorithms and
Architectures (SPAA), Hersonissos, Crete, Greece, ACM Press, 2001, pp. 1-10.

[23] S.S.H. Tse, F.C.M. Lau, An optimal lower bound for interval routing in general networks, in: 4th Int.
Colloguium on Structural Information & Communication Complexity (SIROCCO), Carleton Scientific,
1997, pp. 112-124.

[24] J. van Leeuwen, R.B. Tan, Computer networks with compact routing tables, in: The Book of L, Springer-
Verlag, 1986, pp. 259-273.

