
r

r

,

e

average
,
f
e and

ones
at

er to
rtant to

ce and
Journal of Algorithms 46 (2003) 97–114

www.elsevier.com/locate/jalgo

Compact routing schemes with low stretch facto✩

Tamar Eilam,a Cyril Gavoille,b and David Pelegc,∗,1

a IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
b LaBRI, Université Bordeaux I, 351, cours de la Libération, 33405 Talence cedex, France

c Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science
Rehovot, 76100 Israel

Received 28 October 2000

Abstract

This paper presents a routing strategy calledPivot Interval Routing(PIR), which allows messag
routing on every weightedn-node network along paths whosestretch factor(namely, the ratio
between the length of the routing path and the shortest path) is at most five, and whose
stretch factor is at most three, with routing tables of sizeO(

√
n log3/2n) bits per node. In addition

the route lengths are at most 2D (�1.5D� for uniform weights) whereD is the weighted diameter o
the network. Moreover, it is shown that the PIR strategy can be constructed in polynomial tim
can be implemented so that the generated scheme is in the form of aninterval routing scheme(IRS),
using at mostO(

√
n logn) intervals per link. As a result, the schemes are simpler than previous

and they imply that the paths followed by messages areloop-free. On the other hand, we show th
there is no loop-free routing strategy guaranteeing a memory bound of at most

√
n bits per node for

all networks, regardless of the route lengths.
 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

1.1. Background

In point-to-point communication networks, a routing scheme is employed in ord
deliver messages between processors. As networks grow in size, it becomes impo

✩ An extended abstract of this paper has appeared in the PODC ’98 symposium.
* Corresponding author.

E-mail addresses:eilamt@us.ibm.com (T. Eilam), gavoille@labri.fr (C. Gavoille),
peleg@wisdom.weizmann.ac.il, david.peleg@weizmann.ac.il (D. Peleg).

1 Supported in part by grants from the Israel Science Foundation and from the Israel Ministry of Scien
Art.
0196-6774/03/$ – see front matter 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0196-6774(03)00002-6

98 T. Eilam et al. / Journal of Algorithms 46 (2003) 97–114

time, it
ncy of a

o
est path

very
t keep
every
uter has
ut
ctical

adeoff
h factor
tretch
.

posed
heme

e

r
rather
k to the
solely

design
act
portant
type
and the
d once

f this
g
cutive
a node
ssage
label.
in the
ple

mplies
reduce the amount of memory kept in each node for routing purposes. At the same
is essential to route messages along paths that are as short as possible. The efficie
routing scheme is often measured in terms of itsstretch factor, namely, the maximum rati
between the length of the path traversed by a message and the length of the short
between its source and destination.

A universal routing strategyis an algorithm which generates a routing scheme for e
given network. One type of trivial universal routing strategy is based on schemes tha
in each node a full routing table, i.e., a table which specifies an output port for
destination. Though this strategy guarantees routing along shortest paths, each ro
to store locallyΘ(n logd) bits of memory, whered is its degree (i.e., the number of outp
ports) andn is the number of nodes in the network. Therefore, this scheme is impra
when dealing with large networks.

It was shown in a series of papers (see, e.g., [1–3,20,22]) that there is a tr
between the memory requirements of a routing scheme and the worst case stretc
it guarantees. In [20] it was shown that any universal routing strategy achieving s
factors � 1 must use a total ofΩ(n1+1/(2s+4)) bits of routing information in the network
Stronger lower bounds hold for small stretch factors [7,13,16].

On the positive side, a number of hierarchical routing strategies have been pro
that achieve almost optimal efficiency-space tradeoffs [2,20]. In particular, the sc
presented in [2] guarantees a stretch factor ofO(k2), while usingO(k n1/k log2n logD)

memory bits per node, for everyk � 1, whereD is the weighted diameter of th
network. Another strategy presented in [22] guarantees a stretch factor ofO(k) and
usesO(n1/k logO(1) n) memory bits per node witho(k log2n) bit names. The majo
disadvantage of all the proposed hierarchical routing strategies is that they are
complex. Briefly, headers of messages are re-written, a message can bounce bac
originator, and the decision function in each node is complex and does not depend
on the destination name.

Subsequently, considerable attention has been given recently to an opposing
philosophy, focusing onsimpleand uniform compact routing strategies. Many comp
routing strategies were proposed in the last decade (see, e.g., [6,9–11,21,24]).An im
property common to all of them is that they employ a simple “transmit and forget”
decision function in the nodes, depending only on the destination of the message,
destination is the only information coded in the message header (which is determine
and for all by the originating router, and is never changed afterwards).

The most popular such scheme is theinterval routing scheme(IRS). It is presented in
[21,24] and implemented in the T9000 Transputer router chip of INMOS. The idea o
scheme is to label nodes with unique integers from{1, . . . , n}, and to label the outgoin
arcs in every node with a set of destination labels in the form of a set of conse
intervals of the name segment. The collection of sets that label the outgoing arcs of
forms a partition of the name segment. When invoking the delivery protocol, a me
is sent on the unique outgoing arc labeled by a set that contains the destination
While the preprocessing stage of such a routing scheme (which is performed once
initialization of the network) might be complex, the delivery protocol consists of sim
decision functions in every node that depends only on the destination and thus i
loop-free routing paths.

T. Eilam et al. / Journal of Algorithms 46 (2003) 97–114 99

er of
r this
ce are
versal
cheme

t
[15]
uses

every
st

on the
l time)
graph.
es
me,

ble to
” we
r, the

umber

er we
results

ting
for

e
ode).

ng
every
1
ted

h also
,
erage

or
One of the desirable goals in interval routing is to minimize the maximum numb
intervals that label an arc. Unfortunately, while many lower bounds are known fo
problem (see, e.g., [5,14,18,23]), few trade-off results between efficiency and spa
known for any of these strategies for general graphs. For interval routing, a uni
strategy which is based on routing on a BFS-tree is presented in [21,24]. This s
uses only one interval per edge, thus the memory in a node with degreed is O(d logn),
it guarantees that the length of routing paths is at most 2D, whereD is the diameter, bu
it implies no upper bound on the stretch factor. On the other extreme, it is shown in
that it is possible to generate for every network an interval routing scheme which
at mostn/4 + o(n) intervals per edge and guarantees stretch factors = 1. Lately, [18]
showed that for every graph there exists an interval routing scheme under which
message traverses a path of length at most�1.5D�, and which labels every arc with at mo√
n lnn+O(1) intervals. While this result implies an upper bound on thedilation, i.e., the

length of paths traversed by messages, it does not imply any nontrivial upper bound
stretch factor. Moreover, the paper does not present any efficient (say, polynomia
preprocessing algorithm for generating such an interval routing scheme for a given
The scheme presented in [4] usesO(n2/3 log4/3n) memory bits per node and guarante
a stretch factors = 3. While the scheme is loop-free, it is not an interval routing sche
and it uses 3 logn bit names.

1.2. Our results

A basic question which arises from the above discussion is whether it is possi
design “simple” near-optimal routing strategies, which are still compact. By “simple
mean routing schemes in which the header is not allowed to be rewritten. Furthe
header contains only the destination of the message (where destinations are in{1, . . . , n})
and the decision function depends only on the header (and not on the incoming port n
for example). We term routing methods that obey these restrictionsdirect. Note that all the
proposed compact routing strategies (e.g., interval routing) are direct. In this pap
analyze the power of direct routing strategies and give both positive and negative
for this question.

Our main results are two polynomial time constructible direct universal rou
strategies, termedpivot interval routing(PIR, in short). The first one, PIR1, generates
every weighted graph with arbitrary link costs, a routing scheme with stretch factors � 5
that usesO(

√
n log3/2n) bits per node, and requiresO(logn) latency (defined as the tim

required to extract the outgoing link on which a message is to be forwarded in a n
Also, we show that the average stretch factor iss � 3. Moreover, the PIR1 preprocessi
algorithm actually generates for every graph an interval routing scheme which labels
arc with at mostα

√
n logn intervals, whereα ≈ 1.17. The dilation guaranteed by the PIR

strategy is 2D, whereD is the weighted diameter of the network. For the unweigh
case, we present a slightly different universal routing strategy named PIR2 (whic
generates for every graph an interval routing scheme with stillβ

√
n logn intervals per arc

whereβ ≈ 2.00), achieving the same memory requirements, stretch factor and av
stretch factor as the PIR1 algorithm while guaranteeing a better dilation bound of�1.5D�.
We also provide a lower bound of

√
n on the number of bits kept locally in a node f

100 T. Eilam et al. / Journal of Algorithms 46 (2003) 97–114

outing
routing

en the
using

nition
nd in

f these
outing
r bound

finite
f the
n link.

can
uniform

at every
the

uce a

The

een
s

ld.
y the
every loop-free routing scheme that uses names from the range{1, . . . , n} and for every
stretch factor. Thus our routing strategy cannot be generalized to obtain a family of r
schemes with different values of stretch factor and memory such as the hierarchical
schemes (e.g., [1,22]).

A direction remaining for future research is to establish the best trade-off betwe
memory requirements and the (average) stretch factor for direct routing schemes
node labels in a range{1, . . . ,m}, with m> n.

The rest of the paper is organized as follows. In Section 2 we give a precise defi
of routing schemes and efficiency measures. We formally define interval routing a
addition we overview some covering techniques, adopted from [1]. We make use o
techniques for the proposed routing strategy. In Section 3 we present our PIR r
strategies, prove their correctness and analyze their complexity measures. The lowe
on the power of loop-free routing schemes is proved in Section 4.

2. Model and definitions

2.1. Routing schemes

A point-to-point communication network is modeled as a symmetric, weighted,
digraphG = (V ,E,ω), |V | = n, where the set of nodes represent the processors o
network and every pair of two opposite arcs represents a bidirectional communicatio
Every arc of the networke ∈E is associated with a nonnegative weightω(e) (i.e., its cost)
defining a metric. We assume that for every two opposite arcse1 ande2, ω(e1) = ω(e2).
(Our algorithm will not work correctly for the case of asymmetric weights. Whether it
be generalized to handle that case requires further research.) In the special case of
unit weight links, we say that the graph isunweighted, and denote it simply byG= (V ,E).
Graphs are connected and do not contain self-loops or multiple arcs. We assume th
nodev is named with a unique identity integer. In what follows, we informally use
nodev and its unique identity integer interchangeably. Note that the identities ind
total order on the nodes, thus for every two nodesu,v ∈ V eitheru < v or v < u.

The length of a directed path in the graph is the sum of weights of its arcs. Thedistance
dG(u, v) between two nodesu,v ∈ V is the length of a shortest path connecting them.
diameterof the graphG is defined as max{dG(u, v) | u,v ∈ V }. For a nodev ∈ V , let Ev

denote its set of outgoing arcs, and denote itsdegreeby deg(v) = |Ev|.
A routing schemeR is a distributed algorithm whose role is to deliver messages betw

nodes of the network. The routing scheme consists of certaindistributed data structure
in the network, and adelivery protocol, which can be invoked in any nodeu with two
parameters: arouting labelof the destination nodev, and the message’s information fie
The message is delivered tov via a sequence of transmissions determined uniquely b
distributed data structure.

The length of the route traversed by a message fromu to v in the graphG according to
the routing schemeR is denoted bydR(u, v). A universal routing strategyis a function that
returns for every graphG a routing scheme onG. It is implemented by apreprocessing

T. Eilam et al. / Journal of Algorithms 46 (2003) 97–114 101

tures

e

a-
tains

aphs.
e that
every
n that

es that
tion.)

re

s
ed

lly,

of
d

s

re
algorithm, performed during set-up time in order to construct the distributed data struc
and the labels required for the routing scheme.

An interval routing schemeR on G is a routing scheme consisting of a pair(L,I),
generated in the preprocessing step, whereL is anode-labeling,L :V → {1, . . . , n}, andI
is anarc-labeling, I :E → 2L(V), that satisfy the following condition. For any nodeu, the
collection of sets that label all the outgoing arcs ofu forms a partition of the name rang
(possibly excludingu itself 2). Formally, for everyu ∈ V ,

(1)
⋃

e∈Eu
I(e)∪L(u) = {1, . . . , n};

(2) I(e1)∩ I(e2) ⊆ L(u) for every two distinct arcse1, e2 ∈ Eu.

The delivery protocol is defined as follows. In every nodeu, a message with destin
tion v (L(v) written in its header) is sent on the arc which is labeled by a set that con
the destination label (namely,L(v) ∈ I(u, v)).

We denote by IRS the class of all the interval routing schemes on arbitrary gr
Clearly, every interval routing scheme is a direct routing scheme. Conversely, not
every direct routing scheme can be implemented using interval routing by labeling
outgoing arc in a node with the set of destinations for which a message will be sent o
arc (encoded using a set of intervals). (This is not always possible for routing schem
are not direct since the output port does not necessarily depend only on the destina

2.2. Complexity measures

Let R be a routing scheme on ann-node graphG. Given a nodeu, the memory
requirementof u, denoted by MemoryG(R,u), is the smallest number of bits that a
required in order to codeR in u. Thelatencyof R in u, denoted by LatencyG(R,u), is the
time complexity ofR per node in the standardO(logn)-word RAM-model. It correspond
to the time required to extract fromR the outgoing link on which the message is forward
in u. The maximum and average stretch factors ofR are respectively defined as

StretchG(R) = max
u �=v

{
dR(u, v)

dG(u, v)

}
and AvStrG(R) = 1

n(n− 1)

∑
u �=v

dR(u, v)

dG(u, v)
.

A routing scheme of stretch factor 1 is termed ashortest pathrouting scheme. Thedilation
of a routing schemeR is the maximal length of a path traversed by a message. Forma

DilationG(R) = max
u �=v

{
dR(u, v)

}
.

Given an integern and a subsetI ⊆ {1, . . . , n}, define thecompactness ofI w.r.t. n,
denotedcn(I), as the smallest integerk such thatI can be represented by the union
k intervals[a, b] of consecutive integers from{1, . . . , n}, with n and 1 being considere
as consecutive (cyclically). Thecompactnessof an interval routing schemeR = (L,I)
on G, denoted by CompG(R), is the maximum, over all arcse ∈ E, of the compactnes

2 A labeling excludingu from its arc-labels is termedstrict. Although nonstrict labeling may produce mo
compact schemes, in this paper we restrict our attention to strict labeling only.

102 T. Eilam et al. / Journal of Algorithms 46 (2003) 97–114

ply
sed on
unded

lls, and

s
ts of

he

ver

ly
order
h is

ly

h arcs
cn(I(e)) of the setI(e) labelinge. Intuitively, smaller compactness and degrees im
smaller routing tables. For example, the interval routing strategy presented in [21], ba
routing on a minimum spanning tree, has compactness 1 (for every graph) but unbo
stretch factor.

2.3. Balls, neighborhoods, and covers

Our routing scheme constructions are based on the notions of neighborhoods, ba
covers. For every nodev we can order all the nodes of the graph w.r.t.v by increasing
distance fromv, breaking ties by increasing node identities. Formally,x ≺v y if and only
if either dG(x, v) < dG(y, v), or dG(x, v) = dG(y, v) andx < y. The t-ball Bv(t) of v,
is the set of the firstt nodes according to the node ordering≺v. The r-neighborhoodof
a nodev ∈ V is defined asΓ (v, r) = {u ∈ V | dG(v,u) � r}. Hence intuitively, a ball is
a neighborhood defined by volume rather than by radius.

Following is a simple fact which holds for both neighborhoods and balls.

Fact 2.1 (monotonicity).If u ∈ Bv(t) (respectively,u ∈ Γ (v, r)) then for every nodex on
a shortest path fromv to u, u ∈ Bx(t) (respectively,u ∈ Γ (x, r)).

Consider a collectionH of subsets of sizet of elements from a setV . A setP ⊆ V is
said tocoverthe collectionH if for everyA ∈ H, A ∩ P �= ∅. We review two technique
presented in [1] for generating relatively small covers for a given collection of se
equal size. The first technique is by using a greedy algorithm that starts withP = ∅ and
iteratively adds to the setP an element inV occurring at the most uncovered sets. T
algorithm stops whenP becomes a cover. The setP is termed agreedy coverfor H.

Lemma 2.2 (Lovász [19]).LetP be a greedy cover forH. Then|P | < |V|(ln |H| + 1)/t .

The second method is randomized, and takes each element ofV to the setP with
probability(c ln |H|)/t , for some constantc > 1.

Lemma 2.3 (Awerbuch et al. [1]).Let P be the set constructed by the randomized co
algorithm under the assumptions that|V| � 2t and ln |H| = o(t). Then with probability at
least1− 1/|H|c−1, P is a cover forH and|P | � (2c|V| ln |H|)/t .

For our needs,|H| = |V| = n. In this paper, we are interested in ther-neighborhoods
of nodes only for the caser = �D/2�, whereD is the diameter of the graph, and on
for unweighted graphs. In particular, we would like to use such neighborhoods in
to construct a small�D/2�-dominating set for our graph in the case where the grap
unweighted (PIR2).

For every nodevi , 1� i � n, letWi = Γ (vi, �D/2�). Note that a cover for the set fami
W = {W1, . . . ,Wn} (i.e., a setX ⊆ V whose intersection with eachWi is nonempty) is a
�D/2�-dominating set for the graph. Also, note that (since the weights on the grap
are uniform),Wi ∩ Wj is nonempty for everyi �= j , since otherwisedG(vi , vj) > D. It
is therefore easy to verify thatW has a cover of cardinalityO(

√
n logn). Note that this

T. Eilam et al. / Journal of Algorithms 46 (2003) 97–114 103

e
lt
qual
ver
us

ial-

,
nd the
ph with

nodes
hat a
ion
pivot

size
ue
e

cannot be deduced directly from Lemma 2.2, since|Wi | is not necessary inΘ(
√
n logn).

Nevertheless, such a coverX can be constructed by the following algorithm.
First, note that sinceWi ∩ Wj is nonempty for everyi �= j , each setWi is in itself

a cover for the set familyW . Hence if there exists some 1� i � n such that the setWi

of cardinality|Wi | < √
n(1+ lnn) then we take the setX = Wi as our cover and we ar

done. So now suppose that|Wi | � √
n(1+ lnn) for every 1� i � n. In this case, the resu

follows from observing that Lemma 2.2 holds also for a collection of sets of none
sizes, providedt is a lower boundon the size of the sets in the collection. Hence the co
X is found by settingt = √

n(1+ lnn) and applying the above greedy algorithm. We th
have the following.

Lemma 2.4. For everyn-node unweighted graphG there exists a�D/2�-dominating setX
of cardinality|X|< √

n(1+ lnn). Moreover, this set can be constructed by a polynom
time algorithm(described above).

3. The pivot interval routing strategy

We present two routing strategies, termedPivot Interval Routing. The first one, PIR1
generates an interval routing scheme for every weighted graph (Theorem 3.1) a
second one, PIR2, generates an interval routing scheme for every unweighted gra
improved dilation (Theorem 3.11).

Theorem 3.1. For everyn-node weighted graphG= (V ,E,ω) with weighted diameterD
there exists a interval routing schemeR = (L,I) onG such that

(1) MemoryG(R,u)=O(
√
n log3/2n) for everyu ∈ V ,

(2) LatencyG(R,u) =O(logn) for everyu ∈ V ,
(3) StretchG(R) � 5,
(4) AvStrG(R) � 3,
(5) DilationG(R) � 2D, and
(6) CompG(R) � α

√
n logn, whereα ≈ 1.17.

Moreover,R can be constructed in time polynomial inn.

Intuitively, the idea of the PIR1 strategy is first to find the collection oft-balls of all the
nodes of the graph, then to cover this collection by a (comparatively small) set of
termedpivots, and finally to label the nodes and arcs of the graph in such a way t
message with sourceu and destinationv will be routed on a shortest path if the destinat
v is in u’s t-ball. Otherwise, it will traverse (in the worst case) a shortest path to the
nearest tov, and then a shortest path from that pivot tov itself.

We present the preprocessing algorithm of the PIR1 strategy for any given ballt
and for any given coverP of the collection oft-balls of nodes in the graph. The val
of t is determined later (to roughlyO(

√
n logn)), in the proof of Theorem 3.1, wher

104 T. Eilam et al. / Journal of Algorithms 46 (2003) 97–114

in

inary
fine the

e-

de

rder,
em-

in the
des

ut
s

it is also shown how to construct a coverP such that PIR1 will satisfy the properties
Theorem 3.1.

The preprocessing algorithm consists of three parts. In the first part, some prelim
structures are constructed which are used later (in the second and third parts) to de
node and arc labeling functionsL andI.

3.1. Strategy PIR1: preprocessing and delivery protocol

We consider a weighted graphG= (V ,E,ω). t , the size of the balls used, is a param
ter. We construct the interval routing schemeR = (L,I) as follows.

3.1.1. The preprocessing algorithm
Preliminary constructions.

(1) LetP be a cover for the collection oft-balls of the nodes,{Bv(t)}v∈V . Let += |P |.
(2) Assign to every nodev its pivot p(v) ∈ P , wherep(v) is the nearest node tov in P

(breaking ties by increasing node identities).
(3) For every pivotp ∈ P , let Sp = {v | p(v) = p} be the set of nodes havingp as their

pivot. (Observation 3.2 shows that{Sp}p∈P is a partition.)
(4) For every pivotp ∈ P , construct a minimum weight BFS spanning treeTp rooted atp,

and spanning the entire graphG (namely, inTp the unique path between any no
andp is a shortest path). Let̂Tp be the subgraph ofTp induced byp and its setSp .
(Observation 3.2 shows that the subgraphT̂p is actually a tree.)

Labeling the nodes. Assume thatP = {p1, . . . , p+}. We start by labeling the nodes inSp1.
The labeling is performed by traversing the treeT̂p1 (i.e., the subtree spanningSp1), and
assigning the nodes of̂Tp1 a DFS (pre-order) numbering in sequential ascending o
starting from 1. In order to give an efficient implementation of the scheme with low m
ory and low latency (see Proposition 3.10), we impose a DFS so that, at any nodex of T̂p1,
the children ofx are visited in a nondecreasing order of their number of descendants
subtree. Once all the nodes ofSp1 have been labeled, we continue by labeling the no
in Sp2 in the same manner (traversing the treeT̂p2), starting from the integer 1+ |Sp1|.
Then we label the nodes ofSp3, . . . , Sp+ in the same way, provided the node labelingL.

Labeling the arcs. For every nodex ∈ V , we label every arce ∈ Ex by a set of
destinationsI(e) ⊆ {1, . . . , n} in three main steps. We start by fixingI(e) = ∅ for every
e ∈ Ex , and then at each step we add some node labels to the sets{I(e)}e∈Ex , such that
labels are never deleted from the setsI(e), and the sets are mutually disjoint througho
the process. Define for a setA ⊆ V , L(A) = {L(a) | a ∈ A}. Formally, we label the arc
Ex of every nodex as follows.

(0) Fix I(e)= ∅, for everye ∈ Ex .
(1) If x is not a leaf in the treêTp(x), let s1, . . . , sj be its successors in̂Tp(x) and letT̂si be

the subtree of̂Tp(x) rooted atsi , for 1� i � j . AssignI(x, si) = {L(v) | v ∈ T̂si }, for
every 1� i � j . DefineL1 = ⋃

1�i�j I(x, si). If x is a leaf,L1 = ∅.

T. Eilam et al. / Journal of Algorithms 46 (2003) 97–114 105

one

outing
n

n

ice of
Fig. 1. The route fromu to a destinationv which is not inu’s ball.

(2) DefineL2 = L(Bx(t)) \L1. For every nodev �= x such thatL(v) ∈ L2, let e ∈ Ex be
an arc on a shortest path fromx to v (if there is more than one such arc, choose
arbitrarily). AssignI(e) = I(e)∪ {L(v)}.

(3) Let L3 = L(V) \ (L1 ∪ L2). For everyp ∈ P , let ep ∈ Ex be the arc fromx to its
predecessor on the treeTp. AssignI(ep)= I(ep) ∪ (L(Sp)∩L3).

3.1.2. The delivery protocol
In a nodex, a messageM with destinationv �= x is sent on the unique arce ∈Ex , such

thatL(v) ∈ I(e). Figure 1 depicts the path of a message on the spanning treeTp(v) from a
sourceu to a destinationv which is not inu’s ball.

3.2. Analysis of PIR1

We now prove that the PIR1 preprocessing algorithm generates an interval r
scheme that satisfies (for specific possible values oft and +) the properties stated i
Theorem 3.1.

We start with some simple observations.

Observation 3.2. (1) For every nodev ∈ V , p(v) ∈ Bv(t).
(2) For every nodev ∈ V , and for every nodex on a shortest path fromv to its pivot

p(v), p(x) = p(v).
(3) {Sp}p∈P is a partition of the set of nodesV .
(4) For every pivotp ∈ P , T̂p is a connected tree.

Proof. The first observation follows from the definition ofP as a cover of the collectio
of t-balls and the choice of the pivotp(v) as the nearest pivot for every nodev. The
second one is easily verified by the monotonicity property (Fact 2.1), and the cho
p(v) for everyv. The third observation follows from the definition of the setsSp , and
the last observation is easily verified using the definition of the treeT̂p, the setsSp , and
Observation 3.2(2). ✷

In every nodex, define a level function on the labels of all other nodes. A labelL(v) of
a nodev �= x has leveli in x, i ∈ {1,2,3}, if L(v) ∈ Li , i.e., if it was inserted to a setI(e),
for somee ∈ Ex , in Stepi of the arc labeling algorithm. Thelevel of a messageM in a

106 T. Eilam et al. / Journal of Algorithms 46 (2003) 97–114

e
e

n

f the
at in
n
of
m
)

ssage
e in a
lly the

e

s

t
,

case,

ns
tually

ch
ource’s
3 then
nodex is the level of the label of its destination inx. We first prove that the output of th
PIR1 preprocessing algorithm for every weighted graphG is an interval routing schem
onG, and then analyze the routes taken by the messages.

Proposition 3.3. R = (L,I) is an interval routing scheme onG. Specifically,

(a) For everyx ∈ V , {I(e) | e ∈Ex} ∪L(x)= {1, . . . , n}.
(b) For every two distinct arcs(x, y) and(x, z), I(x, y)∩ I(x, z)= ∅.
(c) For every two nodesu,v ∈ V , there exists a sequence of nodesu= x1, . . . , xr = v such

thatL(v) ∈ I(xi, xi+1) for every1 � i < r, namely, every messageM with sourceu
and destinationv eventually arrives at its destination.
Moreover, the messageM will traverse a shortest path fromu to v if v ∈ Bu(t).
Otherwise, it will traverse a shortest path top(v) or a prefix of that path, and the
a shortest path tov.

Proof. In every step of the arc labeling algorithm, every label which is added to one o
setsI(e) did not belong to any of the sets in any former step. In addition, it is clear th
every step a label is inserted only to one of the setsI(e). Note that in Step 3 we rely o
the fact that{Sp}p∈P is a partition ofV . Proposition 3.3(b) follows. Since every label
a node belongs to a (unique) setSp for somep ∈ P , Step 3 of the arc labeling algorith
guarantees that every node label will be contained in one of the setsI(e). Proposition 3.3(a
follows.

In order to prove Proposition 3.3(c), we show that the sequence of levels of a me
on the path traversed by it is nonincreasing. In addition, if the level of a messag
node is 1 then eventually the destination is reached and if it is 2 or 3 then eventua
destination is reached or the level of the message decreases.

Consider a messageM with sourceu and destinationv. Assume that its level in a nod
x �= v is 1. L(v) ∈ L1 in x implies thatx is not a leaf in the treêTp(x). Let si be the
successor ofx in the treêTp(x) such thatv belongs to the subtreêTsi of the treêTp(x). The
message is delivered tosi which is strictly closer tov thanx and the same condition hold
for si . Thus insi , M is closer tov and has level 1, or the destinationv is reached.

Now assume thatM has level 2 in a nodex. It follows that v ∈ Bx(t). Assume tha
L(v) ∈ I(x, y). Then since(x, y) is on a shortest path fromx to v, by Observation 3.2
v ∈ By(t) andy is strictly closer tov thanx. It follows that either the level ofM in y is 1,
and the claim follows by reduction to the former case, or the level remains 2. In any
since we advance towardsv, it is easy to verify by induction that eventuallyv is reached in
this case as well.

Finally, assume thatM has level 3 in a nodex. Assume thatL(v) ∈ I(x, y). Then it is
clear by the PIR1 preprocessing algorithm, that(x, y) is the arc in the treeTp(v) from x to
its predecessor. It follows thaty it is strictly closer top(v) and either the same conditio
as in the previous step hold or the level is smaller than 3 (either 2 or 1). Thus even
the destination is reached.

Note that if the level of a message in a nodex is 2 or 1 then it is sent along an arc whi
is on a shortest path to the destination. Thus in case the destination belongs to the s
t-ball, the message will traverse a shortest path. If the level of a message in a node is

T. Eilam et al. / Journal of Algorithms 46 (2003) 97–114 107

ot, thus
reases.
a
path

y.

r in

,

is 2.
the message is sent on an arc which is on a shortest path to the destination’s piv
in this case a shortest path to the destination’s pivot is traversed until the level dec
Since whenp(v) is reached the level ofM decreases to 1,M will traverse in this case
shortest path top(v) or some prefix of that path, and then it will traverse a shortest
to v. Proposition 3.3(c) follows. ✷

By Proposition 3.3(c) we have

Corollary 3.4. For everyu,v ∈ V , dR(u, v) = dG(u, v) if v ∈ Bu(t), and dR(u, v) �
dG(u,p(v)) + dG(p(v), v) otherwise.

We now analyze the properties of the routing schemeR generated by the PIR1 strateg
LetD be the weighted diameter ofG. By Corollary 3.4,dR(u, v) � 2D for everyu,v ∈ V .
Therefore we have

Proposition 3.5. DilationG(R) � 2D.

Proposition 3.6. StretchG(R) � 5.

Proof. Consider a messageM with sourceu and destinationv. By Corollary 3.4,
in casev ∈ Bu(t), the stretch factor is 1. It remains to bound the stretch facto
casev /∈ Bu(t). The length of the path traversed by the messageM in this case is
bounded by Corollary 3.4 asdR(u, v) � dG(u,p(v)) + dG(p(v), v). Sincep(u) ∈ Bu(t)

andp(v) /∈ Bu(t), necessarilydG(u,p(u)) � dG(u, v). Thus, by the triangle inequality
dG(v,p(u)) � dG(v,u) + dG(u,p(u)) � 2dG(u, v). Sincep(v) is the pivot minimizing
the distance tov among all pivots inP , dG(v,p(v)) � dG(v,p(u)) � 2dG(u, v). Finally,
dG(u,p(v)) � dG(u, v)+ dG(v,p(v)) � 3dG(u, v). It follows that

dR(u, v)� dG
(
u,p(v)

) + dG
(
p(v), v

)
� 5dG(u, v). ✷

Proposition 3.7. AvStrG(R) � 3.

Proof. The claim is established by showing that for every two distinct nodesu,v ∈ V ,

dR(u, v)

dG(u, v)
+ dR(v,u)

dG(v,u)
� 6.

We consider three cases.

Case 1 (u ∈ Bv(t) andv ∈ Bu(t)). Then a message fromu to v and a message fromv to u

will both traverse a shortest path. Thus, the sum of the stretch factors of both paths

Case 2 (u ∈ Bv(t) butv /∈ Bu(t) (or vice-versa)). Then a message fromu to v will traverse,
by Proposition 3.6, a path of length at most 5dG(u, v), and the message fromv to u will
traverse a shortest path. Thus, the sum of the stretch factors is at most 6.

108 T. Eilam et al. / Journal of Algorithms 46 (2003) 97–114

es-
of

f the

the
Case 3 (u /∈ Bv(t) and v /∈ Bu(t)). We bound the stretch factor of the path of a m
sage from, say,u to v, and the same bound holds symmetrically for the path
a message fromv to u. Since u /∈ Bv(t), and recalling thatp(v) ∈ Bv(t), we have
that dG(p(v), v) � dG(u, v). It follows that dG(u,p(v)) � dG(u, v) + dG(v,p(v)) �
2dG(u, v). Thus, dR(u, v) � dG(u,p(v)) + dG(v,p(v)) � 3dG(u, v). Symmetrically,
dR(v,u) � 3dG(u, v). Thus, in this case as well, the sum of the stretch factors o
path of a message fromu to v and fromv to u is at most 6.

It follows that

AvStr(R) = 1

n(n− 1)

∑
u �=v

dR(u, v)

dG(u, v)
= 1

n(n− 1)

∑
u<v

(
dR(u, v)

dG(u, v)
+ dR(v,u)

dG(v,u)

)

� 1

n(n− 1)

∑
u<v

6 � 3. ✷
Proposition 3.8. CompG(R) � t + +/2+ 1.

Proof. We use the following facts, which are easily verified, in order to bound
compactness of a setI(e) that labels an arce.

Fact 3.9. For every two subsetsA,B ⊆ {1, . . . , n},

(a) cn(A)� min{|A|, n/2}.
(b) cn(A∪B)� cn(A)+ cn(B).
(c) cn(A \B) � cn(A)+ cn(B).

Consider any arce = (x, y). In order to provecn(I(e)) � t + +/2 + 1, let us define
Li(e) = I(e) ∩ Li to be the set of labels assigned toe with level i in x, i ∈ {1,2,3}. By
construction,cn(I(e))= cn(L1(e)∪L2(e)∪L3(e)). Thus, by Fact 3.9(b),

cn
(
I(e)

)
� cn

(
L1(e)

) + cn
(
L2(e)∪L3(e)

)
. (1)

By the DFS ordering of̂Tp(x), we havecn(L1(e)) � 1 andcn(L1) � 1 as well. (We have
cn(L1(e))= 0 if y is a predecessor ofx in Tp(x), andL1 = ∅ if x is a leaf ofT̂p(x).)

Assume thate is the arc fromx to its predecessors in the treesTpi1 , . . . , Tpir , and
let I = {i1, . . . , ir} be the set of pivot’s indices. Note thatI ⊆ {1, . . . , +}. Finally, set
Se = ⋃

i∈I L(Spi).
Step 3 of the arc-labeling implies thatL3(e)= Se ∩L3 = Se \ (L1 ∪L2) = (Se \L1) \

L2. We can also writeL2(e) ∪ L3(e) = L2(e) ∪ ((Se \ L1) \ (L2 \ L2(e))). We have
cn(L2 \ L2(e)) � |L2 \ L2(e)| � |L2| − |L2(e)| using Fact 3.9(a), and thatL2(e) ⊆ L2.
Thus, by Fact 3.9, (a)–(c),

cn
(
L2(e)∪L3(e)

) = cn
(
L2(e)∪ (

(Se \L1)
∖(

L2 \L2(e)
)))

� cn
(
L2(e)

) + cn(Se \L1)+ cn
(
L2 \L2(e)

)
�

∣∣L2(e)
∣∣ + cn(Se)+ cn(L1)+ |L2| −

∣∣L2(e)
∣∣

� cn(Se)+ 1+ |L2|.

T. Eilam et al. / Journal of Algorithms 46 (2003) 97–114 109

f

ies
y this
,
et

ol.

tgoing
which

y

d of
node

in
ee

routing

n.
e in the
rsively
tation
el of
Thus Eq. (1) becomescn(I(e)) � cn(Se) + |L2| + 2. Note that|L2| � |Bx(t) \ L(x)| �
t − 1. Moreover, sincecn(L(Sp)) = 1 for eachp ∈ P , and{L(Sp)}p∈P is a partition of
{1, . . . , n}, we have thatcn(

⋃
i∈I L(Spi)) = c+(I). Thus by Fact 3.9(a),cn(Se) = c+(I) �

+/2, asI ⊆ {1, . . . , +}. Therefore,cn(I(e))� t + +/2+ 1, as required. ✷
Proposition 3.10. MemoryG(R,u) = O((

√
n + t + +) logn), and LatencyG(R,u) =

O(logn), for every nodeu ∈ V .

Proof. Let u ∈ V , and letd = deg(u). SetK = ∑
e∈Eu

cn(I(e)) be the total number o
intervals assigned to the outgoing arcse of u. Naively, MemoryG(R,u) � O(K logn) as
follows. We store in a nodeu its labelL(u), and for each interval, the two boundar
(usingO(logn) bits) and the output port number associated with the arc labeled b
interval (usingO(logd) bits). In total we needO(logn) bits for every interval. Moreover
this simple data structure allows a latency ofO(logn) assuming a binary search in the s
of intervals that are sorted according to their left boundary.

DecomposeK into K = K1 + K2 + K3, with Ki = ∑
e∈Eu

cn(Li(e)), whereLi(e) is
the set of labels assigned toe at Stepi of the arc-labeling algorithm (i = 1,2,3), andLi =⋃

e∈Eu
Li(e) (cf. Proposition 3.8). By the proof of Proposition 3.8,K1 � d , K2 � t and

K3 � t + +, providing a rough bound of MemoryG(R,u)� O(d logn)+O((t + +) logn).
We now give a better implementation of the intervals contributing to the setK1,

especially whend � √
n. Towards that, we slightly modify the delivery protoc

Specifically, upon reception of a message, we first decide whether the destinationv is in
T̂p(u) (i.e.,L(v) ∈ L1), as follows. As shown in the proof of Proposition 3.8,cn(L1) � 1,
thus this test can be performed in constant time, by storingO(logn) extra bits inu. If
v ∈ T̂p(u) then we use the implementation described hereafter in order to find the ou
arc on which to route the message. Otherwise, we use the usual delivery protocol
performs a binary search on the set of intervals.

We now describe the implementation that we use for the destinations in the setL1 (i.e.,
the descendants in the treêTp(u)). We use the fact that output port numbers ofu can be
chosen in advance in the set{1, . . . , d}. Note that if output ports are fixed arbitrarily or b
an adversary, no loop-free routing scheme with names in the range{1, . . . , n} can avoid
theΩ(n) memory lower bound in a tree node (cf. [8]). An even stronger lower boun
Ω(n logn) bits holds if output ports are fixed by an adversary after the choice of the
labels.

Note that routing a message to a destination inL1 is equivalent to routing a message
the treeT̂p(u) from a nodeu to one of its descendants,v, such that the nodes of the tr
are labeled continuously in the rangeL(Sp(u)) = {m + 1, . . . ,m + |Sp(u)|}, for somem.
This task can be achieved using a compact implementation of the standard interval
scheme on trees presented in [12, Section 2.3]. More precisely, it is shown thatO(

√
n) bits

per node suffice instead of theO(d logn) bit data structure for the naive implementatio
To achieve that, we must label the nodes of the tree using a particular DFS, as don
node-labeling preprocessing stage of the PIR algorithms; i.e., the children are recu
visited in increasing order of their number of descendants. However, in the implemen
of [12], the bound on the time to extract the output port number given the lab

110 T. Eilam et al. / Journal of Algorithms 46 (2003) 97–114

ng

e

se

s

re

e

here
d
ver
g
by
the destination is a priori exponential inn. Here we give another implementation usi
O(

√
n logn) bits per node that guarantees anO(logn) query time.

Let v1, . . . , vδ be the descendants ofu in T̂p(u) (settingδ = d if u is the root ofT̂p(u),
andδ = d − 1 otherwise). According to the node-labeling algorithm, the labels of thevi ’s
are ordered according to their number of descendants inT̂p(u), namely, lettingni be the
number of descendants ofvi in the subtree rooted invi , we haveni � ni+1 for i < δ.
Note thatni = L(vi+1) − L(vi) for i < δ. Fix the output port number of the arc(u, vi)
to i. Clearly, to route a messageM to v it suffices to find the output portp such that∑p−1

i=1 ni < L(v) −m �
∑p

i=1ni . (Note that sinceL(v) ∈ L1, L(v) −m �
∑δ

i=1ni , thus
p exists.)

Consider the sequencesA = (a1, . . . , ak) and (r1, . . . , rk) such that the sequenc
(n1, . . . , nδ) is described by a sequence ofr1 repetitions ofa1, followed byr2 repetitions
of a2, and so on, imposinga1 < a2 < · · · < ak (note that this is possible becau
1 � n1 � · · · � nδ). Finally, fix the sequencesZ = (z1, . . . , zk) with zi = ∑i

j=1 rj , and
S = (s1, . . . , sk) wheresi = ∑zi

j=1nj , and fix s0 = z0 = 0. Storingm and the sequence
A, Z, S, costsO(k logn) bits, since all the integers are taken from{1, . . . , n}. Moreover,
k <

√
2n becauseai � i, and

∑k
i=1ai � n. Thus, the memory cost for this data structu

is O(
√
n logn) bits, and it takes polynomial time to set up all the tables.

To find p in O(logn) time, it suffices to perform a binary search ofL(v) − m in the
sequenceS, ass1 � · · · � sk . Let q be such thatsq−1 < L(v)−m � sq . Then the required
output port number towards the destination isp = zq−1 + �(L(v)−m− sq−1)/aq�. ✷
Proof of Theorem 3.1. It remains to choose the sizet of the balls so as to minimize th
memory requirements and the compactness of the routing schemeR, and to determine
the size+ of the cover. We use the greedy algorithm described in Section 2.3, w
|H| = |V| = n. By Lemma 2.2,+ = |P | � n(1 + lnn)/t . We note that the randomize
algorithm described in Section 2.3 could also be used in order to construct a coP

of (asymptotically) the same size. Choosingt = √
n(1+ lnn)/2, the PIR1 preprocessin

algorithm will construct an interval routing schemeR whose compactness is bounded
Proposition 3.8 by

CompG(R) � t + +/2+ 1 �
√

2n(1+ lnn)+ 1 ∼ α
√
n logn

whereα = √
2 ln2≈ 1.17, and whose memory requirement for every nodeu is bounded

by Proposition 3.10 by

MemoryG(R,u) =O
((√

n+ t + +
)
logn

) =O
(√

n log3/2n
)
.

The length of the routes is bounded by Propositions 3.5–3.7. The latency isO(logn) and
the time to constructR and its associated data structures is polynomial inn. ✷
3.3. Strategy PIR2

Theorem 3.11. For everyn-node unweighted graphG = (V ,E) with diameterD there
exists a interval routing schemeR = (L,I) onG such that

(1) MemoryG(R,u)=O(
√
n log3/2n) for everyu ∈ V ,

(2) LatencyG(R,u) =O(logn) for everyu ∈ V ,

T. Eilam et al. / Journal of Algorithms 46 (2003) 97–114 111

tructs
f
to

next.
gy
ions in
r upper

r
too

er

tisfies
(3) StretchG(R) � 5,
(4) AvStrG(R) � 3,
(5) DilationG(R) � �1.5D�, and
(6) CompG(R) � β

√
n logn, whereβ ≈ 2.00.

Moreover,R can be constructed in time polynomial inn.

Strategy PIR2 is very similar to PIR1, except that the preprocessing algorithm cons
a pivot collection covering simultaneously the collection oft-balls and the collection o
�D/2�-neighborhoods around the nodes ofG. Formally, the only necessary change is
replace Step 1 of the preprocessing algorithm of PIR1 by the following step.

1. LetP1 be a cover for the collection oft-balls of the nodes,{Bv(t)}v∈V .
Let P2 be a cover for the collection of the�D/2�-neighborhoods of the nodes,
{Γ (v, �D/2�)}v∈V . SetP = P1 ∪P2.

This change is responsible for the improvement in the dilation bound, as proved
Clearly, sinceP is a cover for the collection oft-balls of the nodes, the PIR2 strate
is a special case of the PIR1 strategy, thus Observation 3.2 and all the proposit
Section 3.2 hold also when the PIR2 strategy is considered. We now prove a bette
bound on the dilation of PIR2 in the case whereG is an unweighted graph.

Proposition 3.12. DilationG(R) � �1.5D�.

Proof. Clearly, the pivotp(v) of every nodev ∈ V satisfies bothp(v) ∈ Bv(t) and
p(v) ∈ Γ (v, �D/2�). It follows that the distance betweenv and its pivotp(v) is at most
�D/2�. By Corollary 3.4, for every two nodesu,v ∈ V ,

dR(u, v)� dG
(
u,p(v)

) + dG
(
p(v), v

)
� �1.5D�. ✷

Proof of Theorem 3.11. It remains to select the size of the ballst and to show how to
construct “good” coversP1 andP2. First we determinet and construct the coverP1 as
in the PIR1 preprocessing algorithm. That is,t = Θ(

√
n logn), andP1 is a greedy cove

of sizeO(
√
n logn) (by Lemma 2.2). As in the PIR1 preprocessing algorithm, here

we can alternatively use the randomized algorithm in order to construct the covP1.
Next, we use the same greedy algorithm in order to find the coverP2 for the collection
of �D/2�-neighborhoods of the nodes. By Lemma 2.4, the size of such a cover sa
|P2| � √

n(1+ lnn). More precisely, we have+= |P | � |P1| + |P2|, |P1| � n(1+ lnn)/t ,
and|P2| �

√
n(1+ lnn). Therefore, choosingt = √

n(1+ lnn)/2, the compactness ofR
generated by the PIR2 preprocessing algorithm is bounded, by Proposition 3.8, by

CompG(R) � t + 1

2

(
n(1+ lnn)

t
+ √

n(1+ lnn)

)
+ 1

�
(√

2+ 1
)√

n(1+ lnn)+ 1 ∼ β
√
n logn

whereβ = (
√

2+ 1)
√

ln2 ≈ 2.00, completing the proof. ✷

112 T. Eilam et al. / Journal of Algorithms 46 (2003) 97–114

of

e
routing

s

la

n

.1,
st be
ing

[12,

r,
the
s that

heorem
es not
4. Lower bounds on loop-free routing schemes

At this point, it is natural to ask whether our current bound ofO(
√
n log3/2n) bits of

memory in each node for some stretch factors is the best one can hope for in the case
loop-free routing schemes. It turns out that a lower bound ofΩ(

√
n) memory bits holds for

any stretch factor for node labels in{1, . . . , n}. To prove it, we exploit the fact that loop-fre
schemes (such as the PIR schemes) must route optimally on trees. Note that direct
schemes (including interval routing) are loop-free but the reverse does not hold.

Proposition 4.1. Let T be a tree, lets � 1 and letR be a loop-free routing scheme onT .
ThenStretchT (R) � s if and only if StretchT (R) = 1, i.e.,R is a shortest path routing
scheme.

Theorem 4.2. For everys � 1, and for every loop-free routing schemeR of stretch factor
s onn-node trees that uses names taken from{1, . . . , n}, there exists ann-node treeT and
a nodeu in T such thatMemoryT (R,u)� c

√
n−O(logn), wherec ≈ 3.70.

Proof. Let N denote the set of all partitions ofn − 1 into d integers, i.e., sequence
S = (n1, . . . , nd) with 1 � n1 � · · · � nd such that

∑d
i=1ni = n − 1. For every coding

ϕ :N �→ {0,1}∗ of the sequences inN , let Ŝϕ be the sequenceS ∈ N with longest coding
|ϕ(S)|. Clearly,|ϕ(Ŝϕ)| � log2 |N | for every codingϕ. By the Hardy–Ramanujan formu
[17, Eq. (4.2.7), p. 44], ln|N | ∼ π

√
2n/3, and hence|ϕ(Ŝϕ)| � c

√
n for every codingϕ,

wherec = (π
√

2/3)/ ln2 ≈ 3.70.
Consider some loop-free routing schemeR on trees. Note that for each partitio

S = (n1, . . . , nd) ∈N there exists ann-node treeTS with rootu of degreed whose children
induce subtrees of sizeni , for i ∈ {1, . . . , d} (e.g., a tree of depth two). By Proposition 4
the local routing functionR in u routes along shortest paths, so the port number mu
the same for all the destination nodes that belong to the same subtree. Hence known, d
andL(u) suffices for computing the sequenceS = (n1, . . . , nd) usingR.

It follows thatR yields a codingψ for N , which for everyS ∈ N satisfies|ψ(S)| �
MemoryTS (R,u)+O(logn) (asn, d andL(u) can be stored usingO(logn) bits). Looking
at Ŝψ , the worst sequence forψ , and constructing the corresponding tree,Tψ = TŜψ , we

havec
√
n � |ψ(Ŝψ)| � MemoryTψ (R,u)+O(logn), completing the proof. ✷

Note that an upper bound ofc
√
n bits per node for trees has been established in

Section 2.3] for shortest path routing scheme.
In contrast to the theorem, a universal strategy that usesO(k n1/k logn) bits of memory

per router and yields stretch factorO(k2 9k), for everyk � 1, is presented in [1]. Moreove
the generated schemes arename-independent, i.e., node names do not change in
preprocessing, so the destination’s routing label is simply its original name. It follow
there exists a routing scheme using names taken from{1, . . . , n} that guaranteeso(

√
n)

bits per router and a constant stretch factor (e.g., choosek = 3) for any graph, including
graphs satisfying Theorem 4.2. However, that scheme cannot be loop-free, as the t
indicates that a loop-free routing scheme with such an efficiency-space tradeoff do
exist for such graphs.

T. Eilam et al. / Journal of Algorithms 46 (2003) 97–114 113

e best
t
emory
on

owing
ot set

r

heme
imum
ed

scus-

bles,

FOCS),

ath. 5

oret.

s and
–772.
ymp. on

(1988)

ithms

istrib.

(1998)

73.
One may ask whether the stretch factor guaranteed by the PIR strategy is th
that can be achieved with memory requirementsO(

√
n log3/2n). Actually, the smalles

possible stretch factor one can hope for when considering a routing scheme with m
requirements ino(n) is s = 3, since as shown in [13], there exist some graphs
which every routing scheme of stretch factors < 3 requires at leastΩ(n) bits. Recently,
a new sampling algorithm for selecting the pivots has been presented in [22], all
improvements in the maximum stretch factor provided by our scheme. The new piv
P is such that, for every nodeu, the setCu = {w | dG(u,w) < dG(u,P)} of nodes close
to u than any node ofP satisfies that|Cv| + |P | =O(

√
n logn). With the setsCu playing

the role of balls in our scheme, this new sampling algorithm provides a routing sc
(still in the form of an IRS) with the same performances as ours but with a lower max
stretch factor. While the average stretch is stills = 3, the triangle inequality can be us
symmetrically betweenCu andCv (for a sourceu and a destinationv) implying that the
maximum stretch factor iss = 3 as well.

Acknowledgments

We thank Shlomo Moran, Shmuel Zaks, and Jean-Michel Couvreur for helpful di
sions.

References

[1] B. Awerbuch, A. Bar-Noy, N. Linial, D. Peleg, Improved routing strategies with succinct ta
J. Algorithms 11 (1990) 307–341.

[2] B. Awerbuch, D. Peleg, Sparse partitions, in: 31st Symp. on Foundations of Computer Science (
1990, pp. 503–513.

[3] B. Awerbuch, D. Peleg, Routing with polynomial communication-space trade-off, SIAM J. Discrete M
(1992) 151–162.

[4] L.J. Cowen, Compact routing with minimum stretch, J. Algorithms 38 (2001) 170–183.
[5] T. Eilam, S. Moran, S. Zaks, Lower bounds for linear interval routing, Networks 34 (1999) 37–46.
[6] M. Flammini, G. Gambosi, U. Nanni, R.B. Tan, Multidimensional interval routing schemes, The

Comput. Sci. 205 (1998) 115–133.
[7] P. Fraigniaud, C. Gavoille, Universal routing schemes, J. Distrib. Comput. 10 (1997) 65–78.
[8] P. Fraigniaud, C. Gavoille, Routing in trees, in: 28th Int. Colloquium on Automata, Language

Programming (ICALP), in: Lecture Notes in Comput. Sci., Vol. 2076, Springer-Verlag, 2001, pp. 757
[9] G.N. Frederickson, R. Janardan, Separator-based strategies for efficient message routing, in: 27th S

Foundations of Computer Science (FOCS), 1986, pp. 428–437.
[10] G.N. Frederickson, R. Janardan, Designing networks with compact routing tables, Algorithmica 3

171–190.
[11] G. Gambosi, P. Vocca, Topological routing schemes, in: 10th Int. Workshop on Distributed Algor

(WDAG), in: Lecture Notes in Comput. Sci., Vol. 1151, Springer-Verlag, 1996, pp. 206–219.
[12] C. Gavoille, A survey on interval routing, Theoret. Comput. Sci. 245 (2000) 217–253.
[13] C. Gavoille, M. Gengler, Space-efficiency of routing schemes of stretch factor three, J. Parallel D

Comput. 61 (2001) 679–687.
[14] C. Gavoille, E. Guévremont, Worst case bounds for shortest path interval routing, J. Algorithms 27

1–25.
[15] C. Gavoille, D. Peleg, The compactness of interval routing, SIAM J. Discrete Math. 12 (1999) 459–4

114 T. Eilam et al. / Journal of Algorithms 46 (2003) 97–114

ACM

rval

0–530.

and

Int.
tific,

ringer-
[16] C. Gavoille, S. Pérennès, Memory requirement for routing in distributed networks, in: 15th Annual
Symp. on Principles of Distributed Computing (PODC), ACM Press, 1996, pp. 125–133.

[17] M.J. Hall, Combinatorial Theory, 2nd edition, Wiley–Interscience, 1986.
[18] R. Krá̆lovič, P. Ružǐcka, D. Štefankovǐc, The complexity of shortest path and dilation bounded inte

routing, Theoret. Comput. Sci. 234 (2000) 85–107.
[19] L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Math. 13 (1975) 383–390.
[20] D. Peleg, E. Upfal, A trade-off between space and efficiency for routing tables, J. ACM 36 (1989) 51
[21] N. Santoro, R. Khatib, Labelling and implicit routing in networks, Comput. J. 28 (1985) 5–8.
[22] M. Thorup, U. Zwick, Compact routing schemes, in: 13th Annual ACM Symp. on Parallel Algorithms

Architectures (SPAA), Hersonissos, Crete, Greece, ACM Press, 2001, pp. 1–10.
[23] S.S.H. Tse, F.C.M. Lau, An optimal lower bound for interval routing in general networks, in: 4th

Colloquium on Structural Information & Communication Complexity (SIROCCO), Carleton Scien
1997, pp. 112–124.

[24] J. van Leeuwen, R.B. Tan, Computer networks with compact routing tables, in: The Book of L, Sp
Verlag, 1986, pp. 259–273.

