Path separability of Graphs

Emilie Diot and Cyril Gavoille

LaBRI, University of Bordeaux, France

8 novembre 2010 JGA, Luminy

Outline

Motivation

Definition

Results

What about the 1-path separable graphs

Outline

Motivation

Definition

Results

What about the 1-path separable graphs

Motivations

• To separate graphs in order to apply "Divide and Conquer"

Motivations

- To separate graphs in order to apply "Divide and Conquer"
- The notion of *k*-path separability defined by Abraham et al. (PODC'06), to solve "Objects Location Problem"
 - Compact routing with $O(k \log^2 n)$ -bit tables
 - Distance labelling with $O(k\log n\log D)\text{-bit}$ labels
 - Navigation in "Small-World" with $O(k^2 \log^2 n)$ hops

Outline

Motivation

Definition

Results

What about the 1-path separable graphs

k-path separable graphs.

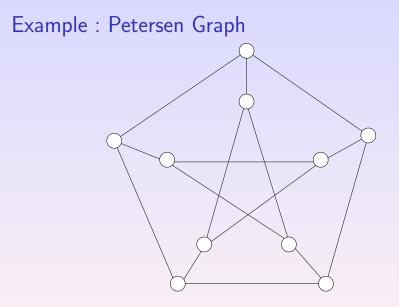
Intuitively : Separate recursely the input graph with separators composed of at most k shortest paths.

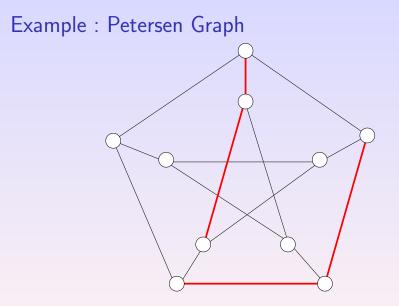
k-path separable graphs.

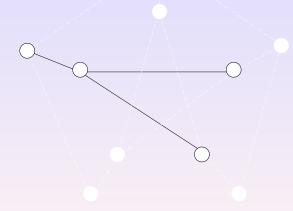
Intuitively : Separate recursely the input graph with separators composed of at most k shortest paths.

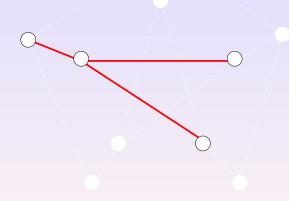
Definition (k-path separability)

- $S = P_0 \cup P_1 \cup \ldots$, where each subgraph P_i is the union of k_i minimum cost paths in $G \setminus \bigcup_{j < i} P_j$ where $\sum_i k_i \leq k$; and
- every connected component of G \ S (if any) is k-path separable and weigth at most ω(G)/2.









 \Rightarrow 2-path separable

Outline

Motivation

Definition

Results

What about the 1-path separable graphs

• Trees are 1-path separable.

- Trees are 1-path separable.
- K_{4r} is *r*-path separable.

- Trees are 1-path separable.
- K_{4r} is *r*-path separable.
- Treewidth-k graphs are $\lceil (k+1)/2 \rceil$ -path separable.

- Trees are 1-path separable.
- K_{4r} is *r*-path separable.
- Treewidth-k graphs are $\lceil (k+1)/2 \rceil$ -path separable.

Theorem (Thorup - FOCS'01/JACM'04)

Planar graphs are 3-path separable.

- Trees are 1-path separable.
- K_{4r} is *r*-path separable.
- Treewidth-k graphs are $\lceil (k+1)/2 \rceil$ -path separable.

Theorem (Thorup - FOCS'01/JACM'04)

Planar graphs are 3-path separable.

Theorem (Abraham and Gavoille - PODC '06)

H-minor free graphs are f(H)-path separable.

Outline

Motivation

Definition

Results

What about the 1-path separable graphs

The family of k-path separable graphs

Definition

 PS_k is the family of graphs that are $k\mbox{-paths}$ separable for every weight function.

The family of k-path separable graphs

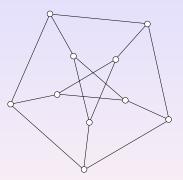
Definition

 PS_k is the family of graphs that are k-paths separable for every weight function.

Trees $\subset PS_1$ Treewidth-3 $\subset PS_2$ Planar graphs $\subset PS_3$

Minor graphs

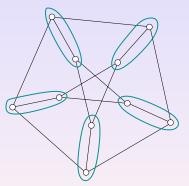
A **minor** of G is a subgraph of a graph obtained from G by edge contraction.



A H-minor free graph is a graph without minor H.

Minor graphs

A **minor** of G is a subgraph of a graph obtained from G by edge contraction.



A H-minor free graph is a graph without minor H.

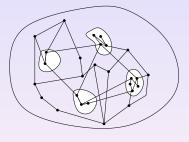
Minor graphs

A **minor** of G is a subgraph of a graph obtained from G by edge contraction.

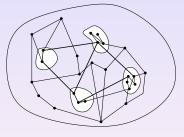
A H-minor free graph is a graph without minor H.

Proposition

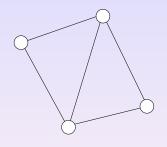
 PS_k is closed under minor taking.

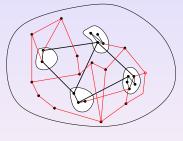


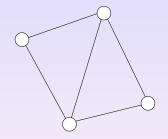
(G)



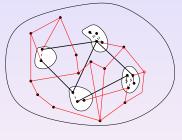
(G)







(G)



(G)

Forbidden minors

Corollaire (Roberston & Seymour)

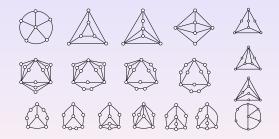
 $G \in PS_k$ iff G excludes a finite list of "forbidden" minors. Therefore, for constant k, membership for PS_k " can be tested in cubic time ... if the list is given.

Forbidden minors (at least 16)

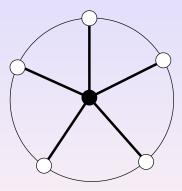
The unique non-planar graph in PS_1 is $K_{3,3}$.

Forbidden minors (at least 16)

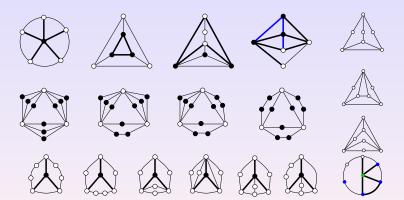
The unique non-planar graph in PS_1 is $K_{3,3}$. And for planar graphs :



Particular example



Forbidden minors



Perspectives

- List all forbidden minors for PS_1 .
- What about planar graphs?

Thank you