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Abstract

This paper deals with the length of a Robertson–Seymour’s tree-decomposition. The tree-length of a graph is the largest distance
between two vertices of a bag of a tree-decomposition, minimized over all tree-decompositions of the graph. The study of this
invariant may be interesting in its own right because the class of bounded tree-length graphs includes (but is not reduced to) bounded
chordality graphs (like interval graphs, permutation graphs, AT-free graphs, etc.). For instance, we show that the tree-length of any
outerplanar graph is �k/3�, where k is the chordality of the graph, and we compute the tree-length of meshes.

More fundamentally we show that any algorithm computing a tree-decomposition approximating the tree-width (or the tree-
length) of an n-vertex graph by a factor � or less does not give an �-approximation of the tree-length (resp. the tree-width) unless if
�= �(n1/5). We complete these results presenting several polynomial time constant approximate algorithms for the tree-length.

The introduction of this parameter is motivated by the design of compact distance labeling, compact routing tables with near-
optimal route length, and by the construction of sparse additive spanners.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The notions of tree-decomposition and of tree-width are very rich concepts with many algorithmic implications.
Many NP-complete problems are polynomial for graphs of bounded tree-width [2,7]. In addition, the notion of tree-
width is in the kernel of the graph minor theory [21]. Intuitively tree-width is a measure of “how far” a graph is
from a tree. The smaller the tree-width, the more tree-like the graph is. Determining the tree-width of a graph is
NP-hard [3]. However, Bodlaender [7] gave a linear time algorithm for recognizing graphs of bounded tree-width.
There are also O(log n)-approximation algorithms for computing the tree-width of an arbitrary graph [6,42], and even
O(log k)-approximation algorithms where k is the tree-width [1,12].

However, many hard problems have still polynomial solutions on large class of graphs even when the size of the
separator is large (or large tree-width), like interval graphs. For instance, MINIMUM DOMINATING SET falls into this class
[11,4,14,41]. Actually, the “shape” of the separator plays an important role. Introducing well-separated class of graphs
Katz et al. [33] showed that the graphs of this class enjoy distance labeling with short labels, namely the property that

E-mail addresses: yon.dourisboure@iit.cnr.it, yon.dourisboure@labri.fr (Y. Dourisboure), gavoille@labri.fr (C. Gavoille).
1 Work partially supported by the Research and Training Network COMBSTRU (HPRN-CT-2002-00278).

0012-365X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2005.12.060

http://www.elsevier.com/locate/disc
mailto:yon.dourisboure@iit.cnr.it
mailto:yon.dourisboure@labri.fr
mailto:gavoille@labri.fr


Y. Dourisboure, C. Gavoille / Discrete Mathematics 307 (2007) 2008–2029 2009

all the vertices of the graph can be labeled with O(log2 n) bit binary strings so that the distance between two vertices
can be retrieved from the two vertex labels, without any other source of information [35]. They showed that interval
and permutation graphs fall into that class (actually O(log n) bit labels suffice for interval graphs and more generally
for circular-arc graphs [31]). The same phenomenon occurs for bounded clique-width graphs, for which Courcelle
and Vanicat [19] showed that O(log2 n) bit distance labeling scheme exists, whereas the tree-width of these graphs is
unbounded in general. Another result in this field demonstrates that k-chordal graphs (i.e., the graphs with no induced
cycle of length greater than k) support an approximate distance labeling scheme with an additive one-sided error of
�k/2� and with O(log2 n) bit labels [30]. The scheme mainly based on the construction of a Robertson–Seymour’s
tree-decomposition of k-chordal graphs with small diameter bags (a bag is a subset of vertices induced by the vertex
of a tree-decomposition, cf. Definition 1). Namely, in this tree-decomposition any two vertices of a bag are at distance
at most k/2.

An application different from distance computation which is also related to global structure of the graph is the field
of compact routing. Informally speaking, the routing problem can be presented as requiring us to assign two kinds of
labels to every vertex of a graph. The first is the address of the vertex, whereas the second label is a data structure
called the local routing table. The labels are assigned in such a way that at every source vertex v and given the address
of any destination vertex u, one can decide the output port of an outgoing edge of v that leads to u. The decision must
be taken locally in v, based solely on the two labels of v and with the address label of u. Many references can be found
in [32,28].

Tree-width k graphs have shortest-path routing scheme with addresses and routing tables of O(k log2 n) bits per
vertices [36]. However, when the diameter of the separator is small better results exist. Chordal graphs (a class including
interval graphs, and whose separators are all cliques) support a routing scheme using addresses of 2 log n bits and routing
tables of O(k log n) bits, where k is the size of the maximum clique [23]. This scheme guarantees an additive one-sided
error of 2 on the route length. With the same error but with larger addresses, [25] proposed a scheme independent of
separator size. Addresses and routing tables are of O(log3 n/loglogn) bits per vertex. Decreasing the error or reducing
the memory requirements is still an open problem even for this class of graphs. In a forthcoming paper, the last routing
scheme is extended in case where separators are not necessarily cliques. The result is that even if the tree-width of a
graph is unbounded, when the diameter of the separators is bounded by a constant, say �, then the graph enjoy a routing
scheme that guarantees an additive one-sided error of 2� on the route length with addresses of size O(log3 n/log log n)

bits per vertex.
The same phenomenon occurs when one is interested in construction of sparse spanners. Given a graph, a spanner

of it, is a subgraph with the same set of vertices and a subset of the set of edges. The main objective is to construct a
spanner with few edges and in which the distance between every pair of vertices is close to their distance in the original
graph: at most s times their distance plus r. In case where s = 1, the spanner is also called an additive r-spanner, and
in case where r = 0 it is called a multiplicative s-spanner. There are many applications of spanners, for example, the
complexity of many distributed algorithms depends on the number of messages, itself depending on the number of
edges [39,37]. Sparse spanners occur also in the efficiency, of compact routing schemes [40]. Unfortunately, given an
arbitrary graph G and three integers s, r and m, it is NP-complete [38] to determine whether G admits a spanner with
m or fewer edges, and in which the multiplicative error is s and the additive error is r (see also [15,13,16,22,27] for
complexity issue).

However, when a graph G admits a tree-decomposition with small diameter separators, then it admits also good
sparse spanners. For instance any chordal graph contains a multiplicative 3-spanner with O(n log n) edges [38]. Here
again, the result can be generalised in case where the diameter of every separator is bounded by a constant �. In this
class of graph, [24] showed an additive 2�-spanner with O(n log n) edges and also an additive 4�-spanner with O(n)

edges.
Finally, we observe that in the field of graph visualization, one could take advantage to represent a graph as a

tree—there are efficient and convenient tree drawings [20]—in which the nodes of the tree can represent a set of
vertices in the graph that are close from each other.

1.1. Our results

Let us define the tree-length of a graph as the largest distance between two vertices of a bag of a tree-decomposition,
minimized over all Robertson–Seymour’s tree-decompositions of the graph. In Section 2 we calculate the tree-length
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of outerplanar graphs, and of meshes. We also show in this section that any algorithm computing a tree-decomposition
approximating the tree-width (or the tree-length) of a graph by a factor � or less does not give an �-approximation of
the tree-length (resp. the tree-width) unless if �=�(n1/5). More precisely we construct an n-vertex graph of tree-length
� and of tree-width k for which all its tree-decompositions are either of width �(kn1/5) or of length �(�n1/5). Finally,
we consider in Section 2 the length of some specific tree-decompositions, namely trees of bounded depth, and paths.

Although in this paper we did not determine the computational complexity of the tree-length of an arbitrary
graph, we present in Section 3 constant-factor approximate algorithms. An algorithm computes in O(nm) time a tree-
decomposition of length �k/2� of a graph with n vertices, m edges, and chordality k. The second algorithm computes
in time O(n+m) a tree-decomposition of length �k/2�+ 3. We prove that these two algorithms are 3-approximations,
and we present a polynomial time heuristic for which we conjecture that it is a 2-approximation.

In Section 4 we conclude by a list of open problems.

1.2. Definition

We need the notion of tree-decomposition used by Robertson and Seymour in their work on graph minors [43].

Definition 1. A tree-decomposition of a graph G is a tree T whose vertices, called bags, are subsets of V (G) such that:
(1)

⋃
X∈V (T ) X = V (G);

(2) for all {u, v} ∈ E(G), there exists X ∈ V (T ) such that u, v ∈ X; and
(3) for all X, Y, Z ∈ V (T ), if Y is on the path from X to Z in T then X ∩ Z ⊆ Y .

It is not difficult to see that Rule 3 of Definition 1 is equivalent to say that for every vertex x ∈ V (G), the set of bags
containing x induces a subtree of T. A tree-decomposition is reduced if no bag is contained in another one. A leaf of a
reduced tree-decomposition contains necessarily a vertex contained in no other bag. Thus by induction the number of
bags of a reduced tree-decomposition does not exceed n− 1 for an n-vertex connected graph (cf. [8]).

For every induced subgraph H of G, the diameter of H in G is diamG(H)=maxx,y∈V (H) dG(x, y), where dG(x, y)

denotes the distance in G between x and y. diam(G) denotes diamG(G). Observe that diamG(H) can be constant even
if H is not connected. By extension, for every subset X ⊆ V (G), diamG(X)= diamG(G[X]) where G[X] denotes the
subgraph of G induced by X.

Let T be a tree-decomposition of a graph G. The width of T is width(T ) = maxX∈V (T )|X| − 1. The length of T
is length(T ) = maxX∈V (T ) diamG(X). The tree-width and the tree-length of G, denoted by tw(G) and by tl(G), are,
respectively, minT width(T ) and minT length(T ), where the minimum is taken over all tree-decompositions of G.

A graph is k-chordal if the length of the longest induced cycle is at most k. The chordality of G is the smallest integer
k such that G is k-chordal. Trees are, by convention, of chordality 2. Chordal graphs are 3-chordal graphs. Graphs of
tree-length 1 are exactly chordal graphs, since a graph is chordal if and only if it has a tree-decomposition whose bags
are cliques.

The recognition problem for k-chordalness (that is the problem to decide whether a graph is not k-chordal) is
coNP-complete for k = �(n�) for any constant � > 0. (It comes from a reduction to Hamiltonian cycle problem in
cubic graphs, cf. [46].) Relationship between tree-width, chordality, and degeneracy has been studied in [10], and the
tree-width expressed as a function of the diameter has been considered in [26].

2. Optimal length tree-decomposition

2.1. Preliminary results

A subgraph H of G is isometric if dH (x, y)= dG(x, y), for all x, y ∈ V (H). It is a natural generalization of induced
subgraph (any isometric subgraph is clearly an induced subgraph). In particular, in the case H is an isometric cycle of
length k of G, then k must be at least the girth of G and at most the chordality of G. Note that every subgraph of a
distance-hereditary graph is by definition an isometric subgraph. Isometric subgraph is a tool for tree-length as minor
is for tree-width.

Lemma 1. The tree-length of any isometric subgraph of G is no more than the tree-length of G.
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Proof. Let � be the tree-length of G, and let T be a tree-decomposition of G of length �, and let H be an isometric
subgraph of G. Remove from T all the bags with empty intersection with H, and remove from the remaining bags
all the vertices from G\H . It forms a forest T ′. Since H is connected, T ′ is connected (a subtree of T), and thus a
tree-decomposition of H. For every B ′ ∈ V (T ′) and for all x, y ∈ B ′, dH (x, y)= dG(x, y), and dG(x, y)�� since B ′
is a subset of a bag B ∈ V (T ). It follows that length(T ′)��, completing the proof. �

A separating set of a connected graph G is subset of vertices S such that G\S is disconnected, i.e., G\S is composed of
two or more connected components.A clique-separator decomposition is a tree-decomposition such that the intersection
of every two adjacent bags induces a clique, and such that no bag has a clique separating. E.g., a decomposition into
biconnected components yields a clique-separator decomposition (the separators are cutvertices, cliques of size one).
A clique-separator decomposition of a graph G can be computed in O(nm) time [45,47], where n = |V (G)| and
m= |E(G)|.

Lemma 2. For every clique-separator decomposition T of G,

tw(G)= max
X∈V (T )

tw(G[X]) and tl(G)= max
X∈V (T )

tl(G[X]).

Proof. We have tw(G)�maxX∈V (T ) tw(G[X]) because G[X] is a minor of G. Moreover G[X] is an isometric subgraph
of G (no shortest path between u, v ∈ X can use a vertex z /∈X). Thus by Lemma 1, tl(G)� tl(G[X]) for every X ∈
V (T ), and so tl(G)�maxX∈V (T ) tl(G[X]).

We now prove the upper bound for the tree-length (for the tree-width, the proof is similar). Let TX be a tree-
decomposition of G[X] of length tl(G[X]). Note that since G[X] is an isometric subgraph of G, G[X] is connected so
TX is correctly defined. Let Yi be the ith neighbor of the bag X in T. Since X∩Yi induces a clique, there must exist a bag
of TX, say Zi , containing X ∩ Yi . We now construct a tree T ′ from T as follows: for every bag X of T, we first remove
X from T, and then we connect TX to T \{X} by adding an edge between Yi and Zi for every i. We check that T ′ is a
tree-decomposition of G, and that its length is length(T ′)=maxX∈V (T ) length(TX). Since length(TX)= tl(G[X]), we
have length(T ′) = maxX∈V (T ) tl(G[X]). Since tl(G)� length(T ′), we have proved that tl(G) = maxX∈V (T ) tl(G[X])
and similarly that tw(G)=maxX∈V (T ) tw(G[X]). �

By Lemma 2, when looking for an optimal tree-decomposition of G (w.r.t. its tree-width or its tree-length), we
consider only maximal subgraph of G without clique separating.

2.2. Outerplanar graphs

We shall prove now that the tree-length of a cycle of length k is �k/3�, and thus that every graph of girth g is of
tree-length at least g/3. More generally, we have:

Theorem 1. Every outerplanar graph has tree-length �k/3�, where k is the chordality of the graph. Moreover, a
tree-decomposition of width 2 and of length �k/3� can be constructed in linear time.

To prove Theorem 1, we first show that:

Lemma 3. The cycle of length k has a tree-decomposition of length �k/3�, and of width 2, computable in O(k) time.

Proof. Let Ck be a cycle of length k. Ck can be split into three paths Pxy, Pyz, Pzx of length at most �k/3� (cf.
Fig. 1(a)).

Then, it is easy to construct a tree-decomposition of Ck of length and width �k/3�: a star whose center is a bag
composed of vertices x, y, z, and whose leaves correspond to the three paths (cf. Fig. 1(a)).

A path can be decomposed into a tree-decomposition of width 2 such that the two endpoints belong to a same bag
as shown in Fig. 1(b). Therefore, in the previous tree-decomposition, we can extend the three leaves into three paths in
order to obtain a tree-decomposition of length �k/3� and of width 2 for Ck in O(k) time. �
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a b c

Fig. 1. How to construct a tree-decomposition for Ck of length �k/3� and of width 2.

Lemma 4. The tree-length of the cycle of length k is �k/3�.

Proof. From Lemma 3, it suffices to show that tl(Ck)�k/3. If k�3 the lemma is trivially true. So assume that k�4.
Let T be a tree-decomposition of Ck and assume that length(T ) < k/3. For every two vertices u, v ∈ V (Ck) such

that dCk
(u, v) < �k/2�, let Puv denotes the unique shortest path from u to v in Ck . An important observation is that

for every bag B of T and for all u, v ∈ B such that dCk
(u, v) = diamCk

(B), we have B ⊆ Puv . Indeed, for k�4, and
for every vertex w ∈ B such that w /∈Puv it yields dCk

(w, u) > dCk
(u, v) or dCk

(w, v) > dCk
(u, v), that is impossible

since dCk
(u, v)= diamCk

(B).
Let L be a leaf of T and x, y ∈ L such that dCk

(x, y)= diamCk
(L). We have L ⊆ Pxy . Let x′, y′ ∈ Ck\Pxy such that

{x, x′} and {y, y′} are edges. By Rule 2 of Definition 1, there exist X, Y ∈ V (T ) such that x, x′ ∈ X and y, y′ ∈ Y .
Since L ⊆ Pxy and x′, y′ /∈Pxy , x′, y′ /∈L. It follows that X 
= L and Y 
= L. We have also that L has a unique neighbor
in T, say Z. By Rule 3 of Definition 1, x belongs to all the bags of the path from L to X in T, and y to all the bags from
L to Y. In particular x, y ∈ Z. Let z, t ∈ Z such that dCk

(z, t) = diamCk
(Z). We have Z ⊆ Pzt . Since x, y ∈ Z and

dCk
(x, y)�dCk

(z, t) < �k/2�, Pxy ⊆ Pzt . So L ⊆ Pzt . Therefore L ∪ Z ⊆ Pzt , and so diamCk
(L ∪ Z) < k/3.

The tree obtained from T by updating Z to the bag L∪Z, and by removing L, is a tree-decomposition of Ck of length
< k/3. Step by step we can merge all the leaves of T into a single bag A containing all the vertices of Ck . By induction
length(A) < k/3: a contradiction because A= V (Ck), so diamCk

(A)= �k/2��k/3 for k�4. �

We are now ready to prove Theorem 1:

Proof. Let G be an outerplanar graph of chordality k. G can be embedded in the plane such that each vertex lies on the
outer face in linear time [18]. In such representation, inner faces are induced cycles. Observe also, that two inner faces
share either nothing, either a vertex, or an edge. Therefore, we can obtain in linear time, a clique-decomposition of G.

By Lemma 2 the tree-length of G is the maximum tree-length of every inner faces of G. We check that the longest
induced cycle is an inner face, and we complete the proof applying Lemma 4. �

Moreover Lemma 4, combined with Lemma 1 proves that graphs having an isometric cycle of length k are of tree-
length at least k/3. In general, the gap between the chordality and the tree-length is large. For instance, some bounded
diameter graphs may have unbounded chordality (e.g., consider a wheel). However, we have:

Theorem 2 (Gavoille et al. [30]). Every k-chordal graph has tree-length at most k/2.

An O(nm) time algorithm providing such a decomposition is shown in Section 3.1, and an O(m+ n) time algorithm
providing a tree-decomposition of length �k/2� + 3 is described in Section 3.2.
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2.3. Tree-length of meshes

In this section, we will prove the following theorem:

Theorem 3. The tree-length of the mesh with p rows and q columns is min{p, q} if p 
= q or p is even, and is p − 1
otherwise.

It is very easy to show that the tree-length of the mesh is bounded from above by min{p, q}. For instance, if p�q, it
suffices to form a path composed of all two consecutive columns of the mesh, providing a length which is the distance
between the first and the last row plus 1, that is p. However, as for the computation of the tree-width of the mesh (cf.
[21]), the computation of the optimal lower bound for the tree-length is far from immediate.

So to prove Theorem 3, we need some preliminaries. Consider any tree-decomposition T of a graph G. For every
x ∈ V (G), we denote by Tx the subtree induced by the set of bags of T containing x. A subset A ⊆ V (G) is said
connected if the subgraph of G induced by A is connected. We say that S ⊆ V (G) separates the subsets A and B if S
is disjoint from A and B, and if every path connecting a ∈ A to b ∈ B intersects S. It is not difficult to check that for
every edge {X, Y } of T, S =X ∩ Y separates the connected components of G\S (cf. [21]).

Lemma 5. Let A, B be two connected subsets of vertices of G. Either there exists a bag X ∈ V (T ) such that X
intersects A and B, or there exists an edge {X, Y } ∈ E(T ) such that X ∩ Y separates A and B.

Proof. Let TA =⋃
a∈A Ta and TB =⋃

b∈B Tb. If TA ∩ TB 
= ∅, then every bag X of TA ∩ TB intersects A and B, and
the result holds. So assume that TA ∩ TB = ∅.

For every edge {x, y} of G, Tx ∩ Ty 
= ∅, thus Tx ∪ Ty is connected and is a subtree of T. Since A is connected, it
follows that TA is a subtree (i.e., is not a forest). Similarly, TB is a subtree.

Let us define X ∈ TA and Z ∈ TB as the two mutually closest bags, closest in the metric of T. Since TA and TB are
subtrees of T, X and Z are unique. Let Y be the adjacent bag of X located on the path from X to Z in T. Observe that
Y /∈ TA. The set S =X ∩ Y does not contain any vertex of A (otherwise Y would belong to TA), and S does not contain
any vertex of B (otherwise X would contain a vertex of B, and TA would not be disjoint of TB ). Therefore, S is disjoint
from A and from B. It follows that S separates the set of vertices in TA from the set of vertices in TB , so in particular A
and B. �

Lemma 6. Let {x, x′}, {y, y′} be two edges of G. If Tx ∩ Ty is not empty, then Tx ∩ Ty contains a bag intersecting all
the paths between x′ and y′.

Proof. Let X (resp. Y) be a bag containing the edge {x, x′} (resp. {y, y′}), and let P be the path from X to Y in T. Assume
Tx ∩Ty 
= ∅. We have that Tx ∪Ty and Tx ∩Ty are trees. So P intersects Tx ∩Ty (otherwise P ∪Tx ∪Ty would contain
a cycle). Let U be any bag of P ∩ Tx ∩ Ty . Since U ∈ P , U intersects all the paths from any vertex of X to any vertex
of Y. In particular, U intersects all the paths between x′ and y′. �

Proof of Theorem 3. Let G denote the p × q mesh, and T denote a tree-decomposition such that length(T ) =
tl(G). We assume p�2, because for p = 1 (i.e, G is a path), the result clearly holds. Consider the set A com-
posed of the vertices of the first column of G, and the set B composed of the vertices of the last column. From
Lemma 5, T contains a bag:

(1) either intersecting A and B (and so length(T )�q − 1); or
(2) intersecting all the paths from A to B, in particular intersecting the first row and the last row (and so length(T )�p−1).

Assume that p�q. From above, length(T )�p−1. On the other hand, using a standard tree-decomposition of G (for
instance, form a path composed of all two consecutive columns of G), we have length(T )�p. So, length(T )= p − 1
or p.

Assume that length(T )=p− 1. Case 1 does not occur if q > p, otherwise length(T )�q − 1�p. If p= q and Case
1 occurs, then exchanging rows and columns we have that T contains a bag intersecting the first row and the last row.
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Fig. 2. The case p = q odd.

So we are left with Case 2 where a bag X intersects the first row, say in x, and the last row, say in y. Since we have
assumed length(T )= p − 1, x and y belongs to the same column.

W.l.o.g. assume that this column is at distance at least �(q − 1)/2� from A. Let P be the path from x to y lying on
the perimeter of G and including all the vertices of A. Let x′ be the neighbor of x in P and y′ be the neighbor of y in P.
If p�2, then x′ belongs to the first row and y′ belongs to the last row. From Lemma 6, Tx ∩ Ty contains a bag which
intersects all the paths from x′ to y′. In particular, T contains a bag, say Z, containing x, y and a vertex z of P (z distinct
from x and y). Let d = minz max{dG(x, z), dG(y, z)}. We have diamG(Z)�d and thus length(T )�d. Since z must
belong to A (since otherwise we would have d �p), we check that a vertex z ∈ A minimizing d must be located on the
�(p−1)/2�th row, and thus d=�(p−1)/2�+�(q−1)/2�. If p 
= q (i.e., q �p+1), then d ��(p−1)/2�+�p/2�=p:
a contradiction. If p is even, then d �2�(p − 1)/2� = p: a contradiction.

Therefore, length(T )= p − 1 implies p = q and p odd.
It remains to check that p = q odd implies length(T )= p − 1. For that we construct a tree-decomposition of G of

length p − 1 composed of one bag (chosen as the root of the tree-decomposition) and of four leaves as follows (cf.
Fig. 2): the root bag forms a “cross” and is composed of all the vertices located on the (p − 1)/2th column or on the
(p − 1)/2th row (recall that p = q is odd). Then, each leaf is composed of a quadrant of the mesh delimited by the
cross (including a suitable part the cross). The length of this decomposition is 2�(p − 1)/2� = p − 1, completing the
proof. �

Proposition 1. The mesh Mp,q has a tree-decomposition T such that:

• if p 
= q or p is even: length(T )= tl(Mp,q) and width(T )= tw(Mp,q);
• if p = q and p is odd:
◦ length(T )= tl(Mp,q) and width(T )�2tw(Mp,q); or
◦ length(T )= tl(Mp,q)+ 1 and width(T )= tw(Mp,q).

Proof. Recall that the tree-width of Mp,q is min{p, q}.
Suppose that if p 
= q or p is even. In this case, each bag of the tree-decomposition presented in Fig. 2 can be split

in a path of length p − 1 (see Fig. 3(a)). The length and the width of this tree-decomposition is p.
Suppose now that p = q and p is odd. The tree-decomposition proposed in the previous case clearly satisfies

length(T )= tl(Mp,q)+ 1 and width(T )= tw(Mp,q).
To prove the last result of Proposition 1, observe that, in the tree-decomposition presented in Fig. 2, the root of the

“cross” is of diameter p and contains 2p−1 vertices. Moreover the four leaves can be split in a path of length (p−1)/2
(see Fig. 3(b)). In this way we obtain a tree-decomposition of length p − 1 and of width 2p − 2�2tw(Mp,q). �

2.4. Width-length trade-off

There is no relation between the tree-length and the tree-width of a graph. For instance, n-vertex cliques have tree-
width n− 1 and tree-length 1. Conversely, we have seen that cycles have tree-length �n/3� whereas their tree-width is
two. However, cycles support a tree-decomposition optimizing length and width (cf. Theorem 1).
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a b

Fig. 3. Optimizations of both length and width for meshes.

So, let us define an �-optimal tree-decomposition for a graph G as a tree-decomposition T of G such that length(T )��
tl(T ) and length(T )�� tw(T ). Theorem 1 implies that any outerplanar graph has an 1-optimal tree-decomposition.
Proposition 1 shows for instance that any mesh M admits a (1 + 1/tl(M))-optimal tree-decomposition. Actually,
many graphs support 1-optimal tree-decomposition: trees, cycles, chordal graphs, and uniform subdivisions of chordal
graphs.2

At this step, an interesting question is to know whether every n-vertex graph has an �0-optimal tree-decomposition?
Observe that if �0 is bounded then, although not sufficient, then approximation algorithms for tree-width are good candi-
dates for approximation algorithms for tree-length. Conversely, if �0 is not bounded, then no algorithms approximating
one parameter can approximate the other one.

Unfortunately, the second case occurs proving that tree-length and tree-width computation are fundamentally two
different problems.

Theorem 4. There exists a graph with at most n vertices on which any �-optimal tree-decomposition requires
�� 1

2n1/5 − 1
2 .

Before proving Theorem 4, let us denote by M(p, q, r) the graph composed of a p × q mesh (p rows, q columns),
p�q, in which every edge of a column is replaced by a path of length r. The number of vertices of M(p, q, r) is
pqr − q(r − 1).

Lemma 7. Let T be any tree-decomposition of M(p, q, r). Then, if length(T ) < (p − 1)r , then width(T )�q.

Proof. For short, we denote by M the graph M(p, q, r). Let T be any tree-decomposition of M.
A pair {A, B} is k-connected if A, B are some connected subsets of V (M) and if every subset that separates A and

B is of cardinality at least k. We denote by dM(A, B)=min{dM(a, b) | a ∈ A, b ∈ B}.

Claim 1. Let {A, B} be a k-connected pair of M. Then, if length(T ) < dM(A, B), then width(T )�k.

Indeed, if length(T ) < dM(A, B), then there are no bags in T containing a vertex of A and a vertex of B. From
Lemma 5, there exists an edge {Xi, Xj } of T such that S =Xi ∩Xj separates A from B. Since {A, B} is k-connected,
|S|�k. Since making a tree-decomposition reduced does not affect its width and its length, we can assume that T is
reduced. So |Xi |�k + 1 because S ⊂ Xi is not possible. It follows that width(T )� |Xi | − 1�k as claimed.

Let A (resp. B) be the set of vertices consisting of the first row (resp. last row). We have dM(A, B) = (p − 1)r

and the pair {A, B} is q-connected. By Claim 1, if length(T ) < (p − 1)r , then width(T )�q completing the proof of
Lemma 7. �

2 One set of bags consists of the bags of the tree-decomposition of the underlying chordal graph, and each path corresponding to a subdivided
edge is composed of a set of bags of width two as depicted in Fig. 1(b). The length of this tree-decomposition is no more than the length t of the
edge-path, which is optimal from the lower bound derived from Theorem 1, as the longest isometric cycle is of length 3t vertices.
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Proof of Theorem 4. Let M =M(p, q, r) for some suitable parameters p, q, r we will fix later. The tree-length of
M is ��q − 1+ r: the tree-decomposition we can consider is a path, each bag consists of two consecutive rows with
the paths linking them. The tree-width of M is k =min{p, q} = p, because the degree two vertices do not increase the
tree-width of a graph.

Let T be any �-optimal tree-decomposition of M. By contradiction, assume that � is chosen such that

� < min

{
(p − 1)r

q − 1+ r
,
q

p

}
.

By Lemma 7, we have that length(T ) < (p−1)r implies that width(T )�q. Since T is �-optimal, and since ��q−1+r ,
length(T )�����(q − 1+ r) < (p− 1)r by definition of �. So width(T )�q > �p= �k which is a contradiction with
the fact that T is an �-optimal tree-decomposition of M. It follows that �� min{(p − 1)r/(q − 1+ r), q/p}.

Let us choose p = n1/5 and q = r = n2/5, so that p�q. The number of vertices of M is pqr − q(r − 1) that is at
most n, and we get that �� 1

2 n1/5 − 1
2 , which completes the proof. �

2.5. Specific tree-decompositions

A natural question about tree-decompositions is to know whether one can restrict tree-decompositions to some
specific sub-class of trees, say paths or bounded depth trees, without sacrificing too much on the width or the length of
the decomposition.

For instance, Bodlaender et al. asked in [9] the question of reducing the depth of a tree-decomposition without
increasing too much its width (to speed-up parallel algorithms). More precisely, they showed that every n-vertex graph
of tree-width k has a tree-decomposition of depth O(

√
n ) and width t �2k, a tree-decomposition of depth O(log n) and

width t �3k− 1, and that forcing a width t < 3k− 1 might produce (in the worst-case) a depth of �(
√

n), and forcing
a width t < 2k might produce a depth of �(n).

Unfortunately, this trade-off property between depth and width does not transfer to length. More precisely, as we
will see, there is no constant c for which every n-vertex graph G has a tree-decomposition of length at most c · tl(G)

and depth o(n).

Theorem 5. Let T be any tree-decomposition of a graph G. Then, length(T ) · (diam(T )+1)�diam(G). In particular,
for a path with n vertices (which is of tree-length 1), every tree-decomposition of depth h must be of length �(n/h).

Proof. Let us fix two vertices x, y ∈ V (G), and a shortest path P from x to y in G. Let X, Y be the bags of T
such that x ∈ X, y ∈ Y and such that dT (X, Y ) is minimum (X and Y are unique because P is connected). Let
X = Q0, Q1, . . . , Qk = Y be the path from X to Y in T. We define qi as the closest vertex of x that is in Qi , for
i ∈ {0, . . . , k}, and we let qk+1 = y. So q0 = x, and qk+1 = y.

Let us show that qi+1 ∈ Qi , for every i ∈ {0, . . . , k}. Note that this is true for i=k, so assume i < k. If qi+1 /∈Qi , then
qi+1 ∈ Qi+1\Qi . In this case, P intersects Qi∩Qi+1 (recall that S=Qi∩Qi+1 separates the connected components of
G\S). Moreover, there is a vertex w ∈ Qi ∩Qi+1∩P with dG(x, w) < dG(x, qi+1): a contradiction with the definition
of qi+1.

Since for every i ∈ {0, . . . , k},qi+1 ∈ Qi , it follows thatqi andqi+1 are both inQi , and thusdG(qi, qi+1)� length(T ).
Therefore,

∑k
i=0 dG(qi, qi+1)�(k + 1)length(T ). P is a shortest path thus

∑k
i=0 dG(qi, qi+1) = dG(q0, qk+1) =

dG(x, y). Noting that k�diam(T ), we have therefore showed that, for all x, y ∈ V (G), dG(x, y)�(diam(T ) +
1)length(T ). We complete the proof by choosing x, y such that dG(x, y)= diam(G). �

Paths are often used to restrict the set of possible tree-decompositions. In this case we simply deal with path-
decompositions. The path-width of a graph is the minimum width of every path-decomposition of G. It is known that
the path-width of every graph does not exceed log n times its tree-width. Unfortunately, this property does not transfer
to tree-length.

Let Yk be the tree composed of three paths of length k having one endpoint in common.

Theorem 6. Let T be any path-decomposition of a graph G. If G has Yk as isometric subgraph, then length(T )�k. In
particular, there are n-vertex graphs of tree-length 1 for which every path-decomposition is of length at least �(n).
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Proof. Let T be any path-decomposition of G, and assume that the bags of T are X1, . . . , Xp ordered linearly along the
path. Consider a copy isomorphic to Yk in G, and denote by A, B, C the sets of vertices of each branch of Yk , A, B, C,
having a common intersections, say vertex r. Since A induces a connected subgraph in G, it follows that the set of bags
containing a vertex of A induces a sub-path of T, say Xa, Xa+1, . . . , Xa′ . Similarly, the sets of bags containing a vertex of
B and of C induces sub-paths we denote, respectively, by Xb, Xb+1, . . . , Xb′ and Xc, Xc+1, . . . , Xc′ . Since r is common
to A, B, C, there is a bag Xi containing r such that i ∈ [a, a′] ∩ [b, b′] ∩ [c, c′]. W.l.o.g. assume that a =min{a, b, c}
and c′ =max{a′, b′, c′} (possibly c′ = a′). Since i ∈ [a, a′] ∩ [b, b′] ∩ [c, c′],we have [b, b′] ⊆ [a, a′] ∪ [c, c′]. If we
let Xj be a bag containing the leaf � of the branch B, so with j ∈ [b, b′], it turns out that j ∈ [a, a′] or j ∈ [c, c′].
Therefore, Xj contains � and a vertex either of A or of C. Thus diamG(Xj )�k. �

3. Approximation algorithm

In this section, we will first propose a new study of a well known algorithm, LexM, introduced by Rose et al. [44],
in order to prove that it is a 3-approximation of the tree-length of an arbitrary graph. Then, we will adapt an algorithm
prosed by Chepoi and Dragan [17] in order to obtain an other 3-approximation of the tree-length. To conclude this
section, we will propose an algorithm that we conjecture that it is a 2-approximation.

3.1. Algorithm LexM

This subsection concerns the proof of the following result.

Theorem 7. Algorithm LexM proposed by Rose et al. [44] computes in O(nm) time a tree-decomposition T of a graph
G such that:

• length(T )�k/2 where k is the chordality of G;
• length(T )�3 · tl(G)+ 1.

Moreover for every integer i > 1, there exists a graph of tree-length 2i such that LexM computes a tree-decomposition
of length 6i + 1.

A triangulation of G is a chordal graph H such that V (H) = V (G), and E(G) ⊆ E(H). The triangulation H is
minimal if the graph obtained from H by deleting any edge is not a triangulation of G.

Proposition 2. Algorithm LexM computes a tree-decomposition T of G of length at most �k/2�, where k is the chordality
of G.

Proposition 2 can be proved using the following three lemmas:

Lemma 8 (Rose et al. [44]). Given a graph G on n vertices and m edges, in O(nm) time, it is possible to compute a
minimal triangulation of it.

Lemma 9 (Parra and Scheffler [34]). Let G be a graph. Every minimal triangulation of G can be obtained by selecting
a maximal set of pairwise parallel minimal separators of G, and by filling them in cliques.

Lemma 10 (Gavoille et al. [29]). Let G be a graph of chordality bounded by k, and S be a minimal separator of G
then diamG(S)�k/2.

These three lemmas directly imply Proposition 2, noting that a tree-decomposition of chordal graphs in maximal
cliques can be done in linear time [5]. However, the proofs are not trivial. Here we present a self-sufficient proof based
on the study of the LexM Algorithm.

This algorithm uses a lexicographic ordering scheme that is a special type of breadth-first-search. During the search,
the vertices are numbered from n to 1. In the following �(i) will denote the vertex numbered i and �−1(u) will denote
the number assigned to u. Each vertex u has also a label, denoted by label(u), consisting of a set of numbers selected
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Fig. 4. State of G when u is numbered.

from {1, . . . , n} ordered in decreasing order. Given two labels L1 = {p1, . . . , pk} and L2 = {q1, . . . , ql}, we define
L1 < L2 if, for some j, pi = qi for i = 1, . . . , j − 1 and pj < qj , or if pi = qi for i = 1, . . . , k and k < l.

Algorithm LexM
Input: A graph G= (V , E)

Result: A supergraph of G: H = (V , E′ ∪ E)

begin
Assign empty label to all vertices of G and empty set to E′;
for i from n downto 1 do

Select:
pick an unnumbered vertex u with largest label;
Assign to u the number i: �(i)= u;

Update:
for each unnumbered vertex v such that there is a chain u = w1, w2, . . . , wp+1 = v with
wj unnumbered and label(wj ) < label(v) for all j ∈ {2, . . . , p} do

add i to label(v);
add{u, v} to E′;

end
end

end

By induction one can see that for every i ∈ {1, . . . , n − 1} the neighbors of �(i) in H [{�(i), . . . , �(n)}] induce a
clique. The ordering � is a perfect elimination ordering of H, so H is chordal. Thus:

Lemma 11. Given a graph G = (V , E) on n vertices and m edges, in O(nm) time, algorithm LexM compute a
triangulation H = (V , E ∪ E′).

To prove Proposition 2, We will show that when statement Update adds an edge {u, v} in E′, then there exists a
chordless cycle C passing via u, v. In this way, we will prove that two vertices adjacent in H are either adjacent in G
or at distance at most k/2 in G.

From now u, v denote two fixed vertices such that statement Update adds the edges {u, v}, and P denotes the chain,
supposed chordless, u= w1, w2, . . . , wp+1 = v satisfying the condition of statement Update.

The chordless cycle C will be composed by three chordless paths C = P ∪Q ∪ R where Q is a path satisfying the
following lemma, and R will be described later (see Fig. 4).
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Lemma 12. Let x be the neighbor of v with the maximum number, then there exists a vertex x′ numbered before u but
not before x, such that there exists a path Q from x′ to v such that P ∩Q is a chordless path using no vertex numbered
before x.

Proof. Since x is the neighbor of v with maximum number, before x is numbered, label(v) = ∅. Moreover it is the
same for every vertex of P , otherwise one of them has a greater label than v: a contradiction to the definition of P.

If for all i ∈ {2, . . . , p}, {x, wi} /∈E, then the path Q is the edge {v, x}.
So assume that there exists i ∈ {2, . . . , p} such that {x, wi} ∈ E. In this case after x is numbered label(wi) =

label(v) = �−1(x). But, by assumption on P, when u is numbered, label(wi) < label(v), thus there exists a vertex x′
numbered after x but before u such that �−1(x′) ∈ label(v) and �−1(x′) /∈ label(wi). Let x′ be the first such vertex.
Since �−1(x′) ∈ label(v), there exists a chordless path Q= x1x2, . . . , xq+1 x′ = x1 and v = xq+1 satisfying statement
Update. Assume that there exists a chord between Q and P, i.e., there exists j ∈ {2, . . . , q + 1} and k ∈ {2, . . . , p}
such that {xj , wk} ∈ E. Then the path wi, . . . , wk, xj , . . . , x

′ implies that statement Update adds �−1(x′) in label(wi),
a contradiction. �

Proof of Proposition 2. If {u, x} ∈ E then dG(u, v)�2, and since k > 3, Proposition 2 is trivially true.
So assume that {u, x} /∈E. We have already found P and Q such that P ∪ Q is a chordless path from u to x′ and

containing v. Let us construct a last path R such that P ∪Q ∪ R is a chordless cycle.
If {x′, u} ∈ E, then path R is the edge {x′, u}.
So assume that {x′, u} /∈E. The path R can be any path between x′ and u using only intermediate vertices numbered

before x. Indeed, let R be a such path and assume that there exists a chord between R and P ∪ Q, then its endpoint
in P ∪ Q has a label greater than label(v): a contradiction with the definitions of P and of Q. Since {u, x} /∈E, u
has a neighbor, say y, numbered before x, otherwise label(u) < label(v) and so u would be numbered before v: a
contradiction. Similarly, v has a neighbor z, numbered before x. If {x′, y} ∈ E or {u, z} ∈ E then we have found R.
Otherwise, since LexM is a BFS of G, there exists a chordless path R′ between y and z using only vertices numbered
before both of them, thus R exists: R = x′, R′, u.

Conclusion P ∪ Q ∪ R is a chordless cycle containing u and v. Thus dG(u, v)�k/2 this completes the proof of
Proposition 2. �

Remark 1. The bound of Proposition 2 is thin because for the cycle of length k, LexM computes a tree-decomposition
of length �k/2�. Observe, however, that this is not optimal since the tree-length of the cycle is �k/3� (by Theorem 1).

Proposition 3. Let G be a graph, andT be the tree-decomposition of G computed byAlgorithm LexM, then length(T )�3·
tl(G)+ 1.

Proof. Let u, v be two vertices non-adjacent in G, but adjacent in H, then let us prove that dG(u, v)�3 · tl(G) + 1.
Suppose w.l.o.g. that u is numbered before v. Let T0 be a tree-decomposition of G of minimum length and rooted at a
vertex containing �(n) (see Fig. 5).

Let P1, P2 be two shortest paths, P1 from �(n) to u and P2 from �(n) to v. Let U be a bag of T0 containing u, and V
one containing v. Let X be the nearest common ancestor of U and V in T0, then both P1 and P2 must use at least one
vertex of X. Let x ∈ P1 ∩ X and y ∈ P2 ∩ X. Since {u, v} ∈ E′, there exists a path from u to v using only vertices
numbered after v. This path must use a vertex z of X.

Moreover,Algorithm LexM is based on a BFS-ordering of G so if dG(x, u)�dG(x, z)+1 and dG(y, v)�dG(y, z)+1
then z is numbered before v: a contradiction.

Thus dG(x, u) + dG(y, v)�dG(x, z) + dG(y, z) + 1 which is at most 2� + 1. Then, since dG(u, v)�dG(x, u) +
dG(x, y)+ dG(y, v), we have dG(u, v)�3 · tl(G)+ 1. �

Corollary 1. LexM cannot be used to approximate the tree-width of an arbitrary graph G (cf. Theorem 4).

Proposition 4. For all i > 1, there exists a graph G of tree-length 2i such that Algorithm LexM can returns a tree-
decomposition of length 6i − 1.
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Fig. 5. Vertices u, v such that {u, v} ∈ E′ in a tree-decomposition of optimal length.

a b

Fig. 6. A graph (a) and a tree-decomposition of it of length 2i (b), such that Algorithm LexM computes a tree-decomposition of length 6i − 1.

Proof. Let G be the graph presented in Fig. 6(a). G has 20i−5 vertices. One can check that an execution of Algorithm
LexM can start at u= �(20i − 5) then assign x = �(20i − 5− (2i − 1))= �(18i − 4), then y = �(18i − 3) and so on.

Let v′ be the neighbor of v in the shortest path from v to x, and let w′ be the neighbor of w in the shortest path from
w to y. Step by step, v′ receives number 6i + 5 then w′ receives number 6i. Moreover, when w′ is numbered, v is the
only vertex of the path from v to w′ passing by a, z, c, w which contains the number of v′ in its label. So the label
of each vertex of this path is less than the label of v. So this path satisfies statement Update, so in the triangulation
of G obtained by this execution, v and w′ are neighbours, so the length of the tree-decomposition obtained is at least
dG(v, w′)= 6i − 1.

Moreover, G is a graph of tree-length 2i. Indeed, it has an isometric cycle of length 6i, and there exists a tree-
decomposition of it of length 2i given in Fig. 6(b). �
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a b c

Fig. 7. A 5-chordal graph G, a Layering-tree of G, and the tree-decomposition of G associated with that layering.

3.2. Algorithm BFS-Layering

In this section, we propose an algorithm (BFS-Layering), based on the notion of Layering-tree introduced in [17],
such that:

Theorem 8. Algorithm BFS-Layering constructs in O(n+m) time a tree-decomposition T of any graph G such that:

• length(T )�k/2+ 3, where k is the chordality of G;
• length(T )�3 · tl(G)+ 1.

Moreover, for all i > 1, there exists a graph of tree-length 2i for which the tree-decomposition returned by Algorithm
BFS-Layering is at least 6i + 1.

Let G be a graph with a distinguished vertex s. For every integer i�0, we define Li : ={u ∈ V (G) | dG(s, u)= i}.
A layering partition of G is a partition of each set Li into Li

1, . . . , L
i
pi

such that u, v ∈ Li
j if and only if there exists a

path from u to v using only intermediate vertices w such that dG(s, w)� i.
Let H be the graph whose vertex set is the collection of all the parts Li

j . In H, two vertices Li
j and Li′

j ′ are adjacent

if and only if there exists u ∈ Li
j and v ∈ Li′

j ′ such that u and v are adjacent in G (see Fig. 7). The vertex s is called the
source of H.

Lemma 13 (Chepoi and Dragan [17]). The graph H, called layering-tree of G, is a tree and is computable in linear
time. See Fig. 7 for an example.

Now, we can present the core of this section, our algorithm BFS-layering:

Algorithm BFS-Layering
Input: A graph G= (V , E)

Result: A tree-decomposition T of G
begin

Let H be a Layering-tree of G;
Let T be a copy of H;
for every vertex U of T do

U ← U ∪ V where V is the parent of U in H;
end

end

Lemma 14. Let T be the tree computed by BFS-Layering, then T is a tree-decomposition of G.

Proof. H is a partition of the set of vertices of G, so every vertex of G is contained in a node of H. By construction, it
is the same for T. Moreover a vertex of G is in exactly one node of H. Thus, in the tree T, a vertex u of G belongs only
to a node and to all of its children: a subtree, so Rule 3 of the definition of a tree-decomposition is satisfied.
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Fig. 8. The distance between u and v is at most k/2+ 2.

Let {u, v} be an edge of G. If dG(s, u)= dG(s, v), then by construction u and v belong to a same node of H and thus
of T. Otherwise u and v let Li

j , L
i′
j ′ be the two node of H such that u ∈ Li

j and v ∈ Li′
j ′ . By construction, Li

j and Li′
j ′

are adjacent in H. Therefore there exists a vertex of T containing both u and v. �

Lemma 15. Let G be a graph of chordality k and let T be the tree-decomposition of G computed by BFS-Layering,
then length(T )�k/2+ 3.

Proof. Let G be a graph of chordality k, let H be a Layering-tree of G and let u, v be two vertices of G which belong
to a same node of H: Li

j .

By definition of Li
j , there exists a path from u to v using only vertices which are at distance is at most i from s. Let

P1 be a such chordless path. Moreover u and v are connected by a path of which all vertices (except u and v) are at
distance at most i − 1 from s. Let P2 be a such chordless path (see Fig. 8).

If there is no chord between P1 and P2 then P1 ∪ P2 is an induced cycle containing both u and v, and thus
dG(u, v)�k/2.

Otherwise, as shown in Fig. 8, chords can exist only between the neighbor of u in P2: u′ (or the neighbor of v in P2:
v′) and a vertex of P1.

In the worst case, there is a chord from both u′ and v′. Nevertheless, there is an induced cycle containing u′ and v′.
Thus dG(u′, v′)�k/2 and dG(u, v)�k/2+ 2.

Let T be the tree-decomposition computed by BFS-Layering and let X be an arbitrary bag of T. By construction,
there exists i, j, j ′ such that X = Li

j ∪ Li−1
j ′ . Let x, y be two vertices of X. If both x, y belong to Li

j or to Li−1
j ′ , then

we have shown that dG(x, y)�k/2+ 2. Otherwise, assume w.l.o.g. that x ∈ Li
j and y ∈ Li−1

j ′ , by construction x has a

neighbor w in Li−1
j ′ and since dG(w, y)�k/2+ 2, we can conclude that dG(x, y)�k/2+ 3. �

Remark 2. The bound of Proposition 15 is tight. Indeed for the graph of Fig. 9, BFS-Layering puts the vertices x and
y in a same bag. Moreover the chordality of G is 4 and dG(x, y)= 5= 4

2 + 3.

Lemma 16. Let T be the tree-decomposition computed by BFS-Layering, then length(T )�3 · tl(G)+ 1.

Proof. Let G be a graph, and H be a Layering-tree of it. Let T0 be a tree-decomposition of G of minimum length,
rooted at a bag containing s. We will make a proof similar to the one of the Proposition 3.

Let u, v be two vertices of G which belong to a same node of H: Li
j . Let U be a bag of T0 containing u, and V one

containing v. Let X be the nearest common ancestor of U and V in T0, then any shortest path from s to u (resp. to v) has
to use at least one vertex x (resp. y) of X. Since u, v are both in Li

j , then there exists a path between u and v such that
for every vertex w of this path, dG(s, w)� i. This path has to use a vertex z ∈ X. Assume that dG(u, x)� tl(G)+ 1 or
dG(v, y)� tl(G) + 1, then dG(s, z)� i − 1: a contradiction. Then, since dG(u, v)�dG(u, x) + dG(x, y) + dG(y, u)

we obtain dG(u, v)�3 · tl(G).
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Fig. 9. A graph of chordality k such that BFS-Layering computes a tree-decomposition of length k/2+ 3.

It follows that for every u, v such that u and v belong to a same bag of T, dG(u, v)�3 · tl(G)+ 1. �

Proposition 5. For every i > 1, there exists a graph G of tree-length 2i such that Algorithm BFS-Layering can return
a tree-decomposition T of length 6i + 1.

Proof. Let G be the graph defined in Fig. 6(a) in which one adds a new vertex v′′ connected at v only.
If Algorithm BFS-Layering starts at u, then clearly L

3i

1 contains v, a, z, c, w. In the Layering-tree, one of its children
contains v′′. It follows that one bag of the tree-decomposition contains v′′, v, a, z, c, w, and dG(v′′, w)= 6i + 1. �

Theorem 8 follows from Lemmas 14–16 and from Proposition 5.

3.3. An heuristic: disk-tree

This section deals with the 2-approximation of the tree-length of any graph. The heuristic we present is based on the
idea that, given a graph G, if there exists a tree-decomposition T of length k, then every bag of T is included in the disk
of radius k centered at any of its vertices. So disks of radius k are good candidates to construct a tree-decomposition of
length 2k. But constructing for every vertex of G its disk of radius k is not a solution because it is not always possible
to organize them in a tree. This explains why in our heuristic, the center of a disk is chosen is in border(T ), and why
Init and Reduce remove some vertices.

Before entering the details, we introduce some definitions and notations:

• The set of vertices of G covered by T is: covered(T )=⋃
X∈V (T ) X. The set of vertices covered by T but with at least

one neighbor not covered is: border(T )= {u ∈ covered(T ) | N(u)\covered(T ) 
= ∅}.
• For every subset X of V (G) and for every u ∈ X, out(u, X) denotes the subset of vertices of X connected to u by

a path of which all vertices (except the two endpoints) are not in X. In other terms, let CC1, CC2, · · · , CCp be all
the connected components of G[V (G)\X] such that ∀i ∈ {1, . . . , p}, u ∈ N(CCi), then out(u, X) =⋃

i∈{1,...,p}
N(CCi) .
• Let S be a subset of V (G), and let u, v be two vertices of S. u and v are in conflict if v ∈ out(u, covered(T ) ∪ S)

and dG(u, v) > k. When it occurs, we have to remove one of them, but we will do it carefully.
• For every vertex u of G covered by T, B(u) denotes the bag of minimum depth in T containing u. The tree T is

construct by depth, that is to say, a vertex c can be chosen to be the center of a new disk, if and only if c ∈ border(T )

and ∀v ∈ border(T ), depth(B(c))�depth(B(v)). The set of vertices which can be chosen is denoted C.

We also need the following lemma. It is separate from our heuristic, but will be useful to prove that our heuristic builds
a subtree of a tree-decomposition of G.
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Lemma 17. Let T be a subtree of a tree-decomposition of a graph G. Then:

(1) T is a tree-decomposition of the subgraph of G, induced by the set of covered vertices.
(2) Let CC1, CC2, . . . , CCm be the connected components of the subgraph of G induced by the set of vertices not

covered by T. For every CCi there exists a bag Xi of T, such that N(CCi) ⊆ Xi .

Proof. ⇒ Let T be a subtree of a tree-decomposition T0 of a graph G. Clearly T is a tree-decomposition of the subgraph
induced by the covered vertices.

Let u be a vertex of G not covered by T, and let X ∈ V (T ) be the closest bag of B(u) in T0. Since T0 is a tree-
decomposition of G, each path from u to any vertex covered by T has to use at least one vertex of X. Thus, this is
also true for all the vertices reachable from u by a path containing only non-covered vertices. So we conclude that the
neighborhood of the connected component of G[V (G)\covered(T )] containing u is included in X.
⇐ Let T be a tree satisfying the two properties of Lemma 17. For every i ∈ {1, · · · , m} let us define CC+i =CCi ∪

N(CCi). Let T + be the tree containing a copy of T in which one adds each set CC+i by connecting it to the bag Xi .
Let {x, y} be an edge of G. Assume that there exists i ∈ {1, . . . , m} such that x ∈ CCi , by assumption, either

y ∈ Xi ∩ N(CCi) or y ∈ CCi . Thus, this edge is contained in CC+i : a bag of T +. Assume now that both x and y are
covered by T, then by assumption on T, there exists a bag of T (and thus of T +) containing {x, y}.

Finally, let i ∈ {1, . . . , m} and u ∈ CC+i . If u ∈ CCi then u belongs exactly to one bag of T +. Otherwise by
assumption on T, the set of bags containing u induces a subtree of T, and since u belongs to the neighbor of CC+i , then
it is still true in T +.

We have proved that T + is a tree-decomposition of G. �

Now we can present our heuristic:

Algorithm Disk-Tree
Input: A graph G= (V , E) and an integer k
Result: either FAIL or T: a tree-decomposition of G
begin

Let u be an arbitrary vertex of G;
T ← ({u},∅) C ← {u};
while covered(T ) 
= V (G) do

Init:
chose c ∈ C, if c does not exist return(FAIL);
S ← connected component of c in G[V (G)\(covered(T )\{c})];
S ← S ∩Dk(c), where Dk(c) is the disk of radius k centered at c;
S ← S ∪ out(c, covered(T ));

Reduce:
while there exists two vertices u, v in conflict in S do

if (v ∈ border(T )) or
(u /∈ border(T ) and dG(ci+1, u)�dG(ci+1, v)) then
remove u from S;

else remove v from S;
end

Update:
if S�covered(T ) then

T ← (V (T ) ∪ {S}, E(T ) ∪ {{B(c), S}});
C ← {u ∈ border(T ) | ∀v ∈ border(T ), depth(B(u))�depth(B(v))};

else remove c from C;
end

Return(T);
end
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Fig. 10. Impossible case, because Q⇒ ¬R.

From now, for every i�1, Ti denotes the tree built by Disk-Tree with i bags, and its bags are {S1, S2, . . . , Si}.
Moreover cj denotes the vertex chosen by Disk-Tree to build Sj .

For all i�1 we define the following property:

Pi = “ Ti is a subtree of a tree-decomposition of G” .

Lemma 18. If Pi is true, then out(ci+1, covered(Ti)) ⊆ B(ci+1).

Proof. Assume that Pi is true, and let CC be a connected component of G[G\covered(Ti)] containing ci+1.
Let u ∈ CC, since ci+1 is the vertex of border(Ti) whose bag is of maximum depth in Ti , we obtain that B(u) is not

a descendant of B(ci+1).
Moreover, Lemma 17 implies that there exists a bag X of Ti such that N(CC) ⊆ X. Since Ti is a tree-decomposition

of the covered vertices, X is a descendant of B(v) for all v ∈ N(CC). In particular X is a descendant of B(u) and
B(ci+1). Since B(u) is not a descendant of B(ci+1), it is an ancestor of (or is equal to) B(ci+1). So u ∈ B(ci+1). �

Lemma 19. Pi implies Pi+1.

Proof. Let G be a graph and i be an integer such that Pi is true. We will start by proving that the second property of
Lemma 17 is satisfied by Ti+1.

Since, Pi is true, the property is true for each connected component CC of G[V (G)\covered(Ti)] such that
N(CC)�B(ci+1).

So let CC be a connected component in G[V (G)\covered(Ti)] such that N(CC) ⊆ B(ci+1). Let CC− =CC\Si+1
and u ∈ CC−. We have to show that either N(CC−) ⊆ B(ci+1) or N(CC−) ⊆ Si+1. So we have to prove that the
situation presented in Fig. 10 is impossible.

Assume that the situation presented in Fig. 10 occurs, i.e., assume that there exists v ∈ Si+1\B(ci+1) and w ∈
B(ci+1)\Si+1, such that v, w ∈ N(CC). Since v ∈ Si+1\B(ci+1) then there exists a path R from ci+1 to v which
avoids B(ci+1). So the three paths T , Q, R show that w ∈ out(ci+1, covered(Ti)), thus by construction w ∈ Si+1: a
contradiction.

So we have proved that Ti+1 satisfies property 2 of Lemma 17. Now we will proved that Ti+1 is a tree-decomposition
of the vertices which it covers.

Since Pi is true, if there exists an edge between two vertices covered by Ti+1 which is not in a bag, then this edge is
between a vertex of Si+1\B(ci+1) and a vertex of B(ci+1)\Si+1. It is the same situation that in the previous case but
this time P ∪Q is an edge. The result is similar: this edge cannot exist.

Finally, let us show that for any vertex u covered by Ti+1, the set of bags containing u is a subtree of Ti+1. This is
true by assumption for all the vertices which are not in Si+1. Let u ∈ Si+1, if u is not covered by Ti , then Si+1 is the
only bag containing u, it is a subtree, else by construction we have u ∈ out(ci+1, covered(Ti)), thus Lemma 18 shows
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that u ∈ B(ci+1). Moreover, when the bag Si+1 is introduced in Ti , it is connected to B(ci+1). Therefore, the set of the
bags of Ti+1 containing u still induces a subtree.

By Lemma 17, Ti+1 is thus a subtree of a tree-decomposition of G. �

Proposition 6. The heuristic Disk-Tree finishes in polynomial time. Moreover, when it finishes successfully, T is a
tree-decomposition of G of length at most 2k.

Proof. First of all, observe that if Disk-Tree finishes successfully then all vertices of G are covered by T. Moreover,
P1 is trivially true, thus Lemma 19 implies that T is a tree-decomposition of G.

Now let us show that any bag Si is included in Dk(ci) (the disk of radius k centered at ci). Let u ∈ Si then:

• either u is not covered by Ti−1, then by construction u ∈ Dk(ci); or
• u is covered by Ti−1. Then by construction u ∈ out(ci, covered(Ti−1)) and we have already shown in the proof of

Lemma 18 that u ∈ B(ci). Therefore, let j < i such that B(ci) = Sj i.e., ci is covered by Tj but not by Tj−1, we
have u ∈ out(ci, covered(Tj−1 ∪Sj )). Thus when Sj is added to T, if dG(ci, u) > k then ci and u are in conflict thus
the phase Reduce removes either u, or ci : a contradiction. Thus dG(ci, u)�k.

Finally, observe that Disk-Tree introduces the bag Si into Ti−1 if and only if Si contains at least one vertex not
covered by Ti−1. Thus at the end T contains at most n bags. Moreover, the number of vertices in the set C is also at
most n. So the total number of loops is at most n2. Clearly one loop is done in polynomial time, so Disk-Tree finishes
in polynomial time. �

Proposition 7. If k�3 · tl(G) − 2, then after the phase Init, there is no vertices in conflict. Thus Disk-Tree finishes
successfully.

Proof. Observe that at each time, the phase Init puts in Si at least one vertex not covered by Ti−1: the neighbor of ci .
Let u, v be two vertices of Si such that u ∈ out(v, covered(Ti−1 ∪ Si)) just after the phase Init.

As we did for the proofs of Proposition 3 and Lemma 16, we consider T0, a tree-decomposition of G of length
minimum rooted at a bag containing ci .

Let Z be the nearest common ancestor of B(u) and B(v) in T0, then any shortest path from ci to u (resp. to v)
has to use at least one vertex x (resp. y) of Z. Since u and v are in conflict, there is exists a path between u and v

of which all the intermediates vertices are not in covered(Ti−1) ∪ Si , so in particular for every vertex w of this path,
dG(ci, w) > k . This path must use a vertex z ∈ Z. Moreover, if dG(x, u)�dG(x, z) then dG(ci, z)�dG(ci, u)�k:
a contradiction. So dG(x, u) < dG(x, z)��. We obtain similarly that dG(y, v) < dG(y, z)��. Finally we have that
dG(u, v)�dG(u, x)+ dG(x, y)+ dG(y, v)�3�− 2.

We can conclude: if k�3 · tl(G)− 2 then u and v are not in conflict. �

For example if the graph G is chordal and if k= 1, the phase Reduce does not remove any vertex. Thus the heuristic
returns a tree-decomposition of length 2.

Moreover, you have probably noticed that in each proof of this section we never use neither the fact that we remove
carefully one of two vertices in conflict, nor the ability to choose an other vertex in cases where the previous fails.
They serve only to make the heuristic stronger in case where k is less than 3tl(G) − 2, and they justify the following
conjecture:

Conjecture 1. Disk-Tree finishes successfully for k� tl(G), i.e., Disk-Tree is a 2-approximation algorithm.

This conjecture is partly justified by the fact that the heuristic Disk-Tree computes a better tree-decomposition for the
counter-example used for the two previous algorithms (see Fig. 11). Starting on the same vertex u, Disk-Tree finishes
successfully with k = 2i. The next six points explain why the heuristic succeeds after six loops.

(1) Initially the phase Init builds a disk which goes from u to the vertices x′, b, d and y′. Some of these vertices are in
conflict, the phase Reduce gradually removes the paths from x to x′, from x to b, from y to d, and from y to y′.
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Fig. 11. Tree-decomposition obtained by the heuristic Disk-Tree on the counter-example.

(2) At the following step we can choose between starting at x or at y. Since the graph is symmetric, the choice does not
change anything. Let us suppose that one chooses x. The phase Init builds a bag containing the shortest paths from
x to v, from x to z and from x to a. The vertex y is also put in the bag. There is no conflict.

(3) Then one can choose either v or a or z. We cannot choose y because B(y) is of depth lower than B(v), B(a) and
B(z). Let us suppose that the choice is made on a, the phase Init builds a bag containing the shortest paths from z
to v. There is no conflict.

(4) The only possible choice is now z. The phase Init builds a bag with the shortest paths from z to z′, from z to y and
from c to d. The vertices y and z′ are in conflict. Since y is still covered, z′ is removed by the phase Reduce. Step
by step, the path between c and z′ is removed.

(5) The only possible choice is now c. The bag obtained contains the shortest path between c and w, and the vertex y.
(6) The last bag contains finally the shortest path between w and y. All vertices of the graph are then covered and thus

the heuristic finishes successfully.

4. Conclusion and further works

In this paper, we introduce a new graph parameter, the tree-length, useful to obtain good approximations for several
problems (including distance labeling, compact routing and additive sparse spanners). We have computed the tree-length
of meshes and outerplanar graphs.

The first question we left open is:

Question 1. Is it true that every graph of chordality k has tree-length at most �k/3�?

We have answered positively if G is outerplanar for which the tree-length is exactly �k/3�, and it is known that the
tree-length of any graph cannot be greater than its chordality divided by 2.

In this paper, we have shown that tree-length is very different from the tree-width, another parameter related to
tree-decompositions. Indeed some graphs have bounded tree-width but unbounded tree-length, and the reverse is also
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true. Moreover, we have proved that it is not always possible to minimize both width and length of a tree-decomposition.
For example we have presented an n-vertex graph for which any tree-decomposition is far from the minimum on either
its tree-length or its tree-width within a factor �(n1/5). Let us denote by �(G) the smallest real � such that G has an
�-optimal tree-decomposition, then we ask:

Question 2. Is it true that for every graph G of n vertices we have �(G)= O(
√

n)?

Note that the answer will indicate for example how far the width of the tree-decomposition computed by LexM is
from the tree-width of the graph.

Another difference between the tree-length and the tree-width is that, in case of tree-width it is possible to modify
the depth of the tree-decomposition, or its degree, without increasing to much its width. We have proved that this is
false in case of tree-length.

About complexity issue, we have also shown a difference between tree-length and tree-width. Indeed it is possible to
approximate (in polynomial time) the tree-length of a graph within a constant factor, whereas the best known polynomial
time algorithm for the tree-width is far from the minimum within a logarithmic factor. The main question left open is
this paper is:

Question 3. What is the time complexity of computing the tree-length of any graph?

Note that determining whether a graph is or not of tree-length 1 can be done in linear time. So a first step to answer
Question 3 would be to know the complexity of determining if a graph is of tree-length 2.

Finally, if it is true that the problem is NP-Complete in general, then this justifies the interest of Conjecture 1. We
recall this conjecture:

Conjecture 1. Algorithm Disk-Tree finishes successfully for k� tl(G), i.e., Disk-Tree is a polynomial time
2-approximation algorithm of the tree-length of any graph.
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