Graph state preparation on arbitrary hardware

Tristan Cam. in collaboration with Simon Martiel, Cyril Gavoille, Yvan Le Borgne July 4, 2025 Reversible Computation 2025

Motivations

Introduction: quantum computing

- Some tasks are easier for a quantum computer;
- some quantum circuits are hard to simulate on a classical computer;
- high entanglement is a key ingredient for quantum speedup.

Introduction: quantum computing

- Some tasks are easier for a quantum computer;
- some quantum circuits are hard to simulate on a classical computer;
- high entanglement is a key ingredient for quantum speedup.
 - ⇒ graph state framework

nearly hard to simulate; good measure of entanglement: rank-width

Graph state $|G\rangle$ on n qubits :

Stabilizer state represented by an undirected graph G on n vertices.

Recipe to prepare $|G\rangle$ on your hardware H:

Graph state $|G\rangle$ on n qubits : Stabilizer state represented by an undirected graph G on n vertices.

Recipe to prepare $|G\rangle$ on your hardware H:

• First prepare the state $|+\rangle^{\otimes n}=|\overline{K_n}\rangle$ (i.e. a wall of Hadamard),

Graph state $|G\rangle$ on n qubits :

Stabilizer state represented by an undirected graph G on n vertices.

Recipe to prepare $|G\rangle$ on your hardware H:

- First prepare the state $|+\rangle^{\otimes n} = |\overline{K_n}\rangle$ (i.e. a wall of Hadamard),
- then for each edge {u, v} ∈ E(G) in any order apply a CZ between qubits u, v.

Graph state $|G\rangle$ on n qubits :

Stabilizer state represented by an undirected graph G on n vertices.

Recipe to prepare $|G\rangle$ on your hardware H:

- First prepare the state $|+\rangle^{\otimes n} = |\overline{K_n}\rangle$ (i.e. a wall of Hadamard),
- then for each edge {u, v} ∈ E(G) in any order apply a CZ between qubits u, v.
 - \Rightarrow you used |E(G)| two-qubit gates.

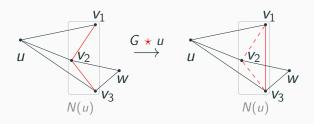
Given all-to-all connectivity

Local complementation(s)

Local complementation: as a graph operation

Definition

The *local complementation* of G according to u, written $G \star u$, is a graph which has the same vertices as G, but all the neighbors v_1, v_2, \ldots of u are connected in $G \star u$ if and only if they are not connected in G. All other edges are unchanged.

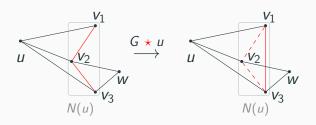


$$G \star u \star u = G$$

Local complementation: as a graph operation

Definition

The *local complementation* of G according to u, written $G \star u$, is a graph which has the same vertices as G, but all the neighbors v_1, v_2, \ldots of u are connected in $G \star u$ if and only if they are not connected in G. All other edges are unchanged.



$$G\star u\star u=G$$

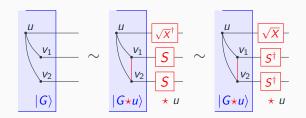
Note: this preserves rank-width (i.e. entanglement).

Local complementation: as a circuit operation

Proposition

Let $|G\rangle$ be a graph state, u a vertex of G and N_u the set of neighbors of u in G. Performing a local complementation on $|G\rangle$ according to u is done by:

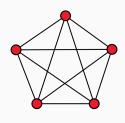
- adding a \sqrt{X}^{\dagger} gate on the qubit u,
- ullet adding a S gate on every qubit in N_u .



Replacing CZ by single qubit gate = less error

Your hardware: *H*, with all-to-all connectivity.

Your hardware: H, with all-to-all connectivity.

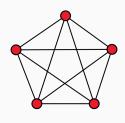


n=5

You want to prepare $|G\rangle$ with $G = K_5$

Your hardware: H, with all-to-all connectivity.

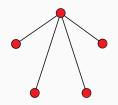




$$n=5$$

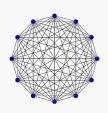
You want to prepare $|G\rangle$ with $G = K_5$ Naively uses $\theta(n^2)$ CZ gates.

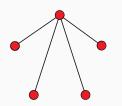
Your hardware: H, with all-to-all connectivity.



Notice that $K_5 \sim_{loc} K_{1,4}$

Your hardware: *H*, with all-to-all connectivity.





Notice that $K_5 \sim_{loc} K_{1,4}$

Preparing $|K_{1,4}\rangle$ uses $\mathcal{O}(n)$ CZ gates, then apply one local complementation to get $|G\rangle$.

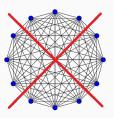
One local complementation emulated 6 "virtual" CZ.

⇒ Local complementation enables optimizations in gate count

BUT...

⇒ Local complementation enables optimizations in gate count

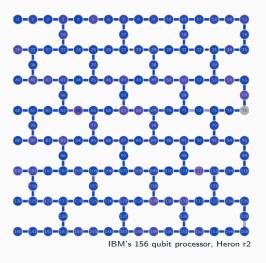
BUT...



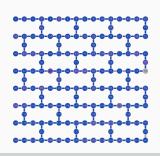
(your hardware may not be a complete graph.)

How about on arbitrary hardware?

Given a graph H: your hardware.



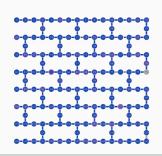
Given a graph H: your hardware.



Problem

Which graph states can be prepared on H by only:

Given a graph H: your hardware.

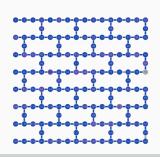


Problem

Which graph states can be prepared on H by only:

• adding CZ along edges of H (toggling),

Given a graph H: your hardware.



Problem

Which graph states can be prepared on H by only:

- adding CZ along edges of H (toggling),
- local complementations on vertices of *H*.

Our results I

Answer: all of them.

Theorem

Let H be a connected graph on n vertices.

Let G be any graph on n vertices.

The state $|G\rangle$ can be prepared by a circuit consisting of CZ gates along edges of H and local complementations.

Our method

Useful fact

Proposition (Folklore)

Let H be the connected hardware graph.

Then any Clifford circuit can be implemented with local Clifford gates and CZ along edges of H.

i.e. any Clifford circuit is "compatible" with H if we allow all types of local Cliffords (naively using a $\mathcal{O}(n^3)$ overhead on CZ count).

Goal

C from Proposition, Contains {CZ, Local Cliffords}. C' from our method, Contains $\{CZ, \underbrace{S, \sqrt{X}^{\dagger}}_{\text{loc. comp.}}\}$.

 $C \mid + \rangle = \mid G \rangle = C' \mid + \rangle$

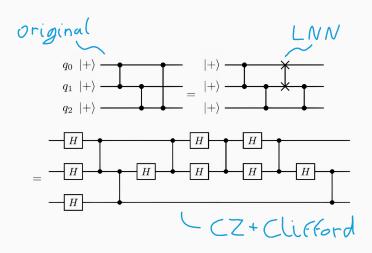
Goal

C from Proposition, Contains {CZ, Local Cliffords}. C' from our method, Contains $\{CZ, \underbrace{S, \sqrt{X}^{\dagger}}_{\text{loc. comp.}}\}$.

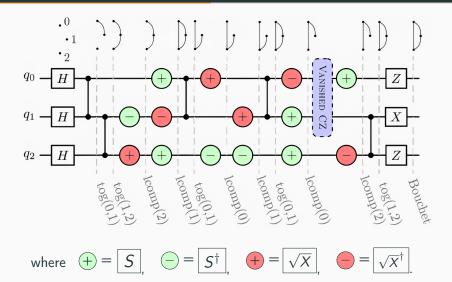
$$C \mid + \rangle = \mid G \rangle = C' \mid + \rangle$$

 $\#CZ(C) = m \geq \#CZ(C')$

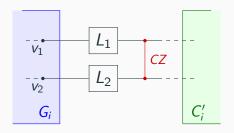
Overview



Overview



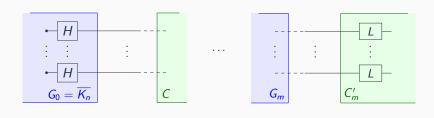
Our construction



Sketch of the i-th step.

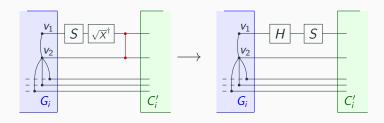
Our construction

First step



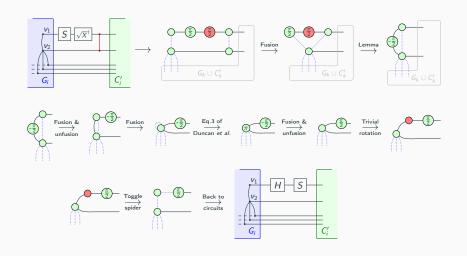
Last step

Preliminary Lemma 1: vanishing CZ

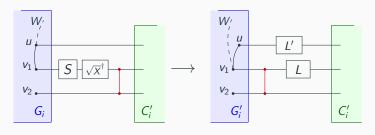


Lemma 1: These two circuits are equivalent

Proof of Lemma 1



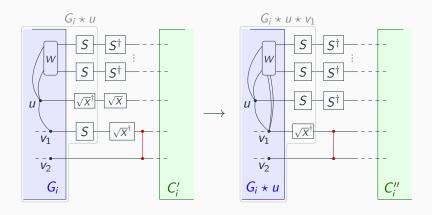
Preliminary Lemma 2: commuting and absorbing the CZ



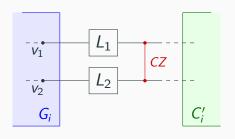
Lemma 2: These two circuits are equivalent

 $W = N_u \setminus \{v_1\}$ and L, L' are generic local Clifford gates.

Proof of Lemma 2



Outline of the proof

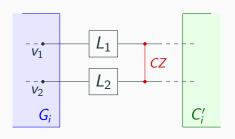


Euler decomposition:

$$\exists a_1, b_1, c_1, a_2, b_2, c_2 \in \mathbb{Z}/4\mathbb{Z}:$$

$$L_1 = S^{c_1} \sqrt{X}^{\dagger b_1} S^{a_1} \text{ and } L_2 = S^{c_2} \sqrt{X}^{\dagger b_2} S^{a_2}.$$

Outline of the proof



Euler decomposition:

$$\exists a_1, b_1, c_1, a_2, b_2, c_2 \in \mathbb{Z}/4\mathbb{Z}:$$
 $L_1 = S^{c_1} \sqrt{X}^{\dagger b_1} S^{a_1} \text{ and } L_2 = S^{c_2} \sqrt{X}^{\dagger b_2} S^{a_2}.$
w.l.o.g. $L_1 := \sqrt{X}^{\dagger b_1} S^{a_1}, \ L_2 := \sqrt{X}^{\dagger b_2} S^{a_2}.$

$$L_1 = \sqrt{X}^{\dagger b_1} S^{a_1}, \ L_2 = \sqrt{X}^{\dagger b_2} S^{a_2}$$

Three cases:

$$L_1 = \sqrt{X}^{\dagger b_1} S^{a_1}, \ L_2 = \sqrt{X}^{\dagger b_2} S^{a_2}$$

Three cases:

1. Both b_1 and b_2 are even.

$$L_1 = \sqrt{X}^{\dagger b_1} S^{a_1}, \ L_2 = \sqrt{X}^{\dagger b_2} S^{a_2}$$

Three cases:

- 1. Both b_1 and b_2 are even.
- 2. Only one of b_1 and b_2 is odd.

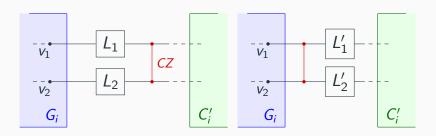
$$L_1 = \sqrt{X}^{\dagger b_1} S^{a_1}, \ L_2 = \sqrt{X}^{\dagger b_2} S^{a_2}$$

Three cases:

- 1. Both b_1 and b_2 are even.
- 2. Only one of b_1 and b_2 is odd.
- 3. Both b_1 and b_2 are odd.

1. Both b_1 and b_2 are even.

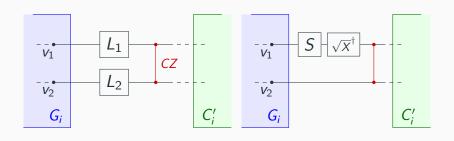
$$L_1 = X^{b_1/2} S^{a_1}, L_2 = X^{b_2/2} S^{a_2}$$



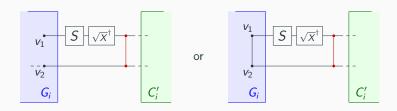
Pauli and S gates: weakly commute with CZ

2. Only one of b_1 and b_2 is odd, w.l.o.g. take b_1 odd.

$$L_1 = X^{b_1 - 1} \sqrt{X}^{\dagger} S^{a_1}, \ L_2 = X^{b_2/2} S^{a_2}$$



Pauli and S gates: weakly commute with CZ



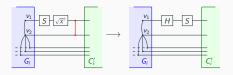
Either:

- v_1 has no neighbor in G_k , or v_1 and v_2 are isolated in G_k
 - \Rightarrow rewrite subcircuit as 0 or 1 CZ followed by local Cliffords;

Either:

- v_1 has no neighbor in $G_k / v_1, v_2$ are each other's only neighbor: rewrite;

- the only neighbor of v_1 in G_k is v_2 and v_2 has at least one neighbor in G_k : Lemma 1;

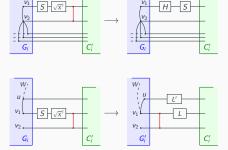


Either:

- v_1 has no neighbor in $G_k / v_1, v_2$ are each other's only neighbor: rewrite;

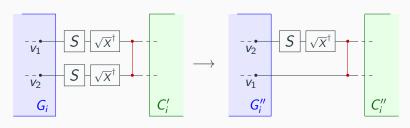
- the only neighbor of v_1 in G_k is v_2 and v_2 has at least one neighbor in G_k : Lemma 1;

- v_1 has at least one neighbor u in G_k that is not v_2 : Lemma 2.



3. Both b_1 and b_2 are odd.

$$L_1 = \underline{X^{b_1-1}} \sqrt{X}^\dagger S^{a_1}, \ L_2 = \underline{X^{b_2-1}} \sqrt{X}^\dagger S^{a_2}$$

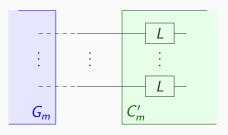


Pauli and S gates: weakly commute with CZ

⇒ Technicalities. Reduce Case 3 to Case 2.

Outline of the proof: final touch

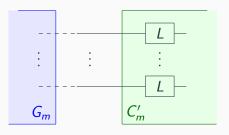
Last step: Van den Nest



Local Cliffords layer pprox finite sequence of I. comp. $\emph{I}_1,\ldots,\emph{I}_s$

Outline of the proof: final touch

Last step: Van den Nest



Local Cliffords layer pprox finite sequence of I. comp. I_1,\ldots,I_s

Thus
$$G = G_m * I_1 * \cdots * I_s$$
 is preparable on H .

Our results II

Theorem (Universality)

Any graph state can be prepared on any hardware using only CZ gates and local complementations.

Our results II

Theorem (Universality)

Any graph state can be prepared on any hardware using only CZ gates and local complementations.

Remark

This method is implemented by a $\mathcal{O}(n^3)$ time constructive algorithm, that yields an output circuit with a CZ count of **at most** the CZ count of the input circuit.

Our results II

Theorem (Universality)

Any graph state can be prepared on any hardware using only CZ gates and local complementations.

Remark

This method is implemented by a $\mathcal{O}(n^3)$ time constructive algorithm, that yields an output circuit with a CZ count of **at most** the CZ count of the input circuit.

Theorem (Optimality)

The set of circuits on arbitrary constructed by our method always contains circuits with optimal CZ count.

Our results III

Pure graph theory restatement!

Corollary (Graph statement)

Let H be a connected graph on n vertices.

Then any graph on n vertices can be created from the empty graph on n vertices with only local complementations and edge toggling in H.

Our results III

Pure graph theory restatement!

Corollary (Graph statement)

Let H be a connected graph on n vertices.

Then any graph on n vertices can be created from the empty graph on n vertices with only local complementations and edge toggling in H.

Proof by quantum circuit.

Can we find a purely combinatorial proof?

Thank you for your attention!

Contact: tristan.cam@ibm.com

