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Abstract. In quantum computing, graph states play a crucial role in
quantum error correction and measurement-based quantum computing.
Preparing these states efficiently on hardware with constrained connec-
tivity is a fundamental challenge. In this work, we establish a univer-
sal framework for graph state preparation using only Controlled-Z (CZ)
gates along the edges of a given hardware connectivity graph and local
complementation operations. We prove that any graph state can be pre-
pared using only these operations, providing a constructive transpilation
method that transforms the input circuit into an equivalent one without
increasing the number of entangling gates. Additionally, as our approach
preserves entangling count and depth of the input circuit, we show that
this framework also allows for optimal graph state preparation.
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1 Introduction

Quantum computing holds the potential to deliver exponential speedups over
classical computing [17,27,31,32], with several demonstrations of such algorith-
mic advantages using ion trap [14,34], superconducting [16,30], photonic [35,39],
and Rydberg atom [13] quantum processors. However, achieving a universal
fault-tolerant quantum computer capable of efficiently solving problems like large
integer factorization would require millions of qubits with low error rates and
long coherence times. Given the current limitations of noisy intermediate-scale
quantum (NISQ) computers [8,28], research is focused on overcoming these de-
vice limitations, making the design of efficient quantum circuits crucial. Exten-
sive research has been conducted on quantum circuit synthesis [2,10,23], partic-
ularly using restricted gate sets such as CNOT-, CZ- or Clifford-circuit synthesis
[5,19,20,24] with the goal of minimizing the number of entangling gates or the
circuit depth.

⋆ This work has been supported by the French ANR project Plan France 2030 (ANR-
22-PETQ-0007), and also ANRT Program.
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A key class of quantum states, known as stabilizer states, are particularly
significant due to their properties in quantum error correction [15,18]. In this
work, we focus on graph states, a subclass of stabilizer states that can be rep-
resented by undirected graphs and that have been shown to be closely related
to the structure of Clifford isometries [6]. Van den Nest et al. [26] showed that
any stabilizer state can be transformed into a graph state using single qubit
Clifford gates, making the preparation of graph states equivalent to that of
stabilizer states - a topic that has been widely explored [7,9,22]. Moreover, all
local-Clifford equivalent graph states are related through repeated local com-
plementation, a well-studied [1,26] graph operation introduced by Kotzig [21].
Another challenge in compilation problems is ensuring circuit compliance with
hardware constraints. Quantum chip architectures do not always support all-to-
all connectivity, and in practice, one often needs to work with only a connected
subgraph of the physical architecture that offers sufficiently high fidelity, as er-
ror rates across qubit connections may be degraded. This motivates research on
circuit compilation on arbitrary hardware.

Our contribution. Given a n-qubit hardware architecture corresponding to a
connected graph H on n vertices and a graph G on at most n vertices, we show
that there exists a circuit that prepares the graph state |G⟩ by only toggling edges
in H (corresponding to applying a CZ gate) and applying local complementations
(corresponding to local Clifford gates on sets of neighboring qubits).

Our method relies on constructively transforming any H-compliant graph
state preparation circuit C into a sequence of edge toggling in H and local
complementation. Moreover, we show that the number of edge toggling in this
sequence is bounded by the number of entangling gates in C, since our transpi-
lation either keeps or deletes CZ gates of the original circuit. This gives a direct
bound on both the two-qubit-gate count and depth in our output circuit. In
particular, this entails that given an optimal algorithm to construct a Clifford
circuit C that prepares a given graph state on H, our method gives a circuit
that has a CZ-count and depth bounded by that of C and prepares the same
state.

Remarkably, our result can also be expressed in the language of graph theory:
given a connected graph H on n vertices, any graph G on n vertices can be con-
structed from the empty graph on n vertices with only local complementations
and toggling edges of H. To the best of our knowledge, this result was previously
unknown. We raise the question of finding a purely combinatorial proof.

Example. The following is a short example of our method. We give ourselves
a circuit that prepares the complete graph state in CZ depth 3 without
connectivity constraint. Here, we suppose that our hardware graph is a path,
thus we rewrite the circuit with a SWAP gate, translate it to CZ and Hadamard
gates and obtain a hardware-compliant circuit with a CZ depth of 6 (cf. Fig. 1).
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Fig. 1. Circuit preparing the 3-qubit complete graph state naively transpiled from all-
to-all to LNN architecture.

Given such a hardware-compliant Clifford circuit that prepares a graph state,
our method gives a explicit construction of the following equivalent circuit that
only contains CZ gates and local Clifford gates arranged in local complemen-
tation layers, while preserving CZ depth and count. This allows the circuit to
be read as a sequence of instructions to construct the desired graph using edge
toggling and local complementation, as demonstrated in Fig. 2.

where + = S ,
− = S†

,
+ = √

X ,
− = √

X
†

.

Fig. 2. Equivalent circuit transpiled using our method, with corresponding graph in-
structions. The last layer of Clifford gates stabilizes this graph state (equivalently it can
be seen as two local complementations on q1), this can be computed using Bouchet’s
algorithm [3].
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In this example, the CZ depth was reduced to 5, using the Vanishing CZ
lemma defined later. Notice that our method did not produce the optimal circuit,
as it would require only two CZ gates and one local complementation, which is
minimal for any connected architecture.

2 Preliminary notions

A graph state |G⟩ on n qubits is a stabilizer state represented by an undirected
graph G. To prepare |G⟩, one only has to prepare the state |+⟩⊗n = |Kn⟩
and for each edge {u, v} ∈ E(G) apply a controlled-Z (CZ) operation on the
corresponding qubits u and v. This second step of the process can be done
in any order as CZ gates commute. This method allows to prepare |G⟩ using
exactly |E(G)| two-qubit gates, given all-to-all connectivity. Our aim is to replace
some two-qubits gate by emulating them with local Clifford gates acting as local
complementations, while transpiling to any architecture.

2.1 Local complementation

Van den Nest et al. [26] showed that two graph states |G⟩ and |G′⟩ can be
transformed into each other by applying only local Clifford gates if and only if
the graphs G and G′ are locally equivalent (denoted by G ∼loc G

′), i.e., there is
a finite sequence of local complementation operations on G that results into G′.
They also show that any of these sequences is feasible using a bounded number
of local Clifford operations. This graph transformation is particularly convenient
to reduce the number of edges of a graph (cf. Fig. 3). For instance, applying any
local complementation on the complete graph on n vertices Kn results in the
star graph K1,n−1, hence Kn ∼loc K1,n−1. This means that instead of naively
preparing |Kn⟩ using Θ(n2) CZ gates, one only has to prepare |K1,n−1⟩ using
O(n) CZ gates then apply the local Clifford operators corresponding to a local
complementation [11]. As reducing the number of error-prone two-qubits gates is
crucial, this shows that allowing local complementation in addition to applying
CZ gates along the edges of a hardware graph enables significant optimizations
in graph state preparation. Let us define the simple graph operation of local
complementation and rephrase it as quantum state identity.

N(u)

u

v1

v2

v3
w

−→
G ⋆ u

N(u)

u

v1

v2

v3
w

Fig. 3. Local complementation of a graph G according to u. v1 and v3 are connected
in G ⋆ u since the edge v1v3 /∈ E(G), while v1v2 ∈ E(G) and v2v3 ∈ E(G).
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Definition 1 (Local complementation). Let G be a graph and let u be a
vertex of G. The local complementation of G according to u, written G⋆ u, is a
graph which has the same vertices as G, but all the neighbors v1, v2, . . . of u are
connected in G⋆u if and only if they are not connected in G. All other edges are
unchanged.

We will use the graph states statement of local complementation from [12].
Let us denote the rotation Rx(−π/2) by the

√
X

†
gate and the rotation Rz(π/2)

by the S gate.

Lemma 1 (Van den Nest [26]). Let |G⟩ be a graph state, u a vertex of G and
N(u) the set of neighbors of u in G. Then,

√
X

†(u) S(N(u)) |G⟩ =
√
X(u) S†(N(u)) |G⟩ = |G ⋆ u⟩ .

where U (S) is applying gate U on the set of qubits S.

Also, note that G ⋆ u ⋆ u = G. This translates to the following identity.

Proposition 1 (Local complementation, circuit). Let |G⟩ be a graph state,
u a vertex of G and N(u) the set of neighbors of u in G. Performing a local
complementation on |G⟩ according to u is done by:

• adding a
√
X

†
(resp.

√
X) gate on the qubit u,

• adding a S (resp. S†) gate on every qubit corresponding to a vertex in N(u).

u

v1

v2

|G⟩

∼

u

v1

v2

S

S

√
X

†

|G⋆u⟩ ⋆ u

∼

u

v1

v2

S†

S†

√
X

|G⋆u⟩ ⋆ u

Fig. 4. The three states above are equivalent: these identical local complementations
expressed in three different ways can be created from the identity.

We will use this identity throughout our construction to repeatedly reveal
two carefully placed identical local complementations on some set of qubits cor-
responding to {u,N(u)} (using the fact that G = G ⋆ u ⋆ u) by adding local
Clifford gates to these qubits in the circuit that prepares |G⟩, and keeping track
of their actions within the graph G itself.
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2.2 Graph state preparation on arbitrary hardware

A number of different techniques [33,37,38] can be used to transpile some given
state preparation circuit into an hardware compatible circuit, and more recently
by using discrete constraint optimization [4]. The most standard approaches
rely on inserting SWAP gates to route qubits along edges of H in order to
bring them closer and enable their interaction. The following proposition simply
assumes that we are given such a transpilation algorithm, and does not require
any structure on this algorithm. Since graph state can be prepared using CZ
and Hadamard gates, and since every SWAP can be decomposed using three CZ
gates and Hadamard gates, it is easy to see that the following proposition holds.

Proposition 2. Let H be a connected graph. Suppose we have a quantum hard-
ware whose connectivity between qubits is exactly described by H. Then any Clif-
ford circuit can be implemented with local Clifford gates and CZ gates only on
edges of H.

Using this proposition to produce any H-compliant Clifford circuit C that
prepares a certain graph state |G⟩, we are able to transpile C into an equivalent
circuit C ′ that obeys the following theorem.

Theorem 1. Let H be a connected graph on n vertices. Let G be any graph on n
vertices. The state |G⟩ can be prepared by a circuit consisting of CZ gates along
edges of H and local complementations.

This means that – if we do not have a hard constraint on depth – any hard-
ware can indistinguishably implement a circuit preparing any graph state using
only our two operations.

3 Our construction

Informally, our iterative transpilation method will consist in essentially the same
process repeated for each CZ gate of the input circuit to yield an equivalent
circuit constructed with only CZ along the edges of the hardware graph H and
local complementations. Crucially, each step either keeps or deletes the current
CZ. Each step roughly consists of:

• first, extracting some generic local Clifford gates and a CZ gate from the
to-be-processed subcircuit (represented on the right hand side of the figures);
• then, finding a way to weakly commute these local Clifford gates with the

CZ, making heavy use of the local complementation circuit identity;
• finally, absorbing the CZ gate in the processed subcircuit (represented on the

left hand side of the figures) that prepares the target graph state; and
• pulling all the single-qubit gates that cannot be interpreted as local comple-

mentations back into the to-be-processed subcircuit previously mentioned.
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First of all, we introduce two handy quantum state identities in Lemma 2
and Lemma 3 that we will use in our construction. Their purpose is to commute
specific local Clifford gates to the other side of a CZ gate (or in the case of
Lemma 2, get rid of the CZ entirely) in some well-defined subcircuit. The proofs
of Lemma 2 and Lemma 3 have been moved in Appendix A and Appendix B
respectively.

In the setting of Lemma 2, we consider a CZ gate on qubits v1, v2 and the
subcircuit preceding the CZ that prepares a graph state Gi, where v1 has no
other neighbor than v2 in Gi and v2 has at least one other neighbor in Gi. Then
in this setting:

Lemma 2 (Vanishing CZ). The two states depicted in Fig. 5 are equivalent.

Gi

v1

v2

S
√
X

C ′
i

−→

Gi

v1

v2

H S

C ′
i

Fig. 5. Vanishing CZ.

In the setting of Lemma 3, we consider a CZ gate on qubits v1, v2 and the
subcircuit preceding the CZ that prepares a graph state Gi, where v1 has at least
one neighbor u that is not v2 in Gi and v2 may or may not be already connected
to v1 in Gi. Then in this setting:

Lemma 3 (Weak CZ commutation). The two states depicted in Fig. 6 are
equivalent.

Gi

v1

v2

u

W

S
√
X

†

C ′
i

−→

G′
i

v1

v2

u

W

L

L′

C ′
i

Fig. 6. Weak CZ commutation, where W = Nu \ {v1}, and L, L′ are generic local
Clifford gates.

We are now able to prove to prove Theorem 1 by induction.
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Proof (Theorem 1).

Given H a connected graph of n vertices, let G be any graph with n vertices.

We define CH as the set of all Clifford circuits where the qubits correspond
to vertices of H, containing only local Clifford gates and CZ gates along edges of
H. Moreover, let us define CHloc

as the subset of CH where all local Clifford gates
correspond to local complementations (see Proposition 1). In the following, we
will say that a graph G is locally preparable on H if G can be constructed from
the empty graph on n vertices using only local complementation and toggling
edges of H. Note that a sequence of instructions to locally prepare G on H
directly translates to a circuit in CHloc

that prepares |G⟩.
Let C be any circuit given by Proposition 2 such that C|0⟩ = |G⟩ and C ∈ CH .

We will now show that there exists some circuit C ′ such that C ′|Kn⟩ = C|0⟩
and C ′ ∈ CHloc

.

We will proceed by induction on the number of CZ in C. Let the proposition
P (i) for 0 ≤ i ≤ m where m is the number of CZ in circuit C be the following:
there exists a graph Gi locally preparable on H and Ci ∈ CH such that Ci|Gi⟩ =
C|0⟩ and Ci only contains m− i CZ.

P (0) is correct: pick G0 = Kn which is trivially locally preparable on H and
at the start C0 = CH⊗n (if C contains no CZ, then trivially the result of C is
the same on any hardware with n qubits).

Let us now show that P (i) =⇒ P (i + 1). We now have Ci|Gi⟩ = C|0⟩ and
we would like to build Gi+1 locally preparable on H and Ci+1 ∈ CH where Ci+1

has m− i− 1 CZ such that Ci+1|Gi+1⟩ = C|0⟩.
Consider any first CZ appearing in the to-be-processed subcircuit Ci. In the

general case this CZ gate on v1, v2 two qubits of |Gi⟩ is preceded by two local
Clifford gates L1, L2 (possibly being the identity) acting on v1, v2. Let us denote
by C ′

i the circuit obtained by removing L1, L2 and the current CZ gate from Ci

(cf. Fig. 7).

Gi

v1

v2

L1

L2

CZ

C ′
i

Fig. 7. Simplified sketch of the i-th step. All other qubits are not shown.

Using Euler decomposition [25], we can find a1, b1, c1, a2, b2, c2 ∈ Z/4Z such
that L1 = Sc1

√
X

†b1
Sa1 , L2 = Sc2

√
X

†b2
Sa2 . Notice that the first S gates in
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this expression can be commuted through the CZ and be absorbed back in the
to-be-processed subcircuit C ′

i. Thus, without loss of generality, we can assume
that L1 :=

√
X

†b1
Sa1 , L2 :=

√
X

†b2
Sa2 .

Thus for b1, b2 the powers of
√
X

†
in the decompositions of L1, L2, we now

have three cases:

1. Both b1 and b2 are even.
2. Only one of b1 and b2 is odd.
3. Both b1 and b2 are odd.

We will show case-by-case that P (i+ 1) holds.

Case 1. Both b1 and b2 are even, then
√
X

†b1
= X−b1/2 and

√
X

†b2
= X−b2/2

are both Pauli operators and can be weakly commuted through the CZ gate,
inducing another Pauli operator on the to-be-processed side. Then the last gates
Sa1 and Sa2 can be trivially commuted through CZ. We are left with the CZ
followed by two new local Clifford gates L′

1 and L′
2 (cf. Fig. 8). Thus we can

absorb the CZ in Gi creating Gi+1 = Gi ⊕ {v1v2} which is locally preparable
on H since, by Proposition 2, v1v2 is an edge of H. Moreover we define Ci+1 =
C ′

iL
′
1L

′
2 ∈ CH . Thus, in Case 1 , P (i+ 1) holds.

Gi

v1

v2

L′
1

L′
2

C ′
i

Fig. 8. Case 1 : after commuting L1 and L2, creating two new local Clifford gates.

Case 2. Only one of b1 and b2 is odd, let us suppose it is b1 without loss of
generality, then L2 can weakly commute through CZ up to local Cliffords on the
other side of the CZ. Likewise, we can always either write L1 as

√
XS or

√
X

†
S

up to a Pauli gate P that we weakly commute through the CZ, depending on
the simplification lemma we want to use. These two rewriting steps result in a
circuit in which there are two local Clifford gates L′

1 and L′
2 after the CZ that

can be absorbed back in C ′
i to be treated later (cf. Fig. 9).

We only have to write the remaining S and
√
X

†
as byproducts of local

complementation operations on vertices of Gi.
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Gi

v1

v2

S
√
X

†

C ′
i

Fig. 9. Case 2 : after commuting a power of S gate and a Pauli gate of the first qubit
and L2 on the second qubit.

First, if v1 has no neighbor in Gi, then, after applying the S and
√
X

†
, qubit

v1 ends up in a product state |0⟩. Consequently, the CZ gate can be removed,
and S and

√
X

†
can be absorbed in C ′

i to create Ci+1.

Otherwise, if v1 and v2 are each other’s only neighbor in Gi, then we can
easily rewrite the subcircuit before C ′

i on the qubits v1, v2 into a more convenient
form, since it is only a two-qubit Clifford circuit that prepares a stabilizer state.
Indeed, [26, Theorem 3] provides us, in a constructive manner, an equivalent two-
qubit subcircuit that first contains 0 or 1 CZ followed by local Clifford gates. If
there is a CZ, we absorb it in G′

i to create Gi+1, then we absorb the following
single-qubit gates back in C ′

i to create Ci+1.

Else if the only neighbor of v1 in Gi is v2 and v2 has at least one neighbor
in Gi, then we rewrite L1 as

√
XS up to a Pauli gate P that weakly commutes

through the CZ and we can use Lemma 2 to rewrite the circuit without the CZ
gate and absorb the leftover local Clifford gates back into C ′

i.

Else v1 has at least one neighbor u in Gi that is not v2, then we can use
Lemma 3 to rewrite the circuit where the local Clifford gate are after the CZ,
then absorb the CZ in G′

i and the leftover local Cliffords into C ′
i. So in Case 2 ,

P (i+ 1) holds.

Case 3. Both b1 and b2 are odd. Then we can rewrite L1 and L2 as
√
X

†
S up

to Pauli gates that we commute with the CZ similar to Case 2 . W.l.o.g., we will
treat the qubit of v1 first.

Now if v1 has no neighbor in Gi then refer to the analogous sub-case in
Case 2 .

Else if the only neighbor of v1 in Gi is v2, then treat the qubit of v2 first
instead. If v1 and v2 are each other’s only neighbor in Gi then refer to the
analogous sub-case in Case 2 .

Else v1 has at least one neighbor u in Gi that is not v2. Let us call W the
set of all neighbors of u in Gi that are not v1. Now we can use the same method
of creating pairs of gates that simplify to the identity than before to perform
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the local complementations G′
i ← Gi ⋆ u, which in particular absorbs the S gate

on wire v1, then G′′
i ← G′

i ⋆ v1, which absorbs the
√
X

†
gate on wire v1. The

rest of the newly created local Clifford gates can be absorbed in C ′
i, we call the

resulting circuit C ′′
i (cf. Fig. 10).

Gi

v1

v2

S
√
X

†

S
√
X

†

C ′
i

−→

G′′
i

v2

v1

S
√
X

†

C ′′
i

Fig. 10. Reducing from Case 3 to Case 2 .

We can now use the method described in Case 2 on v2 using the graph state
G′′

i and the circuit C ′′
i to get Gi+1 and Ci+1. In this process, we used only local

complementations, thus G′′
i is locally preparable on H. Moreover, as we proved

in Case 2 , only adding gates equivalent to the identity preserved the result
Ci|Gi⟩ = C ′′

i |G′′
i ⟩ = Ci+1|Gi+1⟩. So in Case 3 , P (i+ 1) holds.

After all the m CZ gates have been absorbed, we have a circuit that prepares
a graph state Gm that is pretty much equivalent to G by construction, but
to which we applied many local complementation. Thus, now that all the two-
qubit gates of C have been processed, all that remains in Cm is a layer of local
Clifford gates. As we know that Gm ∼loc G, by [3,26], this layer is equivalent to a
sequence of local complementation on vertices l1, . . . , ls, thus Gm⋆l1⋆ · · ·⋆ls = G
is locally preparable on H.

Thus the proposition is true and any graph on n vertices is locally preparable
on H. This completes the proof of Theorem 2. ⊓⊔

We remark that in several cases of the proof (e.g., Case 2 subcases 1 and 2,
and also thanks to Lemma 2) the CZ count and depth may strictly decrease.

4 Universality and optimality

Informally, Theorem 1 states that any graph state can be prepared on any hard-
ware using only CZ gates and local complementations. Thus this restriction on
circuit compilation still gives a universal formalism for graph states.

This method is implemented by a O(n4) time constructive algorithm (es-
sentially due to the complexity of Bouchet’s algorithm [3] to compute the final
sequence of local complementations), that yields an output circuit with a CZ
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count of at most the CZ count of the input circuit. This allows us to formulate
the following theorem.

Theorem 2 (Optimality). Let |G⟩ be a graph state on at most n qubits and
H be a connected graph on n vertices. Among the circuits compilable on H
that prepare |G⟩ with optimal CZ count and depth, there exists at least one that
consists only of CZ and local complementations.

Proof. Suppose we have an oracle that yields a circuit C that prepares a given
graph state |G⟩ on our target hardware H such that the CZ count of C is optimal.
Our construction produces a circuit C ′ equivalent to C with at most as many
CZ as the original circuit. Moreover, these CZ appear in the same order and
involve the same sets of qubit. Thus, the optimal CZ count and depth required
to prepare any graph state is achieved by circuits using only CZ gates and local
complementation, no matter the architecture. ⊓⊔

Interestingly, our result can also be written solely in the language of graph
theory, which offers new insight on the expressive power of combining local com-
plementation and edge toggling in graph transformation. Indeed, each CZ gate
corresponds to an edge toggling of G compatible with H, and local Cliffords
can be grouped into local complementations over G. Thus, our output circuit
translates into a sequence of graph operations that can be sequentially applied
on the empty graph to produce G. Therefore, we have the following.

Corollary 1 (Graph statement). Let H be a connected graph on n vertices.
Then any graph on n vertices can be created from the empty graph on n vertices
with only local complementations and edge toggling in H.

Remarkably, the proof of this result uses quantum circuit rewriting at its
core, and cannot be trivially ported to simple graph theoretic operations only.

5 Discussion and conclusion

Numerical results. We implemented our method and applied our transpilation
on random circuits ranging from n = 6 to 16 qubits. We first ran the naive
qubit routing heuristic using SWAP gates to make the random circuit hardware-
compliant. Then, we rewrote this hardware-compliant circuit using our method.
Finally, we compared these results to a loop detection optimization, that recog-
nizes at every step while the graph state is being prepared if the current graph
was previously reached. This allows the deletion of entire subcircuits to return to
an equivalent state and effectively shortcuts the graph state preparation, and/or
terminates early if the target graph state is reached. We averaged the results on
20 random circuits for each n.

We notice that in the case of (non-optimal) random circuits as the input,
our method consistently outputs circuits with a lower CZ count on average.
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Fig. 11. Comparison of the naive heuristic with our method, both with and without
the loop detection optimization.

In practice, we find that the loop detection step also allows for CZ count
reduction, with the benefit of saving time in the last step of our construction
when Bouchet’s algorithm is called. We also observed that iterating our method,
repeatedly using our transpiled circuit as the input, further reduces the CZ
count and depth. We leave the task of implementing a more profound heuristic
on the basis of our method for future work.

In this work, we have established a universal framework for graph state prepa-
ration on arbitrary quantum hardware constrained by a fixed connectivity graph.
By leveraging local complementation’s ability to emulate up to a quadratic num-
ber of CZ gates ultimately increasing the circuit fidelity, we demonstrated that
any graph state can be efficiently prepared while maintaining an upper bound on
the number of entangling gates. This result not only provides a new perspective
on the synthesis of graph states and stabilizer states but also highlights fun-
damental graph-theoretic principles underlying quantum state transformations.
Whereas other transpilation methods have studied the overhead in CZ/two-qubit
gates count to produce a hardware-compliant circuit, we presented a framework
to simplify such circuits while preserving the CZ count and depth. We have iden-
tified cases where CZ count or depth strictly decrease. It would be interesting to
characterize the circuits where it occurs, and precisely quantify this effect. An
implementation of our method allow us to experimentally measure the gain in
CZ count when given any (not necessarily optimal) input circuit3.

3 Code available on demand.
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Practically, our findings provide a systematic method for compiling graph
states on near-term quantum devices, ensuring efficient use of limited connec-
tivity. Indeed, graph states can be used as resources for different frameworks
such as measurement-based quantum computing (MBQC) [29] or more gener-
ally fault-tolerant quantum computing (FTQC) [36].

Future work may include finding out whether this result can be further re-
stricted to the use of toggling edges and using pivot operations (triple local com-
plementation on two neighbors in the graph), as well as more graph theory ori-
ented topics, such as using our technique to improve the complexity of Bouchet’s
algorithm [3] for efficiently computing local complementation sequences in our
setting. Additionally, an open question remains whether a purely combinatorial
proof of Corollary 1 can be found, further enriching the interplay between graph
theory and quantum computation.
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A Proof of Lemma 2

We will prove Lemma 2 using ZX-calculus rewriting rules from [11].
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Fig. 12. Proof of Lemma 2 based on ZX-calculus.

B Proof of Lemma 3

In this setting, v1 has at least one neighbor u in Gi that is not v2. Let us call
W the set of all neighbors of u in Gi that are not v1. W can be the empty set.
To reveal a local complementation, we will create a pair of gates

√
X

†
and
√
X

which are equivalent to the identity on u, along with pairs of gates S and S†

that also simplify to the identity on each qubit corresponding to a vertex of W .

This way we will perform the local complementation G′
i ← Gi⋆u by absorbing

the
√
X

†
on the qubit of u and the S gates on the qubits of W . The rest of the



18 T. Cam, C. Gavoille, Y. Le Borgne, S. Martiel

Gi

v1

v2

u

W

S
√
X

†

√
X

† √
X

S

S

S†

S†

C ′
i

..
.

Gi ⋆ u

−→

Gi ⋆ u

v1

v2

u

W

√
X

†

S S†

S

S

S†

S†

C ′′
i

..
.

Gi ⋆ u ⋆ v1

Fig. 13. Revealing a local complementation on u by creating pairs of gates equivalent
to the identity, then revealing a local complementation on v1 in the same way.

newly created local Clifford gates can be absorbed in C ′
i, we call the resulting

circuit C ′′
i . Notice that if v2 ∈W , power of S gates will be created on the second

qubit, but those can be commuted with the CZ and left to be treated in a future
step.

This first part of the process can be ignored if the power a1 of the S gate is
even: this would be a Pauli gate that would be commuted with the

√
X

†
and

the CZ up to a Pauli operator.

Then all that remains between the CZ and G′
i is the

√
X

†
on the qubit of

v1. We will reveal a local complementation by creating pairs of gates S and S†

that simplify to the identity on each qubit corresponding to a neighbor of v1 in
G′

i. Now we can perform the local complementation G′′
i ← G′

i ⋆ v1 by absorbing
the
√
X

†
on the qubit of v1 and the S gates on the qubits of all the neighbors

of v1. The rest of the newly created S† gates can be absorbed in C ′′
i potentially

commuting through the CZ gate. We can call the resulting circuit Ci+1. The
only step left to do is to absorb the CZ into G′′

i . We can call the resulting graph
state Gi+1 = Gi ⋆ u ⋆ v1 ⊕ {v1v2} which is locally preparable on H. Moreover,
we only created gates that simplify to the identity thus Ci|Gi⟩ = Ci+1|Gi+1⟩.
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