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We show that graphs excluding 𝐾2,𝑡 as a minor admit a 𝑓 (𝑡)-round 50-approximation deterministic distributed algorithm

for Minimum Dominating Set. The result extends to Minimum Vertex Cover. Though fast and approximate distributed

algorithms for such problems were already known for 𝐻 -minor-free graphs, all of them have an approximation ratio depending

on the size of 𝐻 . To the best of our knowledge, this is the first example of a large non-trivial excluded minor leading to fast and

constant-approximation distributed algorithms, where the ratio is independent of the size of 𝐻 . A new key ingredient in the

analysis of these distributed algorithms is the use of asymptotic dimension.

Keywords: distributed algorithm, local model, dominating set, vertex cover, minor-free graph

Contents

Abstract 1

Contents 1

1 Introduction 2

2 Preliminaries 4

3 Asymptotic dimension 4

3.1 When local properties can replace global properties 5

3.2 Bounding the number of local 1-cuts and 2-cuts 5

4 Constant approximation for Minimum Dominating Set 6

5 Proofs 8

5.1 Proof of Proposition 3.1: from local to global 8

5.2 Proof of Lemma 3.2: Bounding the number of vertices in local 1-cuts 8

5.3 Proof of Lemma 3.3: Bounding the number of interesting vertices 10

5.4 Proof of Lemma 4.2: Brute-forcing is fast enough 14

5.5 Proof of Theorem 4.4: A linear approximation in constant rounds 15

References 18

ar
X

iv
:2

50
4.

01
09

1v
2 

 [
cs

.D
C

] 
 4

 A
pr

 2
02

5



2 Marthe Bonamy, Cyril Gavoille, Timothé Picavet, and Alexandra Wesolek

1 INTRODUCTION

Minimum Dominating Set (MDS) (and its weaker version, Minimum Vertex Cover (MVC)) is a famous minimiza-

tion problem on graphs, known to be NP-complete even in cubic planar graphs [GJ79, KYK80]. The goal is to find a

smallest subset of vertices that intersects all radius-1 balls (MDS) or all edges (MVC).

Applications of vertex covers, dominating sets, and other types of covers can be found in the context of wireless

sensor networks [CIQC02, Kri05, AFK21]. There, the goal is to minimize energy by keeping as few devices active as

possible while maintaining the ability to awake sleeping devices through an active neighbor. For this purpose, the

distributed version is also important.

The LOCAL model. In this paper, we consider distributed algorithms in the LOCAL model, popularized by Linial

in his seminal papers [Lin87, Lin92]. In this model, the network is represented by an undirected connected graph

𝐺 , the edges representing reliable communication links between computing devices (the vertices) that work in

synchronous rounds. At each round, a vertex can exchange messages with each of its neighbors and perform

arbitrary computations based on the information it has. Messages have no size limit, in contrast to the CONGEST

model. At the start of the algorithm, the processors each have a copy of the algorithm and a 𝑂 (log𝑛)-bit identifier,
where 𝑛 is the number of vertices in the graph𝐺 . The main complexity measure in the LOCAL model is the number

of rounds to achieve a given task, taken as the maximum over all vertices. This measure gives an indication on the

local nature of a problem, as it captures the minimum value 𝑟 such that each vertex can reach a good decision based

on its radius-𝑟 neighborhood.

Fast algorithms. In any 𝑛-vertex graph𝐺 , it is possible to (1+𝜀)-approximate a MDS for𝐺 in poly(𝜀−1 log𝑛) rounds
by combining the techniques of [GKM17] and of [RG20], see [RG20, Cor. 3.11]. For more specific graphs, 𝑂 (log∗ 𝑛)
rounds may suffice. This is for instance the case in planar graphs [CHW08], or more generally in 𝐾𝑡 -minor-free

graphs [CHW18] and in sub-logarithmic expansion graphs [ASS19] – we emphasize that hidden constants in the

big-𝑂 notation for the number of rounds depend on 𝜀 and 𝑡 . Conversely, [CHW08] showed that 𝑜 (log∗ 𝑛) rounds do
not suffice for computing an (1 + 𝜀)-approximation of MDS on a cycle in the LOCAL model. More generally, using a

different technique inspired by Linial, [LW08] showed that the approximation-ratio times the round-complexity

must be Ω(log∗ 𝑛) for any approximation LOCAL algorithm for MDS in unit-disk graphs.

Constant-round algorithms. Because of the lower bound of [KMW16] in general graphs, achieving constant ratio

approximation in a constant number of rounds is not possible. More precisely, every constant-approximation LOCAL

algorithm requires Ω(
√︁
log𝑛/log log𝑛) rounds, and this holds for MDS and MVC. Therefore, we need to focus on

restricted graph classes to obtain such results.

The literature is abundant in this direction. For instance, on regular graphs i.e. graphs where all vertices have the

same degree, we achieve a 2-approximation for MVC in 0 rounds (take all vertices
1
). Similarly, a 6-approximation in

unit-disk graphs can be achieved by taking all the vertices incident to an edge – See the excellent survey of [Suo13]

and the references therein. For the more difficult MDS problem, distributed algorithms have been developed for

various classes of graphs, including (but not limited to): outerplanar graphs [BCGW21], planar graphs [LPW13,

HLS14, HKOdM
+
25], bounded-genus graphs [ASS19], graphs excluding topological minors [CHW18], graphs with

sublogarithmic expansion [ASS19] or with bounded expansion [KSV21, HKOdM
+
25]. For instance, the approximation

ratio for MDS in planar graphs has been improved from 130 [LPW13] to 52 [Waw14], and recently down to

11 + 𝜀 [HKOdM+25].

𝐻 -minor-free with large 𝐻 . Most of the graph classes cited above can be expressed as 𝐻 -minor-free graphs for

some specific minor 𝐻 (cf. Table 1), but the results for graphs with bounded expansion are more general. More

precisely, [KSV21] presented a constant-round LOCAL algorithm with approximation ratio ∇1(𝐺)O(𝑡∇1 (𝐺 ) ) if 𝐺
excludes 𝐾𝑡,𝑡 as subgraph, where ∇𝑟 (𝐺) is the maximal edge density of a depth-𝑟 minor of 𝐺 and 𝑡 = O(∇1(𝐺)).
[HKOdM

+
25] have improved the approximation ratio to ∇0(𝐺) · ∇1(𝐺)O(𝑠∇1 (𝐺 ) ) if 𝐺 excludes 𝐾𝑠,𝑡 as subgraph, at

the cost of a larger O𝑡 (1)-round complexity. If 𝐺 excludes 𝐾3,𝑡 as subgraph, the approximation ratio improves to

(2 + 𝜀) · (2∇1(𝐺) + 1) for every 𝜀 > 0, where the round complexity is O𝜀,𝑡 (1).

1
This holds by observing that such a graph contains

𝑘𝑛
2

edges where 𝑘 is the degree of each vertex, while a set on 𝑝 vertices intersects at

most 𝑝𝑘 edges.
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Obviously, if 𝐺 excludes 𝐻 as minor, it excludes 𝐻 as a depth-𝑟 minor. As a consequence, ∇𝑟 (𝐺) ⩽ 𝛿 (𝐻 ), where
𝛿 (𝐻 ) is the maximum edge density of a graph excluding 𝐻 as minor. It is well-known [Kos84, Tho01] that 𝛿 (𝐾𝑡 ) =
Θ(𝑡

√︁
log 𝑡 ), and more generally 𝛿 (𝐻 ) = Θ(𝑡

√︁
log𝑑 ) [RW16], where 𝑡 = |𝑉 (𝐻 ) | and 𝑑 = |𝐸 (𝐻 ) |/𝑡 < pw(𝐻 ) + 1. So,

𝛿 (𝐾𝑠,𝑡 ) = Θ(𝑡
√︁
log 𝑠 ). More specifically, 𝛿 (𝐾3,𝑡 ) ⩽ (𝑡 + 3)/2 [KP10].

Therefore, for graphs excluding 𝐾𝑡 as minor, the result of [KSV21] implies an approximation ratio of 𝑡 O(𝑡
2

√
log 𝑡 )

with O(1)-round complexity. For 𝐾𝑠,𝑡 -minor-free, [HKOdM
+
25] implies an approximation ratio of 𝑡 O(𝑠𝑡

√
log 𝑠 )

with

O𝑡 (1)-round complexity. For 𝐾3,𝑡 -minor free graphs, the approximation ratio becomes (2 + 𝜀) · (𝑡 + 4). See Table 1
for a compilation of best known results for various 𝐻 .

Our contributions. In this paper we concentrate our attention on 𝐻 -minor-free graphs when 𝐻 has many vertices,

that is, 𝑡 vertices for some arbitrarily large parameter 𝑡 ∈ N. To the best of our knowledge (see Table 1), no 𝑓 (𝑡)-round
and constant-approximation LOCAL algorithm for MDS in 𝐻 -minor-free graphs is known, excepted perhaps for the

trivial case where 𝐻 is a subgraph of a path with 𝑡 vertices. Indeed, in this case the graph𝐺 has diameter at most

𝑡 − 1, and thus a MDS can be solved exactly in 𝑡 − 1 rounds2.
For MDS, we show that:

• 𝐾2,𝑡 -minor-free graphs have a 𝑂𝑡 (1)-round 50-approximation LOCAL algorithm.

• These graphs also have a 𝑂 (1)-round (2𝑡 + 1)-approximation LOCAL algorithm.

All the algorithms are deterministic, since in general constant-round randomized LOCAL algorithms are not

possible if high probability guarantee is required. Our lower applies also to deterministic LOCAL algorithms.

minor-free graphs approx. ratio #rounds references

trees (𝐾3) 3 2 Folklore
3

outerplanar (𝐾4, 𝐾2,3) 5 2 [BCGW21]

planar (𝐾5, 𝐾3,3) 11 + 𝜀 𝑂𝜀 (1) [HKOdM
+
25]

𝐾1,𝑡 -minor-free 𝑡 0 Folklore
4

𝐾2,𝑡 -minor-free 2𝑡 − 1 3 Th. 4.4 ∥ outerp. (𝑡 = 3)

𝐾2,𝑡 -minor-free 50 𝑂𝑡 (1) Th. 4.1
𝐾𝑠,𝑡 -minor-free 𝑡𝑂 (𝑠𝑡

√
log 𝑠 ) 𝑂𝜀,𝑡 (1) [HKOdM

+
25]

𝐾𝑡 -minor-free 𝑡𝑂 (𝑡
2

√
log 𝑡 )

7 [KSV21]

Table 1. Constant-round approximation distributed algorithms forMinimum Dominating Set on 𝐻 -minor-free graphs, for

various 𝐻 . The bottom part of the table is about large 𝐻 , on 𝑡 vertices where 𝑡 may be arbitrarily large.

Our approach toward Theorem 4.1 is to design an algorithm as simple as possible and push all the complexity to

its analysis, following a long tradition [Waw14, BCGW21]. The key here is to treat all vertices that are in a cut of

size 1 or 2 in their small-distance neighbourhood as we would vertices that are in a cut of size 1 or 2 in the whole

graph (take all vertices in a cut of size 1, take all vertices in a cut of size 2 except those which are clearly a bad idea),

then argue what remains is a number of connected components of bounded weak radius, which we can thus solve

optimally by brute-force. Though the latter part comes with its own interesting challenges which we thankfully

mostly outsource
5
to a paper of Ding [Din17], the major conceptual contribution is in the analysis of the first part.

To argue that taking all vertices that are locally separating (and similarly for vertices in a local cut of size 2) is not

2
In the LOCAL model, after 𝐷 rounds of communication, each vertex 𝑢 of a diameter-𝐷 graph knows entirely 𝐺 and its identifier in 𝐺 .

After this communication step, 𝑢 can therefore compute an optimal dominating set in a consistent way with centralized brute-force and

deterministic algorithm.

3
If there are at least three vertices, take all vertices with degree at least two, cf. [LPW13, BCGW21]. This requires two rounds from the model,

because the vertices do not know their degree and need one round to count their neighbors (by counting the number of received messages).

4
Take all the vertices. Such graphs have degree at most 𝑡 − 1, thus this is a 0-round 𝑡-approximation since every dominating set has size at

least 𝑛/(Δ + 1) where Δ is the maximum degree of the graph.

5
While the paper is only available as a preprint and has seemingly not gone through a reviewing process, it seems to be generally considered

to be correct and has even been refined in a doctoral thesis [Sol19]. For our own peace of mind, we have triple-checked that the pieces we

need from that paper really do hold.
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too costly, we need to give some global discharging argument. We were able to do this using recent results on the

asymptotic dimension, a notion introduced by Gromov in 1993 in the context of geometric group theory [Gro93].

We believe this tool, which we detail in Section 3, will be of further interest to the community of distributed graph

algorithms.

Sketch of the main algorithm (Theorem 4.1). The algorithm computes an approximation of Minimum Dominating

Set in a 𝐾2,𝑡 -minor-free graph 𝐺 . It has three main steps:

(1) Compute the set 𝑋 of all vertices in “local” 1-cuts, and add them to the solution.

(2) Compute the set 𝐼 of all “interesting” vertices in “local” 2-cuts, and add them to the solution.

(3) Compute an optimal dominating set of all other undominated vertices in each component of 𝐺 − (𝑋 ∪ 𝐼 )
using a brute-force approach and add them to the solution.

Intuitively, a “local” 𝑘-cut is a minimal set of vertices that locally (up to some bounded radius) looks like a standard

𝑘-cut. This radius is a function of the size of𝐻 and of 𝑘 ∈ {1, 2}. And, a vertex𝑢 in a “local” 2-cut {𝑢, 𝑣} is “interesting”
if 𝑣 does not dominate all vertices, except for at most one component attached to {𝑢, 𝑣}. This is a rough explanation,

and all formal definitions of “local” 𝑘-cuts and “interesting” vertices can be found in Section 2 and Section 3.

The main challenge is to accurately tune the above radii in Step 1 and 2 to show that the approximation ratio

(namely 50) does not depend on the size of 𝐻 , but only on the asymptotic dimension of the class and its control

function (see Section 3). In contrast, the round complexity essentially relies on the diameter of the components as

defined in Step 3, which is a function of the radii defined above.

2 PRELIMINARIES

General definitions. In a graph 𝐺 , a set 𝑆 ⊆ 𝑉 (𝐺) is a dominating set if and only if every vertex of 𝐺 is either in 𝑆

or adjacent to a vertex in 𝑆 . We denote by MDS(𝐺) the minimum size of such a set. Given some 𝐵 ⊆ 𝑉 (𝐺), a set
𝑆 ⊆ 𝑉 (𝐺) is 𝐵-dominating if and only if every vertex of 𝐵 is either in 𝑆 or adjacent to a vertex in 𝑆 . In particular, if

𝑁 [𝐵] denotes the closed neighbourhood of 𝐵, we can assume that 𝑆 ⊆ 𝑁 [𝐵]. Similarly, we denote byMDS(𝐺, 𝐵)
the minimum size of such a set.

A graph without true twins is a graph such that no two distinct vertices 𝑢 and 𝑣 are true twins, i.e. are such that

𝑁 [𝑢] = 𝑁 [𝑣]. The true-twin-less graph associated to 𝐺 is a largest subgraph of 𝐺 with no true twins. Notice that

there is a unique such unlabelled graph 𝐺− and 𝐺− can be computed in a constant number of rounds in the LOCAL

model. Furthermore, MDS(𝐺−) = MDS(𝐺).
The weak diameter of a set 𝑆 ⊂ 𝑉 (𝐺) is the largest distance in 𝐺 between two vertices 𝑢, 𝑣 ∈ 𝑆 .

Local connectivity. The aim of this definition is to study cuts that can be recognized using a LOCAL algorithm.

Recall that a 𝑘-cut of a graph 𝐺 is a minimal subset of vertices whose removal increases the number of connected

components of𝐺 . On classes of bounded asymptotic dimension, the set of local 𝑘-cuts is well-behaved for 𝑘 ⩽ 2 (see

Section 3).

Here is a formal definition of a local cut
6
. By 𝑁 𝑟 [𝑣], we denote the set of all vertices at distance at most 𝑟 of 𝑣 in𝐺 .

Definition 2.1 (Local cut). A subset of vertices 𝐶 of a graph 𝐺 is a 𝑟 -local 𝑘-cut if all vertices of 𝐶 are pairwise at

distance at most 𝑟 in 𝐺 , and 𝐶 is a 𝑘-cut of 𝐺 [⋃𝑣∈𝐶 𝑁
𝑟 [𝑣]].

We say𝐺 is 𝑟 -locally 𝑘-connected if𝐺 has no 𝑟 -local 𝑘-cuts. If there are no 𝑟 -local 𝑘-cuts, then there are no 𝑟 ′-local
𝑘-cuts for any 𝑟 ′ > 𝑟 . Note that a 𝑘-cut is a |𝑉 (𝐺) |-local 𝑘-cut. Therefore a locally 𝑘-connected graph is 𝑘-connected,

that is, local connectivity is a stronger notion than connectivity. All cuts that will be considered from now on are

minimal cuts, i.e., no proper subset of the cut is also a cut with the “same” connected components. Intuition is not

always an ally when it comes to 𝑟 -local 𝑘-cuts, however we use the notion in a fairly basic manner here.

3 ASYMPTOTIC DIMENSION

In this section, we focus on defining asymptotic dimension (a non-trivial task, as it happens) and explaining how to

exploit it, in the hope that others may be able to exploit it in turn.

6
We did not find this exact same notion anywhere else in the literature, though it was probably considered previously.
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The first pitfall is that asymptotic dimension only makes sense when defined for a whole graph class and not for a

single graph.

Given a graph 𝐺 , we say 𝑆 ⊆ 𝑉 (𝐺) is 𝐷-bounded if 𝐺 [𝑆] has weak diameter at most 𝐷 . An 𝑟 -component of 𝑆 is a

maximal subset 𝑆 ′ ⊆ 𝑆 such that for any two vertices 𝑢, 𝑣 ∈ 𝑆 ′, there is a sequence of vertices 𝑢1 = 𝑢,𝑢2, 𝑢3, . . . , 𝑢𝑝 = 𝑣

in 𝑆 ′ such that any two consecutive vertices are at distance at most 𝑟 of each other in 𝐺 . Put differently, an

𝑟 -component of 𝑆 is exactly a connected component of 𝐺𝑟
.

The asymptotic dimension of a graph class G is the least integer 𝑑 such that there exists a function 𝑓 that satisfies

the following conditions: For any graph 𝐺 ∈ G, for any 𝑟 > 0:

• 𝐺 has a cover 𝑉 (𝐺) = ⋃𝑑
𝑖=0 𝐵𝑖 ;

• each 𝑟 -component of 𝐵𝑖 is 𝑓 (𝑟 )-bounded.
A function 𝑓 witnessing that G has asymptotic dimension at most 𝑑 is called the control function of G.
Note that any finite graph class has asymptotic dimension 0, as one can always take 𝑓 to be constant, always set

to the number of vertices in a largest graph of G, then take 𝐵0 to be the whole graph regardless of 𝑟 .

Trees, and more generally graph classes of bounded treewidth (resp. layered treewidth) have asymptotic di-

mension 1 (resp. 2). Planar graphs, and more generally the classes of 𝐻 -minor-free graphs (for any fixed 𝐻 ) have

asymptotic dimension 2 as shown by [BBE
+
23]: the dependency in 𝐻 only shows in the control function 𝑓 . Dense

graph classes may also have small asymptotic dimension. For example, it is sufficient that there is a quasi-isometry

into a class having small asymptotic dimension
7
. The class of chordal graphs, being quasi-isometric to the class of

trees, has asymptotic dimension 1.

Asymptotic dimension is a large-scale generalisation of weak diameter network decomposition which has been

studied in distributed computing; a more refined notion of asymptotic dimension is called Assouad-Nagata dimension

and its algorithmic form is related to weak sparse partition schemes. The interested reader is referred to [BBE
+
23]

for further details.

3.1 When local properties can replace global properties

Let us give a first application of asymptotic dimension. We say that a graph class D is 𝑟 -locally-C if for every

𝑣 ∈ 𝑉 (𝐺), 𝐺 [𝑁 𝑟 [𝑣]] ∈ C. We first prove that a dominating set for 𝑟 -locally-C classes can be approximated with

good approximation ratio if there is an approximation algorithm on C and if the graph class we are approximating

on has bounded asymptotic dimension. For a given graph 𝐺 and a LOCAL algorithm A that returns a subset of

vertices, we define A(𝐺) as the set returned by A when run on 𝐺 .

Proposition 3.1. Let C be a hereditary class of graphs. LetA be a local algorithm with round complexity 𝑟 ⩾ 1 and

with the following property: for every𝐺 ∈ C and 𝑆 ⊆ 𝑉 (𝐺), |A(𝐺) ∩𝑆 | ⩽ 𝛼 ·MDS(𝐺, 𝑆), i.e.,A is an 𝛼-approximation

algorithm on subsets of 𝐺 . Let D be a graph class with asymptotic dimension 𝑑 with control function 𝑓 , and that is

(𝑓 (3) + 𝑟 )-locally-C. Then A is also an 𝛼 (𝑑 + 1)-approximation algorithm on D.

The proof can be found in Subsection 5.1. We unfortunately managed to simplify our algorithm so as not to use

Proposition 3.1, but we decided to include it anyways because it showcases the interest of asymptotic dimension

and may be of future use.

3.2 Bounding the number of local 1-cuts and 2-cuts

We first bound the number of vertices in local 1-cuts and the number of vertices in so-called interesting local 2-cuts.

Lemma 3.2. For any 𝑑 ∈ N, and any graph class C of asymptotic dimension at most 𝑑 , there exists 𝑐3.2(𝑑) and𝑚3.2(C)
such that for all graphs 𝐺 ∈ C, the number of𝑚3.2(C)-local 1-cuts in 𝐺 is at most 𝑐3.2(𝑑)MDS(𝐺).

The proof of this can be found in Subsection 5.2.

To extend Lemma 3.2 to 2-cuts, we need some restriction on the 2-cuts considered: for example, a large tree with

a single vertex adjacent to all its vertices admits many 2-cuts but has a dominating set of size 1. This motivates the

following definition, which we will only use for 𝑟 ⩾ 2.

7
It is conjectured in [BBE

+
23] that any graph class forbidding some graph as a fat minor should also have asymptotic dimension at most 2.
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A vertex 𝑣 ∈ 𝐶 is 𝑟 -interesting if there exists some 𝑟 -local 2-cut 𝑐 = {𝑢, 𝑣} such that:

• 𝑁 [𝑣] ⊈ 𝑁 [𝑢] and
• at least two connected components of 𝐺 [𝑁 𝑟 [𝑐]] − 𝑐 contain each a vertex non-adjacent to 𝑢.

We are now ready to state the corresponding lemma for 2-cuts.

Lemma 3.3. For any 𝑑 ∈ N, and any graph class C of asymptotic dimension at most 𝑑 , there exists 𝑐3.3(𝑑) and𝑚3.3(C)
such that for all graphs𝐺 ∈ C, the number of interesting vertices in𝑚3.3(C)-local 2-cuts of𝐺 is at most 𝑐3.3(𝑑)MDS(𝐺).

The proof of this can be found in Subsection 5.3.

4 CONSTANT APPROXIMATION FOR MINIMUM DOMINATING SET

Intuition and explanation. One can assume that the graph contains no true twins, just like in the algorithm of

Theorem 4.4. The main idea of our algorithm is to take all vertices in 1-cuts and 2-cuts, in order to reduce the

problem to 3-connected graphs, where we can solveMinimum Dominating Set in constant time 𝑂 (𝑡). However,
it is not possible to do this in constant round-complexity in the LOCAL model. Therefore, instead of considering

𝑘-cuts we consider sets of 𝑘 vertices that resemble a 𝑘-cut locally. With a little luck, those vertices are actually

1-cuts, but not all local 1-cuts are 1-cuts. Indeed, consider a very long cycle. All vertices are local 1-cuts but none

are global 1-cuts. However, we can show that, if the graph has bounded asymptotic dimension, there exists some

constant 𝑟 (that does not depend on the graph) such the number of 𝑟 -local 1-cuts is bounded above by a function

linear in MDS(𝐺). Therefore, our algorithm can take all local 1-cuts in the returned set. The case of local 2-cuts is

more complicated: there are graphs with 𝜔 (MDS(𝐺)) many vertices in 2-cuts. Indeed, consider a clique𝐺 of size

𝑛. Take an arbitrary vertex of the clique 𝑢, and for all vertices 𝑣 ≠ 𝑢 of the clique, add a new vertex 𝑥𝑢𝑣 attached

to {𝑢, 𝑣} = 𝑁 (𝑥𝑢𝑣). This creates a graph 𝐺 which can be dominated solely by the vertex 𝑢. However, all vertices

of the original clique are in some minimal 2-cut, as {𝑢, 𝑣} separates 𝑥𝑢𝑣 from the rest of the clique – there is an

unbounded number of vertices in minimal 2-cuts. This leads us to the definition of interesting vertices in 2-cuts,

which we mentioned in Subsection 3.2 and recall here. A vertex 𝑣 ∈ 𝐶 is 𝑟 -interesting for some 𝑟 ⩾ 2 if there exists

some 𝑟 -local 2-cut 𝑐 = {𝑢, 𝑣} such that:

• 𝑁 [𝑣] ⊈ 𝑁 [𝑢] and
• at least two connected components of 𝐺 [𝑁 𝑟 [𝑐]] − 𝑐 contain each a vertex non-adjacent to 𝑢.

The first condition is intuitive: one better take 𝑢 instead of 𝑣 if 𝑁 [𝑣] ⊆ 𝑁 [𝑢]. The rough idea behind the second

condition is that it allows us to create a nice mapping from interesting vertices to a minimum dominating set. In more

detail, we give a tree-like structure to the vertices in 2-cuts, and show the second condition gives us the existence of

some vertex 𝑑 in a MDS satisfying the following property: 𝑑 is a successor of 𝑢 in the tree-like structure, and is at

bounded distance from 𝑢 in the tree-like structure. Now, every interesting vertex 𝑢 can charge this vertex 𝑑 . We then

show that this 𝑑 does not receive too many charges, because of the tree-like structure of the interesting 2-cuts, and

this allows us to bound the number of interesting vertices. Let us do a quick recap of what the algorithm has done

until now: it has taken all local minimal 1-cuts and all interesting vertices in local minimal 2-cuts. Let us consider an

arbitrary local minimal 2-cut {𝑢, 𝑣}. There are three cases. First, if both 𝑢 and 𝑣 are interesting, the algorithm has

taken both vertices in its return set. All components attached to {𝑢, 𝑣} can now be solved independently. Secondly,

if 𝑢 is interesting and 𝑣 is not interesting, the algorithm has taken 𝑢 in its return set. Either 𝑁 [𝑣] ⊆ 𝑁 [𝑢] and all

components attached to {𝑢, 𝑣} can now be solved independently, or 𝑢 dominates all but one component attached to

{𝑢, 𝑣}. In any case, all components attached to 𝑐 can now be solved independently too, as only one undominated

component exists. Finally, if neither 𝑢 nor 𝑣 is interesting, then as the graph is without true twins, one of 𝑢 or 𝑣

dominates all but one component attached to {𝑢, 𝑣}. Therefore, all components attached to {𝑢, 𝑣} can now be solved

independently too. Now, one can prove that the undominated vertices form connected components of bounded

diameter, and our algorithm can brute-force and 𝐺-dominate the rest of the vertices in constant time.

The algorithm. Let 𝑡 ⩾ 2 be an integer. The following algorithm computes an approximation of Minimum Domi-

nating Set on the class C𝑡 of 𝐾2,𝑡 -minor-free graphs. The algorithm is divided into four steps:

(1) Remove true twins from the graph.

(2) Compute the set 𝑋1 of all vertices in minimal𝑚3.2(C𝑡 )-local 1-cuts, and add them to the returned Dominating

Set.
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(3) Compute the set 𝐼 of minimal𝑚3.3(C𝑡 )-interesting vertices in𝑚3.3(C𝑡 )-local 2-cuts, and add them to the

returned Dominating Set.

(4) Let 𝑈 be the set of already dominated vertices that have no undominated neighbors. Dominate all other

undominated vertices, in every component of 𝐺 − (𝑋 ∪ 𝐼 ∪𝑈 ), using a brute-force approach.
A more formal description of the algorithm is given below:

Algorithm 1 Constant approximation forMinimum Dominating Set

Require: An integer 𝑡 , and 𝐺 a 𝐾2,𝑡 -minor-free graph

Ensure: 𝑆 is a dominating set of 𝐺 with |𝑆 | = 𝑂 (MDS(𝐺))
𝐺 ← true-twin-less graph associated to 𝐺

𝑆 ← {𝑣 ∈ 𝑉 (𝐺) | {𝑣} is a𝑚3.2(C𝑡 )-local minimal 1-cut of 𝐺}
𝑆 ← 𝑆 ∪ {𝑣 ∈ 𝐶 | 𝑣 is a𝑚3.3(C𝑡 )-interesting vertex of a𝑚3.3(C𝑡 )-local minimal 2-cut of 𝐺}
𝑆 ← 𝑆 ∪ (brute-forced minimum set of 𝐺 that dominates 𝐺 − 𝑁 [𝑆])

We can now state the main theorem of this section.

Theorem 4.1. For every integer 𝑡 ⩾ 2, Algorithm 1 is a𝑂𝑡 (1)-round 50-approximate deterministic LOCAL algorithm

for Minimum Dominating Set on 𝐾2,𝑡 -minor-free graphs.

Proof. Algorithm 1 clearly outputs a dominating set of 𝐺 . By Lemmas 3.2 and 3.3, the approximation ratio of the

algorithm is 𝑐3.2(1) + 𝑐3.3(1) + 1 = 50. □

It remains to argue that the number of rounds is bounded. To do this, we need to argue that the brute-forcing

performed takes constant time.

Lemma 4.2. For every integer 𝑡 , if C𝑡 is the class of 𝐾2,𝑡 -minor-free graphs, there exists𝑚4.2(𝑡) such that for every

𝐺 ∈ C𝑡 , if 𝑋 is the set of vertices in𝑚3.2(C𝑡 )-local 1-cuts, 𝐼 is the set of𝑚3.3(C𝑡 )-locally interesting vertices of 𝐺 , and

𝑈 = {𝑢 ∈ 𝑁 [𝐼 ∪ 𝑋 ] | 𝑁 [𝑢] ⊆ 𝑁 [𝐼 ∪ 𝑋 ]}, then every connected component of 𝐺 \ (𝐼 ∪ 𝑋 ∪𝑈 ) has diameter at most

𝑚4.2(𝑡).

The proof of this can be found in Subsection 5.4.

The asymptotic dimension of 𝐾2,𝑡 -minor-free graphs is 1 by [BBE
+
23] – 𝐾2,𝑡 is planar so 𝐾2,𝑡 -minor-free graphs

have bounded treewidth by the grid minor theorem. For C𝑡 the class of 𝐾2,𝑡 -minor-free graphs, the running time

is max{𝑚3.2(C𝑡 ),𝑚3.3(C𝑡 ),𝑚4.2(𝑡)} = 3max {𝑓 (5) + 2, 𝑓 (11) + 5} + 𝑔(𝑡) + 3, where 𝑓 is the control function of the

class of 𝐾2,𝑡 -minor-free graphs, and 𝑔 the linear function given in Lemma 6.3 of [Din17].

The observant reader may be struck by the fact that the roles of 𝑡 and of the asymptotic dimension seem disjoint.

This can be highlighted with the following variant, which computes a (𝑐3.2(𝑑) + 𝑐3.3(𝑑) + 1)-approximation of MDS

in a class of asymptotic dimension 𝑑 , given its control function, with running time that depends on 𝑓 and the largest

𝐾2,𝑡 -minor of the input graph but does not require prior knowledge of it.

Algorithm 2 Constant approximation forMinimum Dominating Set in a bounded asdim class

Require: An integer 𝑑 , a control function 𝑓 , and 𝐺 a graph in a class G of asymptotic dimension 𝑑 with control

function 𝑓

Ensure: 𝑆 is a dominating set of 𝐺 with |𝑆 | = 𝑂 (MDS(𝐺))
𝐺 ← true-twin-less graph associated to 𝐺

𝑆 ← {𝑣 ∈ 𝑉 (𝐺) | {𝑣} is a𝑚3.2(G)-local minimal 1-cut of 𝐺}
𝑆 ← 𝑆 ∪ {𝑣 ∈ 𝐶 | 𝑣 is a𝑚3.3(G)-interesting vertex of a𝑚3.3(G)-local minimal 2-cut of 𝐺}
𝑆 ← 𝑆 ∪ (brute-forced minimum set of 𝐺 that dominates 𝐺 − 𝑁 [𝑆])

We can now state the following stronger version of Theorem 4.1.

Theorem 4.3. For every integer 𝑑 and control function 𝑓 , Algorithm 2 is a 𝑂𝑡 (1)-round (𝑐3.2(1) + 𝑐3.3(1) + 1)-
approximate deterministic LOCAL algorithm for Minimum Dominating Set on graphs in a class of asymptotic

dimension 𝑑 with control function 𝑓 , where 𝑡 is the (unknown) size of a largest 𝐾2,𝑡 -minor in the input graph.
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As an added note, if one wishes to have an algorithm forMinimum Vertex Cover instead of Minimum Domi-

nating Set, it suffices to take all𝑚3.3(C𝑡 )-local 2-cuts instead of just𝑚3.3(C𝑡 )-interesting vertices. On the analysis

side, one can prove a simpler variant of Lemma 3.3 that bounds the number of vertices in local 2-cuts with respect

to the size of a minimum vertex cover. Therefore, both Theorem 4.1 and Theorem 4.3 extend to the context of

Minimum Vertex Cover.

We conclude the “non-technical” part of the paper with the following result, which shows a different trade-off:

linear approximation in constant number of rounds.

Theorem 4.4. For every integer 𝑡 ⩾ 2, there is a 3-round (2𝑡 − 1)-approximate deterministic LOCAL algorithm (resp.

𝑡-approximate) for Minimum Dominating Set (resp. Minimum Vertex Cover) on 𝐾2,𝑡 -minor-free graphs.

As outerplanar graphs are a subfamily of 𝐾2,3-minor-free graphs, this result generalizes the 5-approximation

algorithm of [BCGW21] on outerplanar graphs in the case of the LOCAL model. The proof of Theorem 4.4 can be

found in Subsection 5.5.

5 PROOFS

5.1 Proof of Proposition 3.1: from local to global

Let𝐺 ∈ D. By the definition of the asymptotic dimension applied to𝐺 , there is a cover 𝐵0, 𝐵1, . . . , 𝐵𝑑 of𝐺 where each

3-component of a 𝐵𝑖 is 𝑓 (3)-bounded. Note that each 𝐵𝑖 contains distinct 3-components which are of distance at least

4 from each other. With an abuse of notation, when we write 𝐵 ∈ 𝐵𝑖 we mean that 𝐵 is a 3-component of 𝐵𝑖 . That is,

we treat 𝐵𝑖 as the set of its 3-components. Let A be an 𝛼-approximation algorithm for C with round complexity 𝑟 .

Let us run the same algorithm on graphs from D. By the covering property, |A(𝐺) | ⩽ ∑𝑑
𝑖=0 |A(𝐺) ∩ 𝐵𝑖 |.

Let 𝑖 ∈ {0, 1, . . . , 𝑑} and 𝐵 ∈ 𝐵𝑖 . We have the following:

Claim 5.1. 𝐺 [𝑁 [𝐵]] ∈ C.

Let 𝑣 ∈ 𝐵. Because D is (𝑓 (3) + 𝑟 )-locally C, 𝐺 ′ = 𝐺 [𝑁 𝑓 (3)+𝑟 [𝑣]] ∈ C. Moreover, 𝑁 [𝐵] ⊆ 𝐺 ′ because 𝐵 has

weak diameter 𝑓 (3). Therefore, as C is hereditary, 𝐺 [𝑁 [𝐵]] ∈ C. Because A is an 𝛼-approximation on subsets

of 𝐺 ′, |A(𝐺 ′) ∩ 𝐵 | ⩽ 𝛼 · MDS(𝐺 ′, 𝐵) ⩽ 𝛼 · MDS(𝐺, 𝐵) as 𝐺 ′ contains 𝑁𝐺 [𝐵]. As 𝑁 𝑟
𝐺
[𝐵] ⊆ 𝑉 (𝐺 ′), vertices in 𝐵

have the same neighborhood in 𝐺 and 𝐺 ′. Therefore, |A(𝐺) ∩ 𝐵 | = |A(𝐺 ′) ∩ 𝐵 | ⩽ 𝛼 · MDS(𝐺, 𝐵). Using this,

along with Lemma 5.2 and that every 𝐵𝑖 is partitioned into 3-components, we get for every 𝑖 ∈ {0, 1, . . . , 𝑑} that
|A(𝐺) ∩ 𝐵𝑖 | ⩽

∑
𝐵∈𝐵𝑖

𝛼 ·MDS(𝐺, 𝐵) ⩽ 𝛼 ·MDS(𝐺). Putting everything together we get

|A(𝐺) | ⩽
𝑑∑︁
𝑖=0

|A(𝐺) ∩ 𝐵𝑖 | ⩽ 𝛼 · (𝑑 + 1) ·MDS(𝐺) .

This completes the proof of Proposition 3.1.

5.2 Proof of Lemma 3.2: Bounding the number of vertices in local 1-cuts

We will need the following lemma for the rest of the proofs in this section.

Lemma 5.2. Let 𝐺 be a graph and let 𝑅0, 𝑅1, . . . , 𝑅𝑘 ⊆ 𝑉 (𝐺) subsets of vertices such that all 𝑁 [𝑅𝑖] are pairwise
disjoint. Then

𝑘∑︁
𝑖=0

MDS(𝐺, 𝑅𝑖) ⩽ MDS(𝐺).

Let us now prove Lemma 3.2.

We did not try to optimize the constants 𝑐3.2(𝑑) and 𝑚3.2(C). Let 𝑓 be the 𝑑-dimensional control function of

the graph class. We prove the lemma for 𝑐3.2(𝑑) = 3 · (𝑑 + 1) and𝑚3.2(C) = 𝑓 (5) + 2. Without loss of generality,

we can assume 𝐺 is connected. We will first prove there are not too many 1-cuts in some 𝑆 ⊆ 𝑉 (𝐺) compared to

MDS(𝑁 [𝑆]).

Claim 5.3. Let𝐺 be a graph and 𝑆 ⊆ 𝑉 (𝐺). Let𝐶 be the set of minimal 1-cuts of𝐺 . Then |𝐶∩𝑆 | ⩽ 3 ·MDS(𝐺, 𝑁 [𝑆]).
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Let us prove this claim. Without loss of generality, we can assume 𝐺 is connected. Let 𝐶 be the set of 1-cuts of 𝐺

and 𝐵 the set of maximal 2-connected components of 𝐺 . Let 𝑇 be the bipartite graph with vertex set 𝐵 ∪𝐶 and with

edge set 𝐸 (𝑇 ) = {(𝑏, 𝑐) ∈ 𝐵 ×𝐶 | 𝑐 ∈ 𝑏}.𝑇 is sometimes called the block-cut tree of𝐺 and can be proven to be a tree.

Moreover, note that all leaves of 𝑇 are in 𝐵. Let 𝑆 ⊆ 𝑉 (𝐺), and 𝐷 ⊆ 𝑁 2 [𝑆] a dominating set of 𝑁 [𝑆]. We prove that

|𝐶 ∩ 𝑆 | ⩽ 3|𝐷 |. If 𝐶 ∩ 𝑆 = ∅, we are done. Otherwise, root 𝑇 at an arbitrary cut-vertex 𝑟 . We have the following:

Claim 5.4. Let 𝑐 ∈ 𝐶 ∩ 𝑆 . Then there exists 𝑏 such that 𝑐 ∈ 𝑏 ∈ 𝐵 such that 𝑏 ∩ 𝐷 ≠ ∅.

This is because all vertices of 𝐶 ∩ 𝑆 must be dominated by some vertex of 𝐷 . Therefore, either 𝑐 ∈ 𝐷 and then we

are done as there exists some 𝑏 ∈ 𝐵 such that 𝑐 ∈ 𝑏, or either there exists 𝑎 ∈ 𝐷 ∩ 𝑁 [𝑐]. This 𝑎 must be contained in

some neighboring 2-connected component, therefore there exists 𝑏 ∈ 𝐵 such that 𝑎 ∈ 𝑏, i.e. 𝑏 ∩ 𝐷 ≠ ∅.
In the following, we create a mapping from vertices of 𝐶 \ 𝐷 to 𝐷 . Consider 𝑐 ∈ 𝐶 \ 𝐷 . There are 3 different cases.
• Either 𝑐 has a child 𝑏 ∈ 𝐵 with some 𝑑 ∈ 𝑏 ∩ 𝐷 ∩ 𝑁 (𝑏), and in this case, we map 𝑐 to 𝑑 .

• Or either 𝑐 has an descendant 𝑐′ ∈ 𝐶 ∩ 𝑁 (𝑐) (at distance 2 in 𝑇 ), and the previous claim still applies to 𝑐′: 𝑐′

has an descendant 𝑏′ ∈ 𝐵 in 𝑇 such that there exists 𝑑 ∈ 𝑑 ∩ 𝐷 ∩ 𝑁 (𝑐′). We map 𝑐 to 𝑑 .

• Or 𝑐 has no descendant in 𝐶 ∩ ∩𝑁 (𝑐). In this case, as 𝑐 cannot be a leaf of 𝑇 , there exists a child 𝑏 ∈ 𝐵 of 𝑐 ,

with the property that 𝑏 \𝐶 ≠ ∅. As 𝐷 dominates 𝑁 [𝑆], 𝑏 must contain a vertex 𝑑 ≠ 𝑐 of 𝐷 . We map 𝑐 to 𝑏.

Therefore, we created a mapping from vertices of𝐶 \𝐷 to vertices of 𝐷 . Furthermore, each vertex from 𝐷 can appear

at most twice in a preimage. Indeed, for some 𝑑 ∈ 𝐷 , only an ancestor in 𝐶 at distance 1 or 3 in 𝑇 can be mapped to

it. In conclusion, |𝐶 | ⩽ |𝐶 ∩ 𝐷 | + |𝐶 \ 𝐷 | ⩽ |𝐷 | + 2|𝐷 | = 3|𝐷 |.
We can now get a bound on the number of local 1-cuts.

Claim 5.5. Let𝐺 be a graph of asymptotic dimension 𝑑 with control function 𝑓 . Then, the number of (𝑓 (5) + 2)-local
1-cuts is bounded by 3(𝑑 + 1) ·MDS(𝐺).

This will directly imply the statement of the lemma. Let 𝑟 a positive integer and 𝐶 be the set of (𝑓 (5) + 2)-local
cuts of 𝐺 . Fix 𝐵 ⊆ 𝑉 (𝐺) such that 𝐺 [𝐵] has weak diameter 𝑓 (5). We claim the following:

Claim 5.6. Every (𝑓 (5) + 2)-local 1-cut of 𝐺 that is in 𝐵 is also a 1-cut of 𝐺 [𝑁 2 [𝐵]].

Indeed, let 𝑣 ∈ 𝐵 be a (𝑓 (5) +2)-local 1-cut of𝐺 and 𝑎, 𝑏 ∈ 𝑁 (𝑣) separated by 𝑣 , i.e. every 𝑎𝑏-path of𝐺 of 𝑁 𝑓 (5)+2 [𝑣]
contains 𝑣 . Notice that 𝑁 2 [𝐵] ⊆ 𝑁 𝑓 (5)+2 [𝑣] because 𝐵 has weak diameter at most 𝑓 (5). 𝑎 and 𝑏 are separated by 𝑣

in 𝐺 [𝑁 2 [𝐵]], because 𝑎, 𝑏 ∈ 𝑁 2 [𝐵] and because no 𝑎𝑏-path in 𝑁 [𝐵] \ {𝑣} exists. Therefore, Claim 5.6 is proven.

Using this fact and with the help of Claim 5.3, we can bound the number of 1-cuts of 𝐺 [𝑁 2 [𝐵]] in 𝐵 by

3 · MDS(𝐺 [𝑁 2 [𝐵]], 𝑁 [𝐵]) ⩽ 3 · MDS(𝐺, 𝑁 [𝐵]). By the definition of the asymptotic dimension, there is a cover

𝐵0, 𝐵1, . . . , 𝐵𝑑 of 𝐺 where the 5-components of a 𝐵𝑖 are 𝑓 (5)-bounded. Note that each 𝐵𝑖 contains distinct 5-

components which are of distance at least 6 from each other. With an abuse of notation, when we write 𝐵 ∈ 𝐵𝑖 we
mean that 𝐵 is a 5-component of 𝐵𝑖 . That is, we treat 𝐵𝑖 as the set of its 5-components. As 𝐵0, 𝐵1, . . . , 𝐵𝑑 is a cover of

𝑉 (𝐺) by subsets of diameter at most 𝑓 (5), we can bound the number of (𝑓 (5) + 2)-local 1-cuts of𝐺 by summing the

number of 1-cuts of all the 𝐺 [𝑁 2 [𝐵𝑖]]’s. We get

|𝐶 | ⩽
𝑑∑︁
𝑖=0

∑︁
𝐵∈𝐵𝑖

3 ·MDS(𝐺, 𝑁 [𝐵]) .

Notice that because the 𝐵𝑖 ’s are partitioned into their 5-components, all elements of {𝑁 2 [𝐵] |
𝐵 connected component of 𝐵𝑖} are pairwise disjoint.
Therefore by Lemma 5.2, we get

|𝐶 | ⩽
𝑑∑︁
𝑖=0

3 ·MDS(𝐺) = 3(𝑑 + 1) ·MDS(𝐺).

This finishes the proof of Lemma 3.2.
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5.3 Proof of Lemma 3.3: Bounding the number of interesting vertices

When discussing global 2-cuts and not local ones, we say 𝑣 is interesting if there exists a 2-cut 𝑐 = {𝑢, 𝑣} such that:

• 𝑁 [𝑣] ⊈ 𝑁 [𝑢] and
• at least two connected components of 𝐺 − 𝑐 contain each a vertex non-adjacent to 𝑢.

Moreover, 𝑣 is called a friend of 𝑢, and a 2-cut {𝑢, 𝑣} where 𝑢 is interesting and 𝑣 is a friend of 𝑢 is called interesting.

If 𝑢 only has the second property, it is called almost-interesting.

Two 2-cuts 𝑐1, 𝑐2 of 𝐺 are said to be crossing the two following conditions are verified:

• the two vertices of 𝑐1 are in different components of 𝐺 − 𝑐2, and
• the two vertices of 𝑐2 are in different components of 𝐺 − 𝑐1.

Before bounding the number of interesting vertices in local 2-cuts, we first need to arrange the interesting cuts

in a tree-like fashion, i.e. we want to build a bounded number of families of 2-cuts such that each member of the

family contains interesting 2-cuts that are all pairwise non-crossing, and such that each interesting vertex appears

in one family member, along with one of its friends.

One can easily see that a family of size 2 does not suffice by considering 𝐶6. If we want to only take interesting

cuts in this graph, we need to take the 3 opposing cuts. In more detail, if the vertices {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 } of 𝐶6 appear in

clockwise order 𝑎,𝑏,𝑐 ,𝑑 ,𝑒 and 𝑓 , then we need to take the interesting cuts {𝑎, 𝑑}, {𝑏, 𝑒} and {𝑐, 𝑓 }.
To create our new 2-cut forest for interesting vertices, we need to introduce SPQR trees.

SPQR trees. An SPQR tree is a tree data structure that represents the decomposition of a 2-connected graph into

its 3-connected components. The construction of an SPQR tree can be accomplished in linear time and SPQR are

known to have applications in dynamic graph algorithms and graph drawing.

An SPQR tree 𝑇 is an unrooted tree where each node 𝜇 corresponds to an undirected skeleton graph 𝐺𝜇 that can

be one of the following four types.

• 𝑺-node: 𝐺𝜇 is a cycle containing three or more vertices. This represents series composition in series-parallel

graphs.

• 𝑷-node:𝐺𝜇 corresponds to a dipole graph, a multigraph with two vertices and three or more edges, analogous

to parallel composition.

• 𝑸-node:𝐺𝜇 corresponds to a dipole connected by two parallel edges: one real and one virtual. This serves as

a trivial case for graphs with two parallel edges. We will not consider these types of nodes.

• 𝑹-node: 𝐺𝜇 is a 3-connected graph that is neither a cycle nor a dipole.

Edges 𝑥𝑦 between nodes in the SPQR tree are associated with two directed virtual edges, one from𝐺𝑥 and the

other from 𝐺𝑦 . Each edge in 𝐺𝑥 can be a virtual edge for at most one edge in the SPQR tree.

The SPQR tree represents a 2-connected graph 𝐺𝑇 , constructed as follows. If 𝑥𝑦 ∈ 𝐸 (𝑇 ) is associated with the

virtual edge 𝑎𝑏 ∈ 𝐸 (𝐺𝑥 ), and with the virtual edge 𝑐𝑑 ∈ 𝐸 (𝐺𝑦), then identify 𝑎 with 𝑐 and 𝑏 with 𝑑 , and delete the

two virtual edges. Notably, no two adjacent 𝑆 or 𝑃 nodes are allowed, ensuring the uniqueness of the SPQR tree

representation for a graph 𝐺 . When such conditions are met, the graphs 𝐺𝑥 associated with the nodes of the SPQR

tree are the triconnected components of 𝐺 .

Proposition 5.7 (folklore). Let 𝑇 be a SPQR tree of a graph 𝐺 (without 𝑄 nodes) and let {𝑢, 𝑣} be a 2-cut of 𝐺 .
Then one of the following holds:

• 𝑢, 𝑣 are two endpoints of a virtual edge of a 𝑅-node, or
• 𝑢, 𝑣 are the two vertices of a 𝑃-node that has at least two virtual edges, or
• 𝑢, 𝑣 are two endpoints of a virtual edge of a 𝐶-node, or
• 𝑢, 𝑣 are two non-adjacent vertices of a 𝐶-node.

We can now build our tree-like structure for interesting vertices.

Interesting 2-cuts forests. An interesting 2-cut forest 𝐹 = (𝑇1,𝑇2,𝑇3) of 𝐺 consists of three trees 𝑇1,𝑇2 and 𝑇3 whose

vertices contain subsets of 𝑉 (𝐺). Like SPQR trees, 𝑇𝑖 contains nodes that are induced subgraphs with some virtual
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edges added. Every 𝑇𝑖 has nodes can be of three types: 𝐴-nodes, for 1-cuts, 𝐶-nodes, for interesting 2-cuts, and

𝑅-nodes for the rest. 𝑇2 has still 𝐶-nodes and 𝑅-nodes.

If 𝐺 is has no 1-cut or interesting 2-cut, 𝑇𝑖 consists of a 𝑅 single node 𝜇 = 𝐺 .

If𝐺 has a 1-cut 𝑣 , we construct𝑇𝑖 inductively. First, we add a 𝐴-node 𝜇 to𝑇𝑖 . The graph associated to 𝜇 consists of

the vertex 𝑣 . Secondly, let 𝐶1,𝐶2, . . . ,𝐶𝑘 be the connected components of 𝐺 − 𝑣 . Let 𝐺 𝑗 be the graph 𝐺 [𝐶 𝑗 ∪ {𝑣}].
Build a corresponding 2-cut tree 𝑇𝐺 𝑗

for the graph 𝐺 𝑗 . Let 𝜇 𝑗 be the (unique) node in 𝑇𝐺 𝑗
that contains 𝑣 . We can

now construct 𝑇𝑖 by taking the union of all 𝑇𝐺 𝑗
’s and connecting all 𝜇 𝑗 ’s to 𝜇.

Now, let us handle the case of interesting 2-cuts. We do this by going through a SPQR tree 𝑇 of 𝐺 and building

sets of 2-cuts 𝑃1, 𝑃2 and 𝑃3 with the following properties:

• for every globally almost-interesting vertex 𝑢 of 𝐺 , there exist some 𝑖 and some friend 𝑣 of 𝑢 such that

{𝑢, 𝑣} ∈ 𝑃𝑖 , and
• for every 𝑖 , the 2-cuts in 𝑃𝑖 are pairwise non-crossing.

The second property allows us to transform 𝑃𝑖 into a 2-cut tree 𝑇𝑖 , as follows. First, take some arbitrary 𝑐 ∈ 𝑃𝑖 and a

𝐶-node 𝜇 to 𝑇𝑖 . The graph associated to 𝜇 consists of vertices of 𝑐 = {𝑢, 𝑣} and a real (respectively virtual) edge 𝑢𝑣 if

𝑢𝑣 is a real (resp. virtual) edge of G. Secondly, let𝐶1,𝐶2, . . . ,𝐶𝑘 be the connected components of𝐺 − 𝑐 . Let𝐺 𝑗 be the

graph 𝐺 [𝐶 𝑗 ∪ 𝑐] to which we add a real edge 𝑢𝑣 if 𝑢𝑣 ∉ 𝐺 [𝐶 𝑗 ∪ 𝑐]. Build a corresponding interesting 2-cut tree 𝑇𝐺 𝑗

for the graph 𝐺 𝑗 . Let 𝜇 𝑗 be the (unique) node in 𝑇𝐺 𝑗
where 𝑢𝑣 is real. We can now construct 𝑇𝑖 by taking the union

of all 𝑇𝐺 𝑗
’s, making 𝑢𝑣 virtual in all 𝜇 𝑗 ’s, and connecting all 𝜇 𝑗 ’s to 𝜇.

We first build the sets 𝑃1, 𝑃2 and 𝑃3. We then prove the two wanted properties in Proposition 5.8.

Add the vertices 𝑢 and 𝑣 to 𝑃1 if:

• 𝑢, 𝑣 are two endpoints of a virtual edge of a 𝑅-node of 𝑇 , or if

• 𝑢, 𝑣 are the two vertices of a 𝑃-node of 𝑇 that has at least two virtual edges.

Let us now handle the case of𝐶-nodes. Let 𝜇 be a𝐶 node of the𝑇 . If 𝜇 contains more than 6 nodes. Let 𝑣0, 𝑣1, . . . , 𝑣𝑘−1
be the nodes of 𝜇 in the order of the cycle. First, put all {𝑢, 𝑣} in 𝑃1 if 𝑢𝑣 is a virtual edge. Secondly, we add some

2-cuts to the 𝑃𝑖 ’s depending on the values of 𝑘 :

(1) If 𝑘 ⩾ 8 and 𝑘 is even: add to 𝑃1 the 2-cuts {𝑣0, 𝑣𝑘−3}, {𝑣1, 𝑣𝑘−4}, . . . , and {𝑣 (𝑘/2)−3, 𝑣𝑘/2}, and to 𝑃2 the 2-cuts

{𝑣 (𝑘/2)−2, 𝑣𝑘−1} and {𝑣 (𝑘/2)−1, 𝑣𝑘−2}.
(2) If 𝑘 ⩾ 8 and 𝑘 is odd: add to 𝑃1 the 2-cuts {𝑣0, 𝑣𝑘−3}, {𝑣1, 𝑣𝑘−4}, . . . , {𝑣 ( (𝑘−1)/2)−3, 𝑣 (𝑘+1)/2} and

{𝑣 ( (𝑘−1)/2)−3, 𝑣 (𝑘−1)/2}. Add to 𝑃2 the 2-cuts {𝑣 ( (𝑘−1)/2)−2, 𝑣𝑘−1} and {𝑣 ( (𝑘−1)/2)−1, 𝑣𝑘−2}.
(3) If 𝑘 = 7, add to 𝑃1 the 2-cut {𝑣0, 𝑣3} and {𝑣0, 𝑣4}, to 𝑃2 the 2-cut {𝑣1, 𝑣5} and to 𝑃3 the 2-cut {𝑣2, 𝑣6}.
(4) If 𝑘 = 6, add to 𝑃1 the 2-cut {𝑣0, 𝑣3}, to 𝑃2 the 2-cut {𝑣1, 𝑣4} and to 𝑃3 the 2-cut {𝑣2, 𝑣5}.
(5) If 𝑘 ⩽ 5 but 𝐺 ≠ 𝐶𝑘 , suppose without loss of generality that the edge 𝑣0𝑣1 is virtual. Moreover, suppose that

it is the only virtual edge of the 𝐶-node. If 𝑘 = 5, add to 𝑃1 the 2-cut {𝑣0, 𝑣2} and to 𝑃2 the 2-cut {𝑣1, 𝑣4}.
(6) If 𝑘 ⩽ 5 but𝐺 ≠𝐶𝑘 and the edges 𝑣0𝑣1 and 𝑣0𝑣𝑘−1 are virtual: add to 𝑃1 all the 2-cuts {𝑣0, 𝑣𝑖} for 𝑖 = 2, 3, . . . , 𝑘−2.

Moreover, if 𝑘 = 5, add to 𝑃2 the 2-cut {𝑣1, 𝑣𝑘−1}.
(7) If 𝑘 ⩽ 5 but𝐺 ≠ 𝐶𝑘 and there exists 𝑖 ∈ {2, 3, . . . , 𝑘 − 2} such that the edges 𝑣0𝑣1 and 𝑣𝑖𝑣𝑖+1 are virtual: add to

𝑃1 all the 2-cuts {𝑣0, 𝑣 𝑗 } for 𝑗 = 2, 3, . . . , 𝑖 , and add to 𝑃2 all the 2-cuts {𝑣1, 𝑣 𝑗 } for 𝑗 = 𝑖 + 1, 𝑖 + 2, . . . , 𝑘 − 1.

Proposition 5.8. Let 𝑃1, 𝑃2 and 𝑃3 be built as described above. Then the two following properties are verified:

• for every globally interesting vertex 𝑢 of 𝐺 , there exist some 𝑖 and some friend 𝑣 of 𝑢 such that {𝑢, 𝑣} ∈ 𝑃𝑖 , and
• for every 𝑖 , the 2-cuts in 𝑃𝑖 are pairwise non-crossing.

Proof. One can easily see that 2-cuts of 𝑃𝑖 in the same 𝐶-node are taken in such a way that they do not cross. This

also applies 2-cuts inside the same nodes inside the same 𝑃 or 𝑅-node. Moreover, 2-cuts inside the different nodes of

the SPQR tree cannot cross by Proposition 5.7. Therefore, the second property is proven.

We will show that every globally interesting vertex 𝑢 of 𝐺 appears in some 𝑃𝑖 with one of its friends. As we

take all 2-cuts in 𝑅-nodes and 𝑃-nodes, then by Proposition 5.7 the only case where we could have not taken an

interesting vertex with its friend is inside a𝐶-node. We prove that is however not the case. Let us consider a𝐶-node

𝜇 with 𝑘 vertices. We go through all the possible cases.
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• If 𝑘 ⩾ 8 and 𝑘 is even: one can verify that all 2-cuts chosen are interesting, and that every vertex of the cycle

is in one of the chosen cycles. Therefore we are done with this case.

• The same applies if 𝑘 ⩾ 8 and 𝑘 is odd, or if 𝑘 = 7, 6, by checking each case.

• If 𝐺 = 𝐶𝑘 with 𝑘 ⩽ 5, there are no interesting vertices.

• If 𝑘 ⩽ 5 but 𝐺 ≠ 𝐶𝑘 , and the only virtual edge of 𝜇 is 𝑣0𝑣1. Consider the node connected to 𝜇 by this virtual

edge. If it is not a 𝑃-node, name this node 𝜇′. If it is a 𝑃-node, let 𝜇′ be one of its neighbor different from 𝜇 (it

exists as every 𝑃-node has degree at least 2 in 𝑇 ). Let us handle the case 𝑘 = 5 first. Notice that by definition,

𝑉 (𝜇′) \𝑉 (𝜇) ≠ ∅. Let us prove that 2-cuts {𝑣0, 𝑣2} and {𝑣1, 𝑣4} are interesting. First, their one component in

𝜇 is not fully dominated by either of the vertices of the cuts. Moreover, in each of the two 2-cuts, one of the

vertices is not connected to any vertex of𝑉 (𝜇′) \𝑉 (𝜇). Finally, 𝑁 [𝑣1] ⊈ 𝑁 [𝑣4], 𝑁 [𝑣0] ⊈ 𝑁 [𝑣2], and inversely.
Therefore the 2-cuts {𝑣0, 𝑣2} and {𝑣1, 𝑣4} are indeed interesting. The only vertex that needs checking is now

𝑣3. We claim that 𝑣3 is not interesting. Indeed, any 2-cut in 𝜇 containing 𝑣3 is not interesting. Moreover,

𝑣3 cannot have a friend outside of 𝑉 (𝜇) by Proposition 5.7. Therefore, 𝑣3 is not interesting. All interesting

vertices are now taken in some 𝑃𝑖 , and all chosen 2-cuts in 𝜇 are chosen. We are done with this case. If 𝑘 = 4

(resp. 𝑘 = 3) then for similar reasons, vertices 𝑣2 and 𝑣3 (resp. 𝑣2) are not interesting. In both cases, all possibly

interesting vertices are taken in the 2-cut {𝑣0, 𝑣1} (taken because the edge 𝑣0𝑣1 is virtual). All other 2-cuts in

𝜇 containing either 𝑣0 or 𝑣1 are not interesting. Therefore, we are done with this case.

• If 𝑘 ⩽ 5 but𝐺 ≠𝐶𝑘 , and the edges 𝑣0𝑣1 and 𝑣0𝑣𝑘−1 are virtual. Consider the node connected to 𝜇 by the virtual
edge 𝑣0𝑣1. If it is not a 𝑃-node, name this node 𝜇′

1
. If it is a 𝑃-node, let 𝜇′

1
be one of its neighbor different from

𝜇 (it exists as every 𝑃-node has degree at least 2 in𝑇 ). Define similarly the node 𝜇′
2
for the virtual edge 𝑣0𝑣𝑘−1.

Let 𝑣 ′𝑖 ∈ 𝑉 (𝜇′𝑖 ) \𝑉 (𝜇). For 𝑖 = 2, 3, . . . , 𝑘 − 2, the 2-cuts {𝑣0, 𝑣𝑖} are interesting because 𝑣𝑖 is not adjacent to
𝑣 ′
1
nor 𝑣 ′

2
, and 𝑁 [𝑣0] ⊈ 𝑁 [𝑣𝑖], and inversely. If 𝑘 = 5, the 2-cut {𝑣1, 𝑣𝑘−1} is interesting because 𝑣1𝑣

′
2
∉ 𝐸 (𝐺),

𝑣1𝑣3 ∉ 𝐸 (𝐺) and 𝑁 [𝑣𝑘−1] ⊈ 𝑁 [𝑣1], and 𝑁 [𝑣1] ⊈ 𝑁 [𝑣𝑘−1]. If 𝑘 = 5, all vertices are taken in interesting 2-cuts.

If 𝑘 = 4, 𝑣0 and 𝑣2 are taken in interesting 2-cuts. All other 2-cuts contained only in 𝜇 containing either 𝑣0 or

𝑣1 are not interesting. The 2-cuts {𝑣0, 𝑣1} and {𝑣0, 𝑣3} are taken anyway, so it they are interesting, we took

them in 𝑃1. Otherwise, it does not matter: if there is an interesting 2-cut containing 𝑣1 or 𝑣3, it will be taken

in another node. The case 𝑘 = 3 is similar.

• If 𝑘 ⩽ 5 but𝐺 ≠𝐶𝑘 and there exists 𝑖 ∈ {2, 3, . . . , 𝑘 −2} such that the edges 𝑣0𝑣1 and 𝑣𝑖𝑣𝑖+1 are virtual. Without

loss of generality, we can consider that 𝑖 = 2 and 𝑘 ∈ {4, 5}. Consider the node connected to 𝜇 by the virtual

edge 𝑣0𝑣1. If it is not a 𝑃-node, name this node 𝜇′
1
. If it is a 𝑃-node, let 𝜇′

1
be one of its neighbor different from

𝜇 (it exists as every 𝑃-node has degree at least 2 in 𝑇 ). Define similarly the node 𝜇′
2
for the virtual edge 𝑣𝑖𝑣𝑖+1.

Let 𝑣 ′𝑖 ∈ 𝑉 (𝜇′𝑖 ) \𝑉 (𝜇). If 𝑘 = 5, for similar reasons as in the last case, because of the existence of 𝑣 ′
1
and 𝑣 ′

2
,

the cuts {𝑣0, 𝑣2}, {𝑣1, 𝑣3} and {𝑣1, 𝑣4} are interesting. Therefore if 𝑘 = 5, all vertices are taken in interesting

2-cuts and we are done. If 𝑘 = 4, the 2-cut {𝑣0, 𝑣2} (resp. {𝑣1, 𝑣3}) is interesting if and only if 𝑁 [𝑣0] ⊈ 𝑁 [𝑣2]
or 𝑁 [𝑣2] ⊈ 𝑁 [𝑣0] (resp. 𝑁 [𝑣1] ⊈ 𝑁 [𝑣3] or 𝑁 [𝑣3] ⊈ 𝑁 [𝑣1]). If they are interesting, we took them, otherwise

it does not matter: we have taken all possibly interesting 2-cuts. We are done with this case.

Therefore, the first property is shown. □

We say that 𝑇𝑖 displays the vertices 𝑢 and 𝑣 through the node 𝜇. A vertex that is part of an interesting minimal

2-cut but that is not displayed by 𝑇 is called hidden. 𝐹 displays 𝑢 if at least one of the 𝑇𝑖 ’s displays 𝑢.

Corollary 5.9. Let 𝐺 be a 2-connected graph, 𝑆 ⊆ 𝑉 (𝐺) and 𝑘 be a constant depending on the graph. Suppose

that for any interesting 2-cut tree, the number of vertices 𝑢 ∈ 𝑆 that appear with some friend 𝑣 such that {𝑢, 𝑣} is an
interesting cut displayed by 𝑇 is bounded by 𝑘 . Then if 𝐶 is the set of interesting vertices in 2-cuts, |𝐶 ∩ 𝑆 | ⩽ 3𝑘 .

Bounding the number of interesting vertices. We now can prove Lemma 3.3. We did not try to optimize the constants

𝑐3.3(𝑑) and 𝑚3.3(C). Let 𝑓 be the 𝑑-dimensional control function of the graph class. We prove the lemma for

𝑐3.3(𝑑) = 22 · (𝑑 + 1) and𝑚3.3(𝑑) = 𝑓 (11) + 4.
Without loss of generality, one can assume that the graph is 2-connected. Indeed, if it is not, one can split 𝐺 into

2-connected component and do the analysis on those components. Let 𝑇 be a 2-cut tree of 𝐺 , rooted at an arbitrary

𝐶 node. Let 𝐷 be a dominating set of 𝑁 4 [𝑆] in 𝐺 using vertices in 𝑁 5 [𝑆]. Let 𝐼 be the set of interesting vertices

displayed in 𝑇 and 𝐼 ′ = 𝐼 ∩ 𝑆 . Let us prove this claim first.

Claim 5.10. |𝐼 ′ | ⩽ 6 ·MDS(𝐺, 𝑁 4 [𝑆]).



Local Constant Approximation for Dominating Set on Graphs Excluding Large Minors 13

Let 𝑢 ∉ 𝐷 be an interesting vertex displayed in 𝑇 and 𝑣 be a friend of 𝑢, i.e. a vertex such that 𝑐 = {𝑢, 𝑣} is a 2-cut
with two components of 𝐺 − 𝑐 not dominated entirely by 𝑣 , and with 𝑁 [𝑢] ⊈ 𝑁 [𝑣]. Let us first prove the following
claim:

Claim 5.11. There exists 𝑑 ∈ 𝐷 such that 𝑑𝐺 (𝑢,𝑑) ⩽ 5 and 𝑑 is lower in 𝑇 than 𝑢. Moreover, the interesting-ness of a

vertex is certified by vertices at distance at most 4.

Let 𝜇 a node of𝑇 below 𝑐 that is contained in a component𝐶 of𝐺 − 𝑐 not fully dominated by 𝑣 . Let𝑤 ∈ 𝐶 a vertex

that is not dominated by 𝑣 and that minimizes 𝑑𝐺 (𝑢,𝑤). 𝑤 will be our witness of interesting-ness of one of the

components. If one wishes to get the witness of another component𝐶′, one can apply the same technique on𝑤 ′ ∈ 𝐶 ,
a vertex not dominated by 𝑣 that minimizes 𝑑𝐺 (𝑢,𝑤 ′). Note that𝑤 is well-defined by definition of𝐶 . Let us first prove

that 𝑑𝐺 (𝑢,𝑤) ⩽ 4. Note that𝑤 ∈ 𝐶 and therefore𝑤 is lower in𝑇 than 𝑢. If there exists some 𝑥 ∈ (𝑁 (𝑢) \ 𝑁 (𝑣)) ∩𝐶 ,
one can take𝑤 = 𝑥 and then 𝑑𝐺 (𝑢,𝑤) = 1. Otherwise, take𝑦 ∈ 𝑁 (𝑤) such that 𝑑𝐺 (𝑢,𝑦) < 𝑑𝐺 (𝑢,𝑤). By minimality of

𝑑 (𝑢,𝑤),𝑦 ∈ 𝑁 (𝑣). Take 𝑥 ∈ (𝑁 (𝑢)∩𝑁 (𝑣))∩𝐶 . Such a 𝑥 always exists, because 𝑐 is a minimal 2-cut (i.e. 𝑁 (𝑢)∩𝐶 ≠ ∅).
The path𝑤𝑦𝑣𝑥𝑢 exists, therefore 𝑑 (𝑢,𝑤) ⩽ 4. One can chose a dominating vertex of 𝐷 adjacent to𝑤 if𝑤 ∉ 𝐷 , or

𝑑 = 𝑤 if𝑤 ∈ 𝐷 . By the triangle inequality, 𝑑 (𝑢, 𝑣) ⩽ 5, and Claim 5.11 is proven.

Let 𝑞 : 𝐼 ′ \ 𝐷 → 𝐷 a function that we define later as our charging function. Let 𝑑 ∈ 𝐷 be a vertex of a node lower

than 𝑢 in 𝑇 and such that 𝑑 (𝑢,𝑑) ⩽ 5, chosen to be one of the highest in 𝑇 among all possible candidates. Note that

𝑑 is well-defined by Claim 5.11. We set 𝑞(𝑢) := 𝑑 and say that 𝑢 charges 𝑑 . Now, we bound the size of the preimages

of 𝑞.

For a fixed 𝑑 ∈ 𝑞(𝐼 ′ ∩ 𝑆), choose 𝑢 ∈ 𝑞−1({𝑑}) highest in 𝑇 . Again, by Proposition 5.8 there exists 𝑣 a friend of 𝑢

displayed in the same node as 𝑢. 𝑣 can be chosen highest-in-𝑇 among all the possible candidates. Let 𝜇𝑢 := {𝑢, 𝑣}
and 𝜇𝑑 be the highest-in-𝑇 𝑅-node that contains 𝑑 . Notice that even though 𝑑 may appear lower in 𝑇 than 𝜇𝑑 , there

cannot be any interesting vertex charging 𝑑 lower than 𝜇𝑑 , as this would mean some interesting vertex charges a

vertex higher than itself, which is not possible. Let 𝜇′ the lowest-in-𝑇 𝐶-node that is higher than 𝜇𝑑 . Let 𝐹 be the set

of 𝐶-nodes of 𝑇 that are between 𝜇𝑢 and 𝜇′ (both non-included), that form interesting 2-cuts, and such that one of

the interesting vertices in the cut is in 𝑆 \ {𝑢}. There are two possible cases.

• Either there exists some 𝑐 ∈ 𝐹 such that 𝑐 ∩ 𝑁 [𝑣] = 𝑐 ∩ 𝜇′ = ∅. In this case, let𝑤 be the interesting vertex of

𝑐 . We get a contradiction because𝑤 cannot be dominated by 𝑣 nor a vertex below it, as 𝑑 is lower than 𝜇′.

• Therefore, all 𝑐 ∈ 𝐹 either contain some𝑤 ∈ 𝜇′ or contain a vertex dominated by 𝑣 . Notice that if𝑤 exists,

it is unique for all 𝑐 ∈ 𝐹 . Therefore, 𝐹 is partitioned in two sets: 𝐹2, the set of 𝑐 ∈ 𝐹 that contain𝑤 , and 𝐹1,

the set of 𝑐 ∈ 𝐹 \ 𝐹2 that contain some vertex dominated by 𝑣 . Furthermore, all the 𝑐 ∈ 𝐹1 appear higher in
the tree than the 𝑐 ∈ 𝐹2. We claim that 𝑞−1({𝑑}) ⊆ 𝜇𝑢 ∪ 𝜇′ ∪ 𝜇𝑐 for some 𝜇𝑐 ∈ 𝐹 ∪ {∅}. Let us first prove
that then all 𝑐 ∈ 𝐹1 but one 2-cut contain 𝑣 . Let 𝜇𝑐 be the highest 𝐶-node of 𝐹1 that does not contain 𝑣 , if it
exists. If it does not exist, set 𝜇𝑐 = ∅. Suppose there exists a 𝑐′ ∈ 𝐹1 strictly below 𝜇𝑐 . All vertices of 𝑐

′
cannot

be dominated by 𝑣 . We are not in the first case, therefore 𝑐′ must contain some vertex of 𝜇′, i.e. 𝑐 ∈ 𝐹2. Let
𝑐 ∈ 𝐹1 \ {𝜇𝑐 } if 𝜇𝑐 exists, else let 𝑐 ∈ 𝐹1. Let 𝑥 ∈ 𝑞−1({𝑑}) be an interesting vertex in 𝑐 different from 𝑢. 𝑥 and

its neighbors can only be dominated by 𝑣 , therefore 𝑁 [𝑥] ⊆ 𝑁 [𝑣] and 𝑥 cannot be interesting, i.e. 𝑥 does not

exist. Similarly, let 𝑐 ∈ 𝐹2 and let 𝑥 ∈ 𝑞−1({𝑑}) be an interesting vertex in 𝑐 that is not in 𝜇𝑐 ∪ 𝜇′, if it exists. 𝑥
and its neighbors can only be dominated by𝑤 , therefore 𝑁 [𝑥] ⊆ 𝑁 [𝑤] and 𝑥 cannot be interesting, i.e. 𝑥

does not exist.

We therefore get that |𝑞−1({𝑑}) | ⩽ 6 ·MDS(𝐺, 𝑁 4 [𝑆]). This proves Claim 5.10. Moreover, by Corollary 5.9, we get

the following claim.

Claim 5.12. The number of interesting vertices of 𝐺 in 𝑆 is at most 19 ·MDS(𝐺, 𝑁 4 [𝑆]).

We can now get a bound on the number of interesting vertices in local 2-cuts.

Claim 5.13. Let𝐺 be a graph of asymptotic dimension 𝑑 with control function 𝑓 . Then, the number of (𝑓 (11) +5)-local
interesting vertices is bounded by 22(𝑑 + 1) ·MDS(𝐺).

This will directly imply the statement of the lemma. Fix 𝐵 ⊆ 𝑉 (𝐺) such that 𝐺 [𝐵] has diameter 𝑓 (11). We claim

the following:

Claim 5.14. Every vertex in a (𝑓 (11) + 5)-local 2-cut of 𝐺 that is in 𝐵 is also a in a 1-cut or a 2-cut of 𝐺 [𝑁 5 [𝐵]].
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Indeed, let 𝑣 ∈ 𝐵 such that 𝑐 = {𝑢, 𝑣} is a (𝑓 (11)+5)-local 2-cut of𝐺 . Let 𝑎, 𝑏 ∈ 𝑁 (𝑣)\𝑐 two distinct vertices separated
by 𝑣 , i.e. there are not two internally-disjoint 𝑎𝑏-paths in𝐺 [𝑁 𝑓 (11)+5 [𝑐]] −𝑐 . Notice that 𝑁 [𝐵] ⊆ 𝑁 𝑓 (11)+5 [𝑐] because
𝐵 has weak diameter at most 𝑓 (11). 𝑎𝑏 are separated by 𝑐 in 𝐺 [𝑁 [𝐵]], because 𝑎, 𝑏 ∈ 𝑁 [𝐵] and because no two

disjoint 𝑎𝑏-paths in 𝑁 [𝐵] ⊆ 𝑐 exist. Therefore, Claim 5.14 is proven.

Every interesting vertex of 𝐵 is either a 1-cut of𝐺 [𝑁 5 [𝐵]] or in a 2-cut of𝐺 [𝑁 5 [𝐵]] and interesting in𝐺 [𝑁 5 [𝐵]].
Indeed, by Claim 5.11, the interesting-ness of a vertex is certified by a vertex at distance at most 4.

By Claim 5.3, we can bound the number of vertices in 1-cuts of 𝐺 [𝑁 5 [𝐵]] in 𝐵 by 3MVC(𝐺 [𝑁 5 [𝐵]], 𝑁 [𝐵]) ⩽
3MVC(𝐺, 𝑁 [𝐵]), and by Claim 5.12, we can bound the number of interesting vertices of 2-cuts of𝐺 [𝑁 5 [𝐵]] in 𝐵 by

19MVC(𝐺 [𝑁 5 [𝐵]], 𝑁 4 [𝐵]) ⩽ 19MVC(𝐺, 𝑁 4 [𝐵]).
By the definition of the asymptotic dimension, there is a cover 𝐵0, 𝐵1, . . . , 𝐵𝑑 of𝐺 where the 11-components of 𝐵𝑖

are 𝑓 (11)-bounded. Note that each 𝐵𝑖 contains distinct 11-components which are of distance at least 12 from each

other. With an abuse of notation, when we write 𝐵 ∈ 𝐵𝑖 we mean that 𝐵 is a 11-component of 𝐵𝑖 . That is, we treat 𝐵𝑖
as the set of its 11-components. As 𝐵0, 𝐵1, . . . , 𝐵𝑑 is a cover of 𝑉 (𝐺) by subsets of diameter at most 𝑓 (11), we can
bound the number of (𝑓 (11) + 5)-local 2-cuts of𝐺 by summing the number of 2-cuts of all the𝐺 [𝑁 4 [𝐵𝑖]]’s. Let 𝐼 be
the set of interesting vertices in (𝑓 (11) + 5)-local 2-cuts of 𝐺 . We get

|𝐼 | ⩽
𝑑∑︁
𝑖=0

∑︁
𝐵∈𝐵𝑖

(3 ·MDS(𝐺, 𝑁 [𝐵]) + 19 ·MDS(𝐺, 𝑁 4 [𝐵])).

Notice that because the 𝐵𝑖 ’s are partitioned into their 11-components, all elements of {𝑁 5 [𝐵] |
𝐵 connected component of 𝐵𝑖} are pairwise disjoint. Therefore by Lemma 5.2, we get

|𝐼 | ⩽
𝑑∑︁
𝑖=0

22 ·MDS(𝐺) = 22(𝑑 + 1) ·MDS(𝐺).

This finishes the proof of Lemma 3.3.

5.4 Proof of Lemma 4.2: Brute-forcing is fast enough

To prove this, we need a few results from [Din17].

The structure of 3-connected 𝐾2,𝑡 -minor-free graphs. Let us give a quick overview of their result. The author defines

two types of graphs. The first type is a generalization of outerplanar graphs. Let 𝐺 be a graph with a specified

Hamiltonian cycle 𝐶 , which is called the reference cycle. Edges of 𝐺 that are not part of 𝐶 are called chords. Two

non-incident chords 𝑎𝑏 and 𝑐𝑑 are said to cross if the vertices 𝑎, 𝑐, 𝑏, 𝑑 appear in that order around 𝐶 . 𝐺 is said to be

of type-I if each chord crosses at most one other chord. Additionally, if two chords 𝑎𝑏 and 𝑐𝑑 do cross, then either

both 𝑎𝑐 and 𝑏𝑑 are edges of 𝐶 , or both 𝑎𝑑 and 𝑏𝑐 are edges of 𝐶 . The class of all type-I graphs is denoted by P.
Let 𝐻 be a type-I graph with reference cycle 𝐶 , and let 𝑎𝑏 and 𝑐𝑑 be two distinct edges of 𝐶 . Assume all chords of

𝐶 lie between the two paths of 𝐶 \ {𝑎𝑏, 𝑐𝑑}. If 𝑎𝑏 and 𝑐𝑑 share an endpoint, say 𝑎 = 𝑑 , then 𝐻 is called a fan with

corners 𝑎, 𝑏, 𝑐 . The vertex 𝑎 is called the center of the fan, and the number of chords is called the fan’s length. If

𝑎𝑏 and 𝑐𝑑 have no shared endpoints, then for any subset 𝐹 ⊆ {𝑎𝑏, 𝑐𝑑}, 𝐻 \ 𝐹 is called a strip with corners 𝑎, 𝑏, 𝑐, 𝑑 ,

provided the minimum degree of𝐻 \𝐹 is at least two. The radius of a strip𝐻 asmax{𝑑𝐻 (ℎ,𝑦) | ℎ ∈ 𝐻, 𝑥 ∈ {𝑎, 𝑏, 𝑐, 𝑑}}.
Strips are proven to be 𝐾2,5-minor-free in [Din17], and it is not hard to see that if the radius of a strip is large, then

its corners form local cuts.

Let 𝐺 be a graph. Adding a fan or a strip to 𝐺 means identifying the corners of a fan or a strip (which is disjoint

from 𝐺) with distinct vertices of 𝐺 . An augmentation of 𝐺 is obtained by adding disjoint fans and strips to 𝐺 , with

the condition that if two corners are identified with the same vertex of 𝐺 , then one of them is the center of a fan,

and the other is either a center of a fan or a corner of a strip. For any integer𝑚, B𝑚 is defined as the class of graphs

on at most𝑚 vertices, and A𝑚 is the class of all augmentations of graphs in B𝑚 .

Proposition 5.15 (Corollary 1.6 of [Din17]). Let 𝑡 be an integer and C𝑡 be the class of 𝐾2,𝑡 -minor-free graphs.

Then there exists some𝑚5.15(𝑡) such that C𝑡 ⊆ A𝑚 (𝑡 ) .

Embedding components into a 3-connected graph. In the following, we prove Lemma 4.2.
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Already, note that our algorithm takes all 1-cuts. We can therefore assume that the rest of the graph that remains

to be solved is 2-connected: if 𝐶1 is the set of all 1-cuts of𝐺 , let 𝑉1,𝑉2, . . . ,𝑉𝑘 be the different connected components

of 𝐺 −𝐶1. Consider for every 𝑖 ∈ {1, 2, . . . , 𝑘}, 𝐺𝑖 := 𝐺 [𝑉𝑖 ∪ 𝑁 [𝑉𝑖] ∩𝐶1] and do the analysis on this graph. If there

exists a constant approximation algorithm for 2-connected graphs, then there exists a constant approximation

algorithm for 1-connected graphs. We want to do a similar reasoning for 2-cuts. However, our algorithm does not

take all 2-cuts, but only interesting vertices of these 2-cuts.

In 𝐺 , let 𝑋 be the set of𝑚4.2(𝑡)-local 1-cuts, 𝑋2 be the set of vertices inside an𝑚3.3(C𝑡 )-local 2-cuts, 𝐼 the set of
𝑚3.3(C𝑡 )-important 𝐶1 the set of 1-cuts, and 𝐶2 the set of 2-cuts. Finally, let 𝑌 = 𝑋 ∪ 𝐼 and𝑈 be the set of vertices in

{𝑢 ∈ 𝑁 [𝑌 ] | 𝑁 [𝑢] ⊆ 𝑁 [𝑌 ]} the set of vertices dominated by 𝑌 that do not have neighbors not dominated by Y.

Let 𝐶 be a connected component of𝐺 − (𝑌 ∪𝑈 ). We want to embed 𝐺 [𝐶] into a 3-connected graph 𝐺 ′ without
creating any 𝐾2,𝑡 minor in𝐺 ′. Let𝐺1 = 𝐺 [𝐶 ∪ (𝑁 [𝐶] ∩ 𝑌 )]. We add the edges {𝑢, 𝑣} that are formed by contracting

the connected components of 𝐺 −𝐺1. We claim that 𝐺1 is 3-connected. Let 𝑐 be a 1-cut or 2-cut of 𝐺1, separating

it into at least two connected components 𝐴 and 𝐵. It cannot be that 𝑐 ⊆ 𝑌 ∪𝑈 , as 𝐶 is connected and would not

intersect 𝑐 . Therefore, 𝑐 is not a 1-cut of 𝐺 , nor an interesting cut. If it is not a 2-cut, there exists an 𝐴𝐵-path in 𝐺

that does not intersect 𝑐 , and this path would still exist after the contraction of the definition of 𝐺1, contradiction. If

𝑐 is a 2-cut of𝐺 , one of the vertices 𝑣 of 𝑐 = {𝑢, 𝑣} is not interesting. There are two possibilities: either 𝑁 [𝑣] ⊆ 𝑁 [𝑢],
or all connected components of 𝐺 − 𝑐 but one (assuming 𝐺 is connected) are dominated entirely by 𝑢. In the first

scenario, there are two subcases. If 𝑢 ∈ 𝑌 , then 𝑣 ∈ 𝑈 and 𝑐 ⊆ 𝑌 ∪𝑈 , contradiction. Otherwise, 𝑢 ∉ 𝑌 . Note that

𝑁 [𝑢] ⊈ 𝑁 [𝑣] as 𝑢 and 𝑣 would be true twins. 𝑣 has to dominate all but one component of 𝐺 − 𝑐 . Then this also

applies for 𝑢, and we enter the second scenario. In the second scenario, delete all vertices that are in connected

components of 𝐺 − 𝑐 that are dominated entirely by 𝑢, and add the edge 𝑢𝑣 if it does not exist. Again, this creates a

graph with diameter at least one less, and this does not create any new 2-cuts. The resulting graph𝐺 ′ is 3-connected,
as all 2-cuts from 𝐺 ′ have been handled.

Bounding the diameter of components. By Proposition 5.15, there exists some𝑚5.15(𝑡) such that𝐺 ′ is an augmenta-

tion of some graph𝐺 ′ of bounded size, to which strips and fans are added. We would like to say that𝐺 ′ has bounded
radius. 𝐺 ′ and the attached fans have bounded radius, and we only have to bound the size of the strips of 𝐺 ′. Note
that if some strip has radius at least 3𝑚3.3(C𝑡 ), its corners in𝐺 ′ form two𝑚3.3(C𝑡 )-local 2-cuts 𝑐1 and 𝑐2 in𝐺 ′. Those
cuts are also𝑚3.3(C𝑡 )-local 2-cuts in 𝐺 , because 𝐺 ′ is an induced minor of 𝐺 : suppose that 𝑐 is a local cut in 𝐺 ′

but not in 𝐺 . There would be a short path in 𝐺 between two different connected components of 𝐺 ′ − 𝑐 . However,
as 𝐺 ′ is an induced minor of 𝐺 , the path still exists and can only be shorter. Furthermore, 𝑐1 and 𝑐2 are both in

𝑌 ∪𝑈 . Suppose they are not. Let 𝑐1 = {𝑢, 𝑣}. As the strip has a long radius, it cannot be that 𝑁 [𝑢] ⊆ 𝑁 [𝑣] or that
𝑁 [𝑣] ⊆ 𝑁 [𝑢]. Without loss of generality, 𝑢 dominates all but one connected component of𝐺 − 𝑐 . This means that 𝑢

is connected to some vertex on the other end of its own strip, which is impossible. Finally, 𝐺 ′ cannot include strips
of radius at least 3𝑚3.3(C𝑡 ). Therefore,𝐺 ′ has radius bounded by 3𝑚3.3(C𝑡 ) +𝑚5.15(𝑡), 𝐶 also has radius bounded by

𝑚4.2(𝑡) = 3𝑚3.3(C𝑡 ) +𝑚5.15(𝑡) + 3.

5.5 Proof of Theorem 4.4: A linear approximation in constant rounds

The goal of this sub-section is to build a simple (2𝑡 −1)-approximation algorithm that has constant round complexity

(that does not depend on 𝑡 ) in 𝐾2,𝑡 -minor-free graphs.

We need the following result from Ore.

Lemma 5.16 ([Ore62]). Every 𝑛-vertex graph without isolated vertices (a vertex with no adjacent edges) has a

dominating set of size at most
𝑛
2
.

When some graph 𝐺 is considered, 𝛾 (𝑣) will denote the minimum number of vertices different from 𝑣 needed to

dominate 𝑁 [𝑣]. We will also denote the set of vertices whose neighborhood cannot be dominated by less than two

vertices (other than the original vertex) by 𝐷2(𝐺) = {𝑣 ∈ 𝑉 (𝐺) | 𝛾 (𝑣) ⩾ 2}.

Lemma 5.17. Let 𝐺 a graph, 𝑆 ⊆ 𝑉 be a set of vertices, and 𝐷 ⊆ 𝑁 2 [𝑆] a minimum dominating set of 𝑁 [𝑆] in 𝐺 of

size 𝑘 . Then there exists some minor 𝐻 of 𝐺 [𝑁 2 [𝑆]] such the following hold:

(1) 𝑉 (𝐻 ) = 𝐴 ⊔ 𝐵 and |𝐵 | = 𝑘 ,
(2) 𝐻 [𝐴] is edgeless and 𝑑𝐻 (𝑎) ⩾ 2 for all 𝑎 ∈ 𝐴 (𝑑𝐻 (𝑣) is the degree of 𝑣 in 𝐻 ),
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(3) and |𝐴| ⩾ 1

2
| (𝐷2 ∩ 𝑆) \ 𝐷 |.

Proof. Let𝐺 ′ = 𝐺 [𝑁 2 [𝑆]]. Let us start by constructing a minor as in Lemma 1 of [KSV21]. Take 𝐷 a dominating set

of size 𝑘 , and write 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑘 }. Define 𝐻 as the minor of 𝐺 ′ by contracting the branch sets 𝑏𝑖 defined as

follows.

𝑏𝑖 = 𝑁𝐺 ′ [𝑑𝑖] \ (𝐷2 \ 𝐷 ∪
⋃
𝑗<𝑖

𝑁 [𝑑𝑖] ∪ {𝑑𝑖+1, . . . , 𝑑𝑘 })

Let 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑘 } and𝐴 = (𝐷2∩𝑆) \𝐷 . For any 𝑣 ∈ (𝐷2∩𝑆) \𝐷 , we have 𝑑𝐻 (𝑣) ⩾ 2, as 𝐷 is a dominating set of

𝑁 [𝑆]. Here we need an additional trick: we remove edges 𝑢𝑣 in triangles of the form 𝑢, 𝑣, 𝑑 where 𝑢, 𝑣 ∈ (𝐷2 ∩ 𝑆) \𝐷
and 𝑑 ∈ 𝐷 . This is always possible while keeping 𝑑𝐻 (𝑣) ⩾ 2 for any 𝑣 ∈ (𝐷2 ∩ 𝑆) \ 𝐷 . Indeed, 𝐷 is a dominating set

of 𝐺 and 𝛾 (𝑣) ⩾ 2. Since 𝛾 (𝑣) ⩾ 2, there exist two paths in 𝐺 of length at most 2 from 𝑣 to distinct vertices of 𝐷 .

Moreover, these two paths only intersect at 𝑣 . One can check that these paths also exist in 𝐻 . We now want to

contract some edges so that every non-contracted vertex left in (𝐷2 ∩ 𝑆) \ 𝐷 is adjacent to two vertices of 𝐵 in 𝐻 .

Consider the induced subgraph𝐻 [(𝐷2∩𝑆) \𝐷]. Let 𝐼 be its set of isolated vertices and 𝐽 = (𝐷2∩𝑆) \ (𝐷 ∪ 𝐼 ) the rest
of the vertices. Every vertex of 𝐼 is adjacent to two vertices of 𝐵 in 𝐻 . However, it is not the case for vertices in 𝐽 . By

definition, 𝐻 [𝐽 ] is a graph with no isolated vertices. Let 𝐷 ′ be a minimum dominating set of 𝐻 [𝐽 ], which is of size

at most
1

2
· |𝐽 | by Lemma 5.16. Every vertex 𝑗 ∈ 𝐽 is adjacent to some 𝑏𝑘 𝑗

(because 𝐷 is a dominating set). Contract

the edges 𝑗𝑏𝑘 𝑗
for 𝑗 ∈ 𝐷 ′, i.e. for every 𝑗 ∈ 𝐷 ′, add the vertex 𝑗 to the branch set 𝑏𝑘 𝑗

and remove 𝑗 from 𝐴. Because

𝐷 ′ is a dominating set of 𝐽 , every vertex in 𝐽 \ 𝐷 ′ is now adjacent to two vertices of 𝐵 in 𝐻 . Moreover, because

|𝐷 ′ | ⩽ 1

2
· |𝐽 | ⩽ 1

2
· | (𝐷2∩𝑆) \𝐷 |, we have |𝐴| ⩾ 1

2
· | (𝐷2∩𝑆) \𝐷 |. Delete all the edges from𝐻 [𝐴]. This ends the proof. □

Using the same notation as in the above lemma, the next lemma bounds the size of 𝐴 with respect to |𝐵 | on
𝐾2,𝑡 -minor-free graphs.

Lemma 5.18. Let𝐺 = (𝐴⊔𝐵, 𝐸) a 𝐾2,𝑡 -minor-free graph such that𝐺 [𝐴] is edgeless and every vertex 𝑣 ∈ 𝐴 has degree

at least 2. Then |𝐴| ⩽ (𝑡 − 1) |𝐵 |.

Proof. First, apply some preprocessing to the graph: if there exists some 𝑎 ∈ 𝐴 and 𝑏,𝑏′ ∈ 𝑁 (𝑎) such that 𝑏 and 𝑏′

are not connected in𝐺 [𝐵], then we can contract the edge 𝑎𝑏, and from now on consider the newly contracted graph

instead of 𝐺 . This creates a new “red” edge 𝑏𝑏′. Put it in 𝑅, the set of red edges. Thinking about red edges as paths

of length 2 allows us to do a fine-grain analysis of the size of |𝐴|. Keep repeating this step whenever some such 𝑎

exists, and let 𝐺 ′ = (𝐴′ ⊔ 𝐵, 𝐸′) be the final graph obtained after this procedure.

𝑮[𝑩]

𝒂

𝒃 𝒃′

𝒃 𝒃′

Fig. 1. An explanation of the preprocessing procedure. Here the dashed squiggly edge represents the lack of path in 𝐺 [𝐵].

We prove by induction on |𝐵 | that |𝐴′ | + |𝑅 | ⩽ (𝑡 − 1) |𝐵 |.
The base case with 𝐵 = ∅ is trivial. If 𝐵 is not empty, let 𝐶 be a connected component of 𝐺 ′ [𝐵]. We can find

some 𝑐 ∈ 𝐶 such that 𝐺 ′ [𝐶 \ {𝑐}] is connected (for instance, one can take a leaf in a BFS tree of 𝐺 ′ [𝐶 \ {𝑐}]). Let
𝑅(𝑐) := {𝑐𝑏 ∈ 𝐸′ |𝑏 ∈ 𝑉 (𝐵)} ∩ 𝑅 denote the set of red edges that touch 𝑐 , i.e. the red edges that are not in𝐺 ′ [𝐵 \ {𝑐}].
Let 𝑎 ∈ 𝑁 (𝑐) ∩𝐴′ and 𝑏 ∈ 𝑁 (𝑎) \ {𝑐}. Then 𝑏 ∈ 𝐶 , i.e. 𝑏 is in the same connected component of 𝐺 ′ [𝐵] as 𝑐 .
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𝒄

𝒃1

𝒂1 𝒂2

𝒃2

𝑵 (𝒄) ∩𝑨′

𝑪 \ {𝒄}

Fig. 2. The vertices at the top are in 𝐴′ and the vertices on bottom are in 𝐵. In the yellow region, the neighbors 𝑎𝑖 of 𝑐 in 𝐴
′
,

which are all connected to a vertex 𝑏𝑖 ∈ 𝐶 \ {𝑐} in the red region. 𝑐 and the 𝑏𝑖 are all in the same connected component of𝐺 [𝐵].

Thus, we have the bound |𝑁 (𝑐) ∩𝐴′ | + |𝑅(𝑐) | ⩽ 𝑡 − 1, as otherwise we would obtain a 𝐾2,𝑡 minor by contracting

the vertex set𝐶 \ {𝑐} ≠ ∅. Remove the vertex 𝑐 from 𝐵 and the vertices 𝑁 (𝑐) ∩𝐴′ from 𝐴′, to maintain the condition

on the vertex degrees of 𝐴′. Notice that for each 𝑎 ∈ 𝐴′ \ 𝑁 (𝑐), if 𝑏, 𝑏′ ∈ 𝑁 (𝑎) then 𝑏 and 𝑏′ are still connected in

𝐺 ′ [𝐵]. Indeed, if they were connected before but not anymore, we would have 𝑏, 𝑏′ ∈ 𝐶 , but as 𝐶 \ {𝑐} is connected,
we would get a contradiction. This new smaller graph contains all the red edges except the ones in 𝑅(𝑐). We

have removed at most 𝑡 − 1 vertices from 𝐴′ or edges from 𝑅, so by applying induction hypothesis we have that

|𝐴′ | + |𝑅 | ⩽ (𝑡 − 1) |𝐵 |. Finally, |𝐴| = |𝐴′ | + |𝑅 | ⩽ (𝑡 − 1) |𝐵 |. □

Moreover, we prove that in a graph with no true twins, 𝐷2 is a dominating set.

Lemma 5.19. Let 𝐺 be a graph with no true twins and let 𝑣 ∈ 𝑉 (𝐺) such that 𝛾 (𝑣) = 1. Then there exists some

𝑢 ∈ 𝑉 (𝐺) such that 𝛾 (𝑢) ⩾ 2 and 𝑁 [𝑣] ⊆ 𝑁 [𝑢].

Proof. Let 𝑣 ∈ 𝑉 (𝐺) such that 𝛾 (𝑣) = 1. Therefore, there exists some 𝑢 such that 𝑁 [𝑣] ⊊ 𝑁 [𝑢] because 𝐺 contains

no true twins. Take 𝑢 such that 𝑁 [𝑢] is maximal. Then 𝛾 (𝑢) ⩾ 2. Indeed, if we had 𝛾 (𝑢) = 1, there would be some

other vertex 𝑢′ such that 𝑁 [𝑢] ⊊ 𝑁 [𝑢′], because 𝐺 does not contain true twins. Contradiction. □

Using the preceding lemmas, we get the following.

Corollary 5.20. Let 𝐺 be a graph, and 𝑆 ⊆ 𝑉 (𝐺) a subset of vertices such that 𝐺 [𝑁 2 [𝑆]] is 𝐾2,𝑡 -minor free. Then

|𝐷2(𝐺) ∩ 𝑆 | ⩽ (2𝑡 − 1)MDS(𝑁 [𝑆]).

Proof. Let 𝐻 be the minor defined in Lemma 5.17. Apply Lemma 5.18 on 𝐻 . We get that |𝐷2(𝐺) \ 𝐷 | ⩽ 2|𝐴| ⩽
2(𝑡 − 1)MDS(𝐺), so |𝐷2(𝐺) | ⩽ MDS(𝐺) + |𝐷2(𝐺) \ 𝐷 | ⩽ (2𝑡 − 1)MDS(𝐺). □

We can now prove that the following is an (2𝑡 − 1)-approximation algorithm in 𝐾2,𝑡 -minor-free graphs.

(1) Make the graph without true twins. 𝑢 and 𝑣 are true twins in 𝐺 if 𝑁 [𝑢] = 𝑁 [𝑣]. The true-twin-less graph
associated to 𝐺 is largest subgraph of 𝐺 with no true twins.

(2) Return the set 𝐷2 = {𝑣 ∈ 𝑉 (𝐺) | �𝑢 ∈ 𝑉 (𝐺 −𝑣), 𝑁 [𝑣] ⊆ 𝑁 [𝑢]}. It is the set of all vertices whose neighborhood
cannot be dominated by a single vertex other than itself.

The round complexity of this algorithm is constant, and does not depend on 𝑡 . Moreover, from Corollary 5.20 and

the fact that the true-twin-less graph associated to 𝐺 has the same domination number as 𝐺 , we get that this is

indeed a (2𝑡 − 1)-approximation algorithm. This proves Theorem 4.4.
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