Shorter Labeling Schemes for Planar Graphs

Cyril Gavoille
LaBRI - University of Bordeaux
Joint with Marthe Bonamy (CNRS Bordeaux)
and Michał Pilipczuk (U. Warsaw)

SODA – Salt Lake City, Utah – January 5, 2020
Representation of a Graph

adjacency list

matrix

1 node = 1 pointer in the data-structure
(it does not carry any specific information)
Implicit Representation

To associate with the nodes more information, typically adjacency, and to remove the data-structure.

Interval graphs: \(u \mapsto I(u) \subseteq [1, 2n] \)

Edges: \(u - v \iff I(u) \cap I(v) \neq \emptyset \)

Compact representation: \(O(\log n) \) bits/node
Possibly time \(O(n) \) algorithms vs. \(O(n+m) \)
Labeling Schemes

\(P = \) a graph property defined on pairs of nodes
\(F = \) a graph family

A \(P \)-labeling scheme for \(F \) is a pair \((\lambda, f)\) such that \(\forall G \in F, \forall u, v \in V(G) \):

- [labeling] \(\lambda(u, G) \) is a binary string
- [decoder] \(f(\lambda(u, G), \lambda(v, G)) = P(u, v, G) \)

Goal: to minimize the maximum label size

In this talk: \(P(u, v, G) \) is true \(\iff uv \in E(G) \)
Basic Example: Trees
Basic Example: Trees
Basic Example: Trees
Basic Example: Trees

\[\lambda(u,T) = (u, \text{parent}(u)) \text{ or } (u, u) \]

\[f(uv, xy) = (v = x \text{ or } u = y) \]
Basic Example: Trees

For trees with n nodes: $\sim 2\log n$ bits/node

(\text{the constant does matter \cite{Abiteboul et al. - SICOMP '06}})
Induced-Universal Graphs

[Babai, Chung, Erdös, Graham, Spencer ’82]

A graph U is an **induced-universal** graph for the family F if every graph of F is isomorphic to an induced subgraph of U.
A graph U is an **induced-universal** graph for the family F if every graph of F is isomorphic to an *induced* subgraph of U.
Induced-Universal Graphs

induced-universal graph U
graphs of F

c$\log n$-bit labeling \Leftrightarrow induced-universal graph of n^c nodes
Universal Graphs for Trees
(for $n=6$ nodes)

From the $(u,\text{parent}(u))$ labeling
⇒ induced-universal graph of $n^2=36$ nodes

Using DFS for T: (u,v)
⇒ $u>v$ or $u=v=1$
Universal Graphs for Trees (for $n=6$ nodes)

From the $(u, \text{parent}(u))$ labeling
\Rightarrow induced-universal graph of $n^2=36$ nodes

Using DFS for T: (u,v)
$\Rightarrow u>v$ or $u=v=1$
$\Rightarrow n(n-1)/2+1=16$ nodes
Universal Graphs for Trees
(for $n=6$ nodes)

From the $(u,\text{parent}(u))$ labeling
\Rightarrow induced-universal graph of $n^2=36$ nodes

Using DFS for T: (u,v)
$\Rightarrow u>v$ or $u=v=1$
$\Rightarrow n(n-1)/2+1=16$ nodes
Universal Graphs for Trees (universal trees)

\[
\begin{align*}
n = 1: & \quad \bullet \\
n = 2: & \quad \bullet - \bullet \\
n = 3: & \quad \bullet - \bullet - \bullet \\
n = 4: & \quad \bullet - \bullet - \bullet - \bullet \\
n = 5: & \quad \bullet - \bullet - \bullet - \bullet - \bullet \\
n = 6: & \quad \text{14 nodes} \\
n = 7: &
\end{align*}
\]

On graphs which contain all small trees, II.

F.R.K. Chung — R.L. Graham — N. Pippenger

Colloquia Mathematica Societatis János Bolyai

Labeling Schemes for Planar Graphs

Edge partition: combining schemes

Arboricity-\(k \) graphs: \((k+1)\log n\) bits

\[\Rightarrow \text{Planar (}k=3\text{): }4\log n \text{ bits} \quad [\text{KNR – STOC’88}] \]
Better Labeling Schemes

For trees: $\log n + O(\log^* n), \log n + O(1)$
[Alstrup,Rauhe – FOCS’02]
[Alstrup,Dahlgaard,B.T.Knudsen – FOCS’15 & JACM’17]
⇒ Arboricity-k: $k \log n + O(1)$
⇒ Planar: $3 \log n + O(1)$

For treewidth-k: $\log n + O(k \log \log n)$
[G.,Labourel – ESA’07]
⇒ Planar & Minor-free: $2 \log n + O(\log \log n)$
A New Bound

For planar & bounded genus: $\frac{4}{3} \log n + O(\log \log n)$

⇒

Induced-universal graph of $n^{4/3 + o(1)}$ nodes for n-node planar graphs (and bounded genus graphs)

Labeling the nodes is polynomial
Decoding adjacency takes constant time
Sketch of Proof (1/2)

Edge partition: $G = S \cup B$ (Strips & Border)

S: components have d layers $\sim n^{1/3}$
B: has treewidth ≤ 5 and $n/d \sim n^{2/3}$ nodes

BFS & shift $\in [1..d]$

$d \geq 3$

B_{i-1} S_i B_i S_{i+1} B_{i+1}
Sketch of Proof (1/2)

Edge partition: $G = S \cup B$ (Strips & Border)

S: components have d layers $\sim n^{1/3}$
B: has treewidth ≤ 5 and $n/d \sim n^{2/3}$ nodes

BFS & shift $\in [1..d]$

\[\text{BFS & shift in } [1..d] \]

\[\text{BFS & shift in } [1..d] \]

\[\text{BFS & shift in } [1..d] \]
Sketch of Proof (2/2)

Labeling for B: \(\log(n/d) \) ✔

Labeling for S: \(\log n + \log d \) new!

[up to +\(O(\log \log n) \) terms]

Problem: nodes in \(V(B) \) pay both labels
\[\Rightarrow \log(n/d) + \log n + \log d = 2\log n \] ❌

Improved labeling for S: nodes in \(V(B) \) pay only \(\log|B| = \log(n/d) \) bits!

\[\Rightarrow \text{nodes in } S\backslash V(B): \log n + \log d = \frac{4}{3} \log n \] ☺

\[\Rightarrow \text{nodes in } V(B): \log(n/d) + \log(n/d) = \frac{4}{3} \log n \] ☹
Improved Scheme for Treewidth-\(k\)

\[G = \text{treewidth-}k, \ V(G) = V_1 \cup V_2, \ K_u = N[u] = \text{simplicial complex of } u, \ |K_u| \leq k+1. \]

Lemma. \(G \) has a scheme providing, for each \(u \), \(\text{id}(u) \) and \(\lambda(u) \) st. \(\forall v \in K_u \) \(\text{id}(v) \) can be extracted from \(\lambda(u) \). Moreover, for \(u \in V_i \)

\[
|\lambda(u)| = \log|V_i| + O(k \log \log |V(G)|).
\]

\(u - v \Leftrightarrow \text{id}(v) \in \{\text{id}(K_u)\} \) or \(\text{id}(u) \in \{\text{id}(K_v)\} \)
Labeling Scheme for S

Key lemma. [2018,2019] If G is planar, there is a node partition into monotone paths taken from any given BFS such that contracting each one leads to a treewidth-8 graph.

Label $\lambda(u)$ consists of:
- the treewidth-8 scheme
- the depth of u in S (unless $u \in B$)
- 3 bits/path in the treewidth-8 scheme, i.e., $3 \times 8 = 24$ extra bits

[Extend to genus-g graphs]
Open Problems

1. Improve to $c \log n$ with $c < \frac{4}{3}$ for planar
2. Extend to minor-free graphs
3. Improve to $\log n + \theta(k)$ for treewidth-k
4. Prove lower bounds for planar or minor-free

Best lower bound for planar: $\log n + \Omega(1)$ ☹️

No hereditary family with $n! \cdot 2^{O(n)}$ labeled graphs (trees, planar, bounded genus, bounded treewidth, minor-free ...) is known to require labels of $\log n + \omega(1)$ bits.
THANK YOU!