
Short Labels by Traversal and Jumping

Nicolas Bonichon, Cyril Gavoille, and Arnaud Labourel 1,2

LaBRI
University Bordeaux 1

Bordeaux, France

Abstract

In this paper, we propose an efficient implicit representation of caterpillar and
bounded degree trees of n vertices. Our scheme, called Traversal & Jumping, assigns
to the n vertices of any bounded degree tree distinct binary labels of log2 n + O(1)
bits in O(n) time such that we can compute adjacency between two vertices only
from their labels. We use our result to improve previous known upper bound for
size of labels of implicit representation of outerplanar graphs (respectively planar
graphs) to 2 log2 n (respectively (3 log2 n).

Keywords: graphs, trees, adjacency labelling, induced-universal.

1 Introduction

The two basic ways of representing a graph are adjacency matrices and adja-
cency lists. The latter representation is space efficient for sparse graphs, but
adjacency queries require searching in the list, whereas matrices allow fast
queries to the price of a super-linear space. Another technique, called im-

plicit representation or adjacency labeling scheme, consists in assigning labels
to each vertex such that adjacency queries can be computed alone from the
labels of the two involved vertices without any extra information source. The
goal is to minimize the maximum length of a label associated with a vertex
while keeping fast adjacency queries.

1 Email: bonichon@labri.fr, gavoille@labri.fr, labourel@labri.fr
2 The three authors are supported by the project ”GeoComp” of the ACI Masses de
Données

Electronic Notes in Discrete Mathematics 28 (2007) 153–160

1571-0653/$ – see front matter © 2007 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

doi:10.1016/j.endm.2007.01.022

http://www.elsevier.com/locate/endm

Adjacency labeling schemes, introduced by [Bre66,BF67], have been in-
vestigated by [KNR88,KNR92]. They construct for several families of graphs
adjacency labeling schemes with O(logn)-bit labels. In particular, for trees
the scheme consists in: 1) choosing an arbitrary prelabeling of the n vertices,
a permutation of {1, . . . , n}; 2) choosing a root; and 3) setting the label of a
vertex to be the pair formed by its prelabel and the prelabel of its parent. The
adjacency test checks whether the prelabel for one vertex equals the parent
prelabel of the other vertex. Such labels are of 2 �log n� bits 3 , whereas �log n�
bits are clearly necessary since labels must be different.

Improving the label length of this straightforward scheme is not an easy
task. It has been however improved in a non trivial way by [AKM01]
to 1.5 log n + O(log log n) bits, and more recently to log n + O(log∗ n)
bits 4 [AR02], leaving open the question of whether trees enjoy a labeling
scheme with log n + O(1) bit labels.

An important observation of [KNR88] is that, every family F of graphs
supporting an adjacency labeling scheme with labels of at most c log n bits,
has a graph Un(F) with at most nc vertices such that every graph of F with
n vertices is an induced subgraph of Un(F). The graph Un(F) is called an
induced-universal graph for F .

1.1 Related work

Motivated by applications in XML search engines, and distributed applications
as peer-to-peer networks or network routing, several other distributed data-
structures with optimal O(log n)-bit labels, have been developed.

For instance, routing in trees [FG01,TZ01], near-shortest path routing in
specific networks [BG05,DL02,DL04], distance queries for interval, circular-
arc, and permutation graphs [BG05,GP03a], etc. have O(log n)-bit distributed
data-structures. And, specifically for several queries on trees, we have: nearest
common ancestor [AGKR04] with O(log n)-bit labels, ancestry [AAK+05] with
log n + O(

√
log n) bit labels, and small distance queries and other related

functions with log n + Θ(log log n) bit labels [KM01,ABR05]. Interestingly, it
is shown in [ABR05] that for sibling queries in trees of maximum degree Δ,
log n+Θ(log log Δ) bit labels are necessary and sufficient. A survey on labeling
schemes can be founded in [GP03b]. All these schemes achieve labeling of

3 All the logarithms are in base two.
4 log∗ n denotes the number of times log should be iterated to get a constant.

N. Bonichon et al. / Electronic Notes in Discrete Mathematics 28 (2007) 153–160154

length 5 log n + ω(1).

To our best knowledge, for reasonably large families of graphs, no dis-
tributed data-structure is known to have an optimal label size up to an addi-
tive constant. In particular, for adjacency queries in trees, the current lower
bound is log n and the upper bound is log n + O(log∗ n) [AR02]. This latter
scheme, based on a recursive decomposition of the tree in Θ(log∗ n) levels, has
adjacency query time of Ω(log∗ n).

1.2 Our contributions

In this paper we present adjacency labeling schemes for caterpillars (i.e., a
tree whose nonleaf vertices induce a path), and bounded degree trees with n

vertices. Both schemes assign distinct labels of log n + O(1) bits, and support
constant time adjacency queries. Moreover, all the labels can be constructed
in O(n) time. We observe that the recursive scheme of [AR02] for general
trees does not simplify for caterpillars or bounded degree trees. The worst-
case label length remains log n + O(log∗ n) and the adjacency query time
Ω(log∗ n). From [KNR88], this implies that caterpillar and bounded degree
trees have induced-universal graphs of O(n) vertices. Finally, we use our
result on bounded degree trees and special edge decomposition of planar and
outerplanar graphs

As far as we know, this is the first log n + O(1) bit adjacency labeling
supporting constant query time for a family of trees including trees with an
arbitrary numbers of arbitrary degree vertices (caterpillars). The technique,
called Traversal & Jumping, is interesting on its own, and we believe that it
might be extended to larger families of graphs, and to other queries.

1.3 Outline of techniques

Roughly speaking, the Traversal & Jumping technique consists in:

(i) Selecting a suitable traversal of the tree (or of the graph);
(ii) Associating with each vertex x some information C(x);
(iii) Performing the traversal and assign the labels with increasing but non

necessarily consecutive numbers to the vertices.

Intuitively, the adjacency test between x and y is done on the basis of C(x)
and C(y). Actually, the jumps achieved in Step 3 are done by selecting an

5 f(n) = ω(g(n)) if and only if g(n) = o(f(n)).

N. Bonichon et al. / Electronic Notes in Discrete Mathematics 28 (2007) 153–160 155

interval associated with each vertex in which its label must be. It is important
to note that the intervals are ordered in the same way as the corresponding
vertices in the traversal. Moreover, all vertex intervals must be disjoint. The
position of the label of x in its interval is tuned in order to encode C(x) in
the label in a self-extracting way. In general, the information C(x) determines
the intervals length of all the neighbours of x which are after in the traversal.

The main difficulty is to design the minimal information C(x) and to tune
the jumps, i.e., the interval length. The maximum label length is simply
determined by the value of the last label assigned during the traversal.

This technique fundamentally differs from previous schemes, in which a
label is essentially viewed as a unique prelabel of �log n� bits plus some small
extra fields, inevitably leading to labels of log n + ω(1) bits. On the contrary,
Traversal & Jumping abandons this representation, and uses the full range of
values [0, O(n)] to get labels of length log n + O(1).

Section 2 presents the scheme for caterpillars, Section 3 for bounded degree
trees, planar and outerplanar graphs. We propose further works in Section 4.

2 Caterpillars

A leaf is a vertex of degree one, and an inner vertex is a nonleaf vertex. A
tree is a caterpillar if the subgraph induced by its inner vertices is a path.

Theorem 2.1 The family of caterpillars with n vertices enjoys an adjacency

labeling scheme with labels of length at most �log n� + 6 bits, supporting con-

stant time adjacency query. Moreover, all the labels can be constructed in

O(n) time.

Consider a caterpillar G of n vertices. We denote by X = {x1, . . . , xk}
the inner vertices of G (ordered along the path). For every i, let Yi =
{yi,1, . . . , yi,di

} be the set of leaves attached to xi, with di = 0 if Yi = ∅.

The traversal used in our scheme is a prefix traversal of the caterpillar
rooted at x1 where the vertices of Yi are traversed before the vertex xi+1.
According to this traversal, the inner vertex xi stores necessary information
to determine the adjacency with the vertices of Yi∪{xi+1}. The leaves do not
store any specific information in their label.

With each inner vertex xi, we associate an interval of length pi, for some
suitable integer pi, in which its label �(xi) must be. For some technical reasons,
impose that pi = 2ti+3 with ti is an integer � 0. With the set of the labels of

N. Bonichon et al. / Electronic Notes in Discrete Mathematics 28 (2007) 153–160156

Yi we associate an interval of same length: (�(xi), �(xi) + pi]. In this interval
�(yi,j) = �(xi) + j. Finally, the interval associated with vertex xi+1 is (�(xi) +
pi, �(xi) + pi + pi+1].

The information encoded by xi is the ordered pair (ti, ti+1). To encode
this information, we use suffix-free code, i.e., a set of word such that no words
of the code is the ending of another one. A simple suffix-free code is defined
by code0(x) = 1 ◦ 0x, where 0x is the binary string composed of x zeros.
This code extends to more succinct codes defined recursively by codei+1(x) =
bin(x) ◦ codei(|bin(x)| − 1) for every i � 0. It is easy to check that, for every
i � 0, codei is suffix-free. E.g., code0(5) = 100000, code1(5) = 101 100, and
code2(5) = 101 10 10. The suffix code associated to ech inner vertices of the
caterpillar is the following:

C(xi) = code0(ti + 3 − |code1(ti+1)|) ◦ code1(ti+1) .

Three conditions on pi (and so on ti) have to be satisfied to ensure that the
code is valid. The value pi must be large enough to encode the information,
large enough so that all the labels of the vertices of Yi can be placed in the
interval (�(xi), �(xi) + pi], and pi � 8. The following relation ensures such
conditions:

ti = max {|code1(ti+1)| − 3, �lg di� − 3, 0} , with tk+1 = 0 .

So, given �(xi), �(xi+1) is computed with w = C(xi+1) and z = �(xi) + pi.

For all i, we can compute from C(xi) and �(x) the intervals containing the
leaves of xi and its following inner vertex and so compute adjacency between
vertices. Moreover, due to our encoding using log (the value ti) instead of real
values (pi), we obtain labels of �log n� + 6 bits.

3 Bounded degree trees and application for planar and

outerplanar graphs

Using traversal and jumping, we can achieve a similar scheme for tree of
bounded degree.

Theorem 3.1 The family of binary trees with n vertices enjoys an adjacency

labeling scheme with labels of length at most log n + O(1) bits, supporting

constant time adjacency query. Moreover, all the labels can be constructed in

O(n) time.

N. Bonichon et al. / Electronic Notes in Discrete Mathematics 28 (2007) 153–160 157

Using the edge decomposition of Gonçalves [Gon] for planar graph into
three trees which one has degree bounded by 4, we can improve the previous
upper bound known for planar graph.

Theorem 3.2 The family of planar with n vertices enjoys an adjacency label-

ing scheme with labels of length at most 3 log n+O(1) bits, supporting constant

time adjacency query. Moreover, all the labels can be constructed in O(n) time.

Similary, we can improve the previous known upper bound for outerplaar
graph using the fact they can be edge decomposed into two trees which one
has degree bounded by 3.

Theorem 3.3 The family of outerplanar with n vertices enjoys an adjacency

labeling scheme with labels of length at most 2 log n + O(1) bits, supporting

constant time adjacency query. Moreover, all the labels can be constructed in

O(n) time.

4 Conclusion

The unsolved implicit graph representation conjecture of [KNR88,KNR92] asks
whether every hereditary 6 family of graphs with 2O(n log n) labeled graphs of
n vertices enjoys a O(log n)-bit adjacency labeling scheme. This is motivated
by the fact that every family with at least 2cn log n labeled graphs of n vertices
requires adjacency labels of at least c log n bits.

Our schemes suggest that, at least for trees, labels of log n+O(1) bits may
be possible. Therefore, we propose to prove or to disprove the following:

Every hereditary family of graphs with at most n!2O(n) = 2n log n+O(n) labeled

graphs of n vertices enjoys an adjacency labeling scheme with labels of log n +
O(1) bits.

We observe that several well-known families of graphs are concerned by
this proposition: trees, planar graphs, bounded treewidth graphs, graphs of
bounded genus, graphs excluding a fixed minor (cf. [NRTW05] for counting
such graphs). Proving the latter conjecture appears to be hard, e.g., the best
upper bound for planar graphs is only 3 log n + O(log∗ n).

6 That is a family of graphs closed under induced subgraph taking.

N. Bonichon et al. / Electronic Notes in Discrete Mathematics 28 (2007) 153–160158

References

[AAK+05] Serge Abiteboul, Stephen Alstrup, Haim Kaplan, Tova Milo, and Theis
Rauhe. Compact labeling schemes for ancestor queries. SIAM Journal
on Computing, 2005.

[ABR05] Stephen Alstrup, Philip Bille, and Theis Rauhe. Labeling schemes
for small distances in trees. SIAM Journal on Discrete Mathematics,
19(2):448–462, 2005.

[AGKR04] Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe.
Nearest common ancestors: A survey and a new algorithm for a
distributed environment. Theory of Computing Systems, 37:441–456,
2004.

[AKM01] Serge Abiteboul, Haim Kaplan, and Tova Milo. Compact labeling
schemes for ancestor queries. In 12th Symposium on Discrete Algorithms
(SODA), pages 547–556. ACM-SIAM, January 2001.

[AR02] Stephen Alstrup and Theis Rauhe. Small induced-universal graphs
and compact implicit graph representations. In 43rd Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 53–62.
IEEE Computer Society Press, November 2002.

[BF67] Melvin A. Breuer and Jon Folkman. An unexpected result on coding the
vertices of a graph. Journal of Mathematical Analysis and Applications,
20:583–600, 1967.

[BG05] Fabrice Bazzaro and Cyril Gavoille. Localized and compact data-
structure for comparability graphs. In 16th Annual International
Symposium on Algorithms and Computation (ISAAC), volume 3827
of Lecture Notes in Computer Science, pages 1122–1131. Springer,
December 2005.

[Bre66] Melvin A. Breuer. Coding the vertexes of a graph. IEEE Transactions
on Information Theory, IT-12:148–153, 1966.

[DL02] Feodor F. Dragan and Irina Lomonosov. New routing schemes for
interval graphs, circular-arc graphs, and permutation graphs. In
14th IASTED International Conference on Parallel and Distributed
Computing and Systems (PDCS), pages 78–83, November 2002.

[DL04] Feodor F. Dragan and Irina Lomonosov. On compact and efficient
routing in certain graph classes. In 15th Annual International
Symposium on Algorithms and Computation (ISAAC), volume 3341 of

N. Bonichon et al. / Electronic Notes in Discrete Mathematics 28 (2007) 153–160 159

Lecture Notes in Computer Science, pages 402–414. Springer, December
2004.

[FG01] Pierre Fraigniaud and Cyril Gavoille. Routing in trees. In
Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, 28th

International Colloquium on Automata, Languages and Programming
(ICALP), volume 2076 of Lecture Notes in Computer Science, pages
757–772. Springer, July 2001.

[Gon] D. Gonalves. Covering planar graphs with 3 forests, one being of
maximum degree 4. submited.

[GP03a] Cyril Gavoille and Christophe Paul. Optimal distance labeling schemes
for interval and circular-arc graphs. In G. Di Battista and U. Zwick,
editors, 11th Annual European Symposium on Algorithms (ESA), volume
2832 of Lecture Notes in Computer Science, pages 254–265. Springer,
September 2003.

[GP03b] Cyril Gavoille and David Peleg. Compact and localized distributed data
structures. Journal of Distributed Computing, 16:111–120, May 2003.
PODC 20-Year Special Issue.

[KM01] Haim Kaplan and Tova Milo. Short and simple labels for small distances
and other functions. In 7th International Workshop on Algorithms and
Data Structures (WADS), volume 2125 of Lecture Notes in Computer
Science, pages 32–40. Springer, August 2001.

[KNR88] Sampath Kannan, Moni Naor, and Steven Rudich. Implicit
representation of graphs. In 20th Annual ACM Symposium on Theory
of Computing (STOC), pages 334–343. ACM Press, May 1988.

[KNR92] Sampath Kannan, Moni Naor, and Steven Rudich. Implicit
representation of graphs. SIAM Journal on Discrete Mathematics,
5:596–603, 1992.

[NRTW05] Serguei Norine, Neil Robertson, Robin Thomas, and Paul Wollan.
Proper minor-closed families are small. Journal of Combinatorial
Theory, Series B, 2005. To appear.

[TZ01] Mikkel Thorup and Uri Zwick. Compact routing schemes. In 13th

Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pages 1–10. ACM Press, July 2001.

N. Bonichon et al. / Electronic Notes in Discrete Mathematics 28 (2007) 153–160160

	Introduction
	Related work
	Our contributions
	Outline of techniques

	Caterpillars
	Bounded degree trees and application for planar and outerplanar graphs
	Conclusion
	References

