Distance labeling of permutation graphs

F. Bazzaro, C. Gavoille
Distance labeling

F. Bazzaro, C. Gavoille

Distance labeling of permutation graphs
Distance labeling
Distance labeling

F. Bazzaro, C. Gavoille Distance labeling of permutation graphs
Distance labeling

$$\text{Dist}(L(x), L(y)) = \text{dist}_G(x, y) = 3$$
Existing results

Distance labeling schemes:

- proper interval graphs: $2 \log n$ [GP03]
- permutation graphs: $\log^2 n$ [KKP00]

Routing schemes:

- $\Delta \log n$ with an additive factor 1 [DL04]
A permutation graph $G[\pi] = (V, E)$ is defined as follows:

- $V = \{1, 2, \ldots, n\}$
- $\{i, j\} \in E \iff (i - j)(\pi^{-1}(i) - \pi^{-1}(j)) < 0$
A permutation graph $G[\pi] = (V, E)$ is defined as follows:

- $V = \{1, 2, \ldots, n\}$
- $\{i, j\} \in E \iff (i - j)(\pi^{-1}(i) - \pi^{-1}(j)) < 0$

\[\pi = 4 \ 2 \ 5 \ 1 \ 3 \]
Permutation graphs

A permutation graph is the intersection graph of segments between two parallel lines.

\[\pi = 4\ 2\ 5\ 1\ 3 \]
Non-separating linear extension

For all $u, v, w \in V$ such that:

- $u < v < w$
- $\{u, v\}, \{v, w\} \in E$
Non-separating linear extension

For all $u, v, w \in V$ such that:

- $u < v < w$
- $\{u, v\}, \{v, w\} \in E$

\[\begin{array}{c}
\text{u} & \text{v} & \text{w} \\
\text{v} & \text{u} \\
\end{array} \]
Non-separating linear extension

For all $u, v, w \in V$ such that:

- $u < v < w$
- $\{u, v\}, \{v, w\} \in E$
Non-separating linear extension

For all \(u, v, w \in V \) such that:

- \(u < v < w \)
- \(\{u, v\}, \{v, w\} \in E \)

\[\Rightarrow \{u, w\} \in E \]
Non-separating linear extension

Lemma

For all $u, v, w \in V$ such that $u \leq v \leq w$,

- if $\{u, w\} \in E$, then $\{u, v\} \in E$ or $\{v, w\} \in E$;
- if $\{u, w\} \not\in E$, then $\{u, v\} \not\in E$ or $\{v, w\} \not\in E$.

F. Bazzaro, C. Gavoille Distance labeling of permutation graphs
Each vertex $i \in V$ is associated with the point of coordinates $(i, \pi^{-1}(i))$.

$$\{i, j\} \in E \iff (i - j)(\pi^{-1}(i) - \pi^{-1}(j)) < 0$$
Permutation graph draw in the plane

\[\pi^{-1}(u) \]

\[\pi = 5, 7, 2, 6, 1, 11, 8, 10, 4, 3, 9 \]
Neighbors

\[\pi^{-1}(u) \]

F. Bazzaro, C. Gavoille Distance labeling of permutation graphs
Particular sets

\[A = \{ u \in V \mid N^-(u) = \emptyset \} \]

\[B = \{ u \in V \mid N^+(u) = \emptyset \}. \]
Particular sets

\[\pi^{-1}(u) \]

1 2 3 4 5 6 7 8 9 10 11

A

B

F. Bazzaro, C. Gavoille

Distance labeling of permutation graphs
Adjacency

Lemma

For every $u \in V$, there exist $f_a(u), l_a(u) \in A$ such that $f_a(u) \leq l_a(u)$ and $N[u] \cap A = [f_a(u), l_a(u)] \cap A$.

Similarly, there exist $f_b(u), l_b(u) \in B$ such that $f_b(u) \leq l_b(u)$ and $N[u] \cap B = [f_b(u), l_b(u)] \cap B$.
Adjacency

\[A \]

\[l_A(u) \]

\[f_A(u) \]

\[u \]
Adjacency

\[f_A(u) \]

\[l_A(u) \]
Overlapping

Lemma

Let $u < v$ be two non-adjacent vertices. Then, $f_a(u) \leq f_a(v)$, $l_a(u) \leq l_a(v)$, $f_b(u) \leq f_b(v)$, and $l_b(u) \leq l_b(v)$.
Shortest path

Lemma

Let \(u < v \) be two non-adjacent vertices. Then there exists a shortest path \(u, w_1, \ldots, w_{k-1}, v \) such that \(w_1 \in \{l_a(u), l_b(u)\} \), and, if \(d_G(u, v) \geq 3 \), \(w_{k-1} \in \{f_a(v), f_b(v)\} \).
Lemma

Let $u < v$ be two non-adjacent vertices. Then there exists a shortest path $u, w_1, \ldots, w_{k-1}, v$ such that $w_1 \in \{l_a(u), l_b(u)\}$, and, if $d_G(u, v) \geq 3$, $w_{k-1} \in \{f_a(v), f_b(v)\}$.
Lemma

Let $u < v$ be two non-adjacent vertices. Then there exists a shortest path $u, w_1, \ldots, w_{k-1}, v$ such that $w_1 \in \{l_a(u), l_b(u)\}$, and, if $d_G(u, v) \geq 3$, $w_{k-1} \in \{f_a(v), f_b(v)\}$.
Let $u < v$ be two non-adjacent vertices. Then there exists a shortest path $u, w_1, \ldots, w_{k-1}, v$ such that $w_1 \in \{l_a(u), l_b(u)\}$, and, if $d_G(u, v) \geq 3$, $w_{k-1} \in \{f_a(v), f_b(v)\}$.
Shortest path

Lemma

Let $u < v$ be two non-adjacent vertices. Then there exists a shortest path $u, w_1, \ldots, w_{k-1}, v$ such that $w_1 \in \{l_a(u), l_b(u)\}$, and, if $d_G(u, v) \geq 3$, $w_{k-1} \in \{f_a(v), f_b(v)\}$.
Interval graphs

For each vertex u, we denote $I_B(u) = [f_a(u), l_a(u)]$ and $I_A(u) = [f_b(u), l_b(u)]$.

We denote by G_A the intersection graph defined by the set of intervals $\{I_A(u) \mid u \in A\}$. And G_B the intersection graph defined by the set of intervals $\{I_B(u) \mid u \in B\}$.
Interval graphs
Interval graphs
Interval graphs
Interval graphs

G_B

$I_B(11)$

$I_B(7)$

$I_B(5)$
Distance

Lemma

For all $u, v \in A$, $d_G(u, v) = 2d_{G_A}(l_A(u), l_A(v))$. Similarly, for all $u, v \in B$, $d_G(u, v) = 2d_{G_B}(l_B(u), l_B(v))$.
Lemma

For all $u, v \in A$, $d_G(u, v) = 2d_{G_A}(I_A(u), I_A(v))$. Similarly, for all $u, v \in B$, $d_G(u, v) = 2d_{G_B}(I_B(u), I_B(v))$.
Lemma

For all \(u, v \in A \), \(d_G(u, v) = 2d_{G_A}(I_A(u), I_A(v)) \). Similarly, for all \(u, v \in B \), \(d_G(u, v) = 2d_{G_B}(I_B(u), I_B(v)) \).
Distance Theorem

Theorem

Let \(u, v \) two vertices such that \(u < v \). Then,

1. if \(\pi^{-1}(u) > \pi^{-1}(v) \) then \(d_G(u, v) = 1 \);
Distance Theorem

Theorem

Let u, v two vertices such that $u < v$. Then,

1. if $\pi^{-1}(u) > \pi^{-1}(v)$ then $d_G(u, v) = 1$;
2. otherwise, if $f_a(v) \leq l_a(u)$ or $f_b(v) \leq l_b(u)$, then $d_G(u, v) = 2$;
Distance Theorem

Theorem

Let \(u, v \) two vertices such that \(u < v \). Then,

1. if \(\pi^{-1}(u) > \pi^{-1}(v) \) then \(d_G(u, v) = 1 \);
2. otherwise, if \(f_a(v) \leq l_a(u) \) or \(f_b(v) \leq l_b(u) \), then \(d_G(u, v) = 2 \);
3. otherwise, if \(f_a(v) \leq l_a(l_b(u)) \) or \(f_b(v) \leq l_b(l_a(u)) \) then \(d_G(u, v) = 3 \);
Distance Theorem

Theorem

Let u, v two vertices such that $u < v$. Then,

1. if $\pi^{-1}(u) > \pi^{-1}(v)$ then $d_G(u, v) = 1$;
2. otherwise, if $f_a(v) \leq l_a(u)$ or $f_b(v) \leq l_b(u)$, then $d_G(u, v) = 2$;
3. otherwise, if $f_a(v) \leq l_a(l_b(u))$ or $f_b(v) \leq l_b(l_a(u))$ then $d_G(u, v) = 3$;
4. otherwise, $d_G(u, v)$ is the minimum between:
 - $2 + 2d_{GB}(l_B(l_b(u)), l_B(f_b(v)))$
 - $2 + 2d_{GA}(l_A(l_a(u)), l_A(f_a(v)))$
 - $3 + 2d_{GA}(l_A(l_a(l_b(u))), l_A(f_a(v)))$
 - $3 + 2d_{GB}(l_B(l_b(l_a(u))), l_B(f_b(v)))$
Label size

For each vertex u:
Label size

For each vertex u:

- $2 \lceil \log n \rceil$ for the coordinates of u in the plane
Label size

For each vertex u:

- $2 \lceil \log n \rceil$ for the coordinates of u in the plane
- $4 \lceil \log n \rceil$ for $l_a(u)$ and $l_b(u)$
Label size

For each vertex u:

- $2 \lceil \log n \rceil$ for the coordinates of u in the plane
- $4 \lceil \log n \rceil$ for $l_a(u)$ and $l_b(u)$
- $4 \lceil \log n \rceil$ for $f_a(u)$ and $f_b(u)$
Label size

For each vertex u:

- $2 \lceil \log n \rceil$ for the coordinates of u in the plane
- $4 \lceil \log n \rceil$ for $l_a(u)$ and $l_b(u)$
- $4 \lceil \log n \rceil$ for $f_a(u)$ and $f_b(u)$
- $4 \lceil \log n \rceil$ for $l_a(l_b(u))$ and $l_b(l_a(u))$
Lemma

Labels are of $9 \lceil \log n \rceil + 6$ bits at most, and it takes constant time to decode the distance from the labels.
Conclusion

Lemma

Labels are of $9 \lceil \log n \rceil + 6$ bits at most, and it takes constant time to decode the distance from the labels.

Theorem

Permutation graphs have a shortest-path routing scheme with constant time protocol, and with $O(\log n)$ bit addresses, and, for every vertex u, the routing table of u is of size $O(\deg(u) \log n)$ bits. If the graph is bipartite then the size of the local routing tables can be reduced to $O(\log n)$ bit per vertex.
Conclusion