
Compact Name-Independent Routing with Minimum
Stretch

Ittai Abraham
School of Computer Science

and Engineering
Hebrew University of

Jerusalem
Jerusalem, Israel

ittaia@cs.huji.ac.il

Cyril Gavoille∗
Laboratoire Bordelais de

Recherche en Informatique
University of Bordeaux

Bordeaux, France

gavoille@labri.fr

Dahlia Malkhi
School of Computer Science

and Engineering
Hebrew University of

Jerusalem
Jerusalem, Israel

dalia@cs.huji.ac.il

Noam Nisan
School of Computer Science

and Engineering
Hebrew University of

Jerusalem
Jerusalem, Israel

noam@cs.huji.ac.il

Mikkel Thorup
AT&T Labs - Research
Shannon Laboratory

Florham Park, NJ 07932, USA

mthorup@research.att.com

ABSTRACT
Given a weighted undirected network with arbitrary node
names, we present a compact routing scheme, using a

Õ(
√

n) space routing table at each node, and routing along
paths of stretch 3, that is, at most thrice as long as the
shortest paths. This is optimal in a very strong sense. It is
known that no compact routing using o(n) space per node
can route with stretch below 3. Also, it is known that any
stretch below 5 requires Ω(

√
n) space per node.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—Distributed networks; G.2.2
[Discrete Mathematics]: Graph Theory—Network prob-
lems, Graph labeling .

General Terms
Algorithms, Theory.

Keywords
Compact Routing.

∗Supported by the project “PairAPair” of the ACI Masses
de Données.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’04,June 27–30, 2004, Barcelona, Spain.
Copyright 2004 ACM 1-58113-840-7/04/0006 ...$5.00.

1. INTRODUCTION
Routing is one of the fundamental problems of distributed

systems. Consider that we are given a set V of n nodes with
names chosen as an arbitrary permutation on {1, . . . , n}.
Also given is a weighted, undirected graph G = (V, E, ω)
indicating the connectivity between nodes and the edge cost
ω. A routing scheme is a distributed algorithm that allows
any node u to route messages to any other node v ∈ V .
In order to reduce memory overhead and incur costs that
are proportional to the actual distances between interacting
parties, there are two parameters routing schemes aim to
minimize:

1. Stretch: the ratio between the cost of the path taken
by the routing protocol and a minimum cost path from
source to destination.

2. Memory : the number of bits stored in each node.

The trivial solution to routing with optimal stretch 1 is to
store the complete routing table of the all pairs shortest path
algorithm. This solution requires each node to store n log n
bits and thus does not scale well as the number of nodes
in the system increases. The challenge is in minimizing the
stretch for compact solutions, in which each node stores o(n)
bits. The known lower bound in effect is that of Gavoille and
Gengler [10], indicating at least stretch 3 when each node
has memory o(n). For comprehensive surveys on compact
routing and compact network data structures, see [9, 11].

The minimal stretch compact routing problem has two ba-
sic variants: labeled routing and name independent routing.
Awerbuch et al. were the first to distinguish in [2] between
solutions that allow/disallow the designer to choose labels
for nodes as part of the solution. The variant that allows the
designer to name nodes with arbitrary labels is called labeled
routing. In this model, the node’s label may contain valuable
topology dependent information useful for routing, usually
with poly-log size labels. This tends to make the design of

solutions easier. The variant that does not allow labeling
of nodes in this way is called name independent routing. In
this variant node names may be chosen arbitrarily by an
adversary. This makes routing generally harder: Intuitively,
the routing algorithm must first discover information about
the location of the target, and only then route to it.

Indeed, optimal stretch 3 compact schemes for labeled
routing are already known. The first stretch 3 scheme was

given by Cowen [6] with Õ(n2/3) memory1. Later, Tho-
rup and Zwick [17, 18] improved the memory bound to only

Õ(
√

n) bits. They also gave an elegant generalization of
their scheme, achieving stretch 4k−5 (and even 2k−1 with

handshaking) using only Õ(n1/k) bits. Additionally, there
exist various labeled routing schemes suitable only for cer-
tain restricted forms of graphs. For example, routing in a
tree is explored, e.g., in [7, 18], achieving optimal routing.
This routing requires O(log2 n/ log log n) bits for local tables
and for headers, and this is tight [8].

As for name independent routing, the situation is quite
different. Initial results in [3] provide non-compact name

independent routing with Õ(n3/2) total memory. Awerbuch
and Peleg [4] were the first to show that constant-stretch
is possible to achieve with o(n) memory per node, albeit
with a large constant. Recently, Arias et al. significantly
reduced the stretch factor in [1], providing stretch 5 with

Õ(
√

n) memory per node. However, these results leave a
gap between the known lower bound of stretch 3.

1.1 Our results
We present the first optimal compact name independent

routing scheme for arbitrary undirected graphs. The scheme

has stretch 3, and memory complexity Õ(
√

n) per node.
Given the graph and the node names, we can construct the
routing information deterministically in polynomial time.
Moreover, when routing along our stretch 3 paths, each rout-
ing decision is performed in constant time.

Besides improving Arias et al. [1] stretch from 5 to 3, our
results answer affirmatively the challenge of optimal name
independent routing that was open since the initial state-
ment of the problem in 1989 [3]. Surprisingly, our results
show that allowing the designer to label the nodes does not
improve the stretch factor compared to the task when node
labels are predetermined by an adversary.

We note that our solution does not contain any strikingly
new technique. Rather our new scheme is a non-trivial com-
bination of simple standard techniques.

2. PRELIMINARIES
Consider a set V of n nodes wishing to participate in a dis-

tributed routing scheme. We assume the nodes are labeled
with an arbitrary permutation of the integers {1, . . . , n}.

We assume a graph G = (V, E, ω) with nonnegative edge
cost ω. For u, v ∈ V , let d(u, v) denote the cost of a mini-
mum path from u to v in G, were the cost of a path is the
sum of the weights of along its edges.

Each node has, for each outgoing edge, a unique name
from the set of integers {1, . . . , n}. We assume the fixed-
port model [7]. In this model the name of the outgoing
edge is fixed before the adversary chooses the permutation

1The notation Õ() indicates complexity similar to O() up to
poly-logarithmic factors.

of node labels. Thus the name of the outgoing edge has no
connection to the label of the node on the other side of the
edge.

When a node wants to send a message, we assume that
initially the sender only knows the name of the destination
node. This destination is written in the header of the mes-
sage. We require writable packet headers, namely, we allow
the routing algorithm to write a reasonable amount of in-
formation into the headers of messages as they are routed.
In our case, we use O(log2 n/ log log n) bit headers.

We note that our use of headers aim at useful tradeoffs
between current techniques used in the real world: source
directed routing, where the source puts the whole path to
the destination in the header, and routing based on routing
tables each router knows how to forward packets to any
destination. For source directed routing, the header may be
very large, and for the other routing, the routing tables may
become huge. In either case, we have problems with scaling.
Our point here is that a small amount of information in the
header can dramatically reduce the amount of information
needed at the routers.

It is no coincidence that our scheme and indeed all previ-
ous name independent schemes use writable packet headers.
A scheme that does not re-write packet headers must be
loop free and thus must have stretch 1 on any tree. Clearly
in a tree that is a star the center would have to code a
permutation using Ω(n log n) bits on the average.

Lemma 2.1. There do not exist loop free name indepen-
dent routing schemes with o(n) bits for each node on every
graph.

As for lower bounds for compact routing, note that for the
related problem of labeled routing, the work of [10] shows
that any stretch < 3 scheme must use a total of Ω(n2) bits.
Thus it cannot be the case that all nodes use o(n) bits. This
bound clearly holds also for the name independent model.

Actually, a slightly stronger memory bound of Ω(n2 log n)
bits for stretch < 3 can be proven for the name independent
model. This is derived by examining the complete bipartite
graph Kn/2,n/2 with uniform weights (likewise, the metric
space it induces). For stretch < 3, each node must route
optimally to its distance one neighbors. By counting all the
permutations on names it is clear that each node must use
Ω(n log n) bits.

Lemma 2.2. Any name independent routing scheme with
o(n log n) bits per node must have stretch at least 3.

3. THE STRETCH 3 SCHEME
In Sections 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, we will first present

some simple ingredients for our optimal stretch 3 scheme.
Then, in Section 3.8, we will combine them in our optimal
solution. Finally, in Section 3.9, we prove that the scheme
has the optimal stretch of 3.

3.1 Vicinity balls
For every integer κ ≥ 1, and for a node u ∈ V , let the

vicinity of u, denoted by Bκ(u), be the set of the κ closest
nodes to u, breaking ties by lexicographical order of node
names. Vicinities satisfy the following Monotonicity Prop-
erty:

Property 3.1. [3] For any κ ≥ 1, if v ∈ Bκ(u), and if
w is on a minimum cost path from u to v, then v ∈ Bκ(w).

Hereafter, the size of the vicinities is set to κ =
d4α

√
n log ne, where α > 2 is some constant fixed in Sec-

tion 4 and denote simply by B(u) = Bκ(u). Let b(u) denote
the radius of B(u), b(u) = maxw∈B(u) d(u, w).

As in previous compact routing schemes (see, e.g., [2, 6]),
each node u will know its vicinity B(u). We assume that u
has a standard dictionary over the names in B(u) so that in
constant time it can check membership and look up associ-
ated information.

3.2 Coloring
Our construction uses a partition of nodes into sets

C1, . . . , C√n, called color-sets, with the following two prop-
erties:

Property 3.2.

1. Every color-set has at most 2
√

n nodes.

2. Every node has in its vicinity at least one node from
every color-set.

From here on, if node u ∈ Ci we say that it has “color
i”, and denote c(u) = i. Property 3.2 clearly holds w.h.p.
if every node independently chooses a random color. Con-
structing a polynomial-time coloring satisfying Property 3.2
is discussed in Section 4.

3.3 Hashing names to colors
We shall assume a mapping h from node names to colors

which is balanced in the sense that at most O(
√

n log n)
names map to the same color. Each node u should be able
to compute h(w) for any destination w. If the names were
a permutation of {1, . . . , n}, we could just extract 1

2
log n

bits from the name, but we want to deal with arbitrary
names such as IP addresses. Arias et al. [1] suggest to use
a (log n)-universal hash function for a similar purpose. In
Section 5 we will present a function h that can be computed
in constant time.

3.4 Stretch 3 for metric spaces
To illustrate the use of these first three ingredients, we

here observe a very simple stretch 3 scheme with Õ(
√

n)
bits per node for any metric space, i.e., for a distributed
network in which the cost of communication between nodes
is governed by a distance function.

Every node u stores the following:

1. The names of all the nodes in B(u).

2. The names of all the nodes v such that c(u) = h(v).

Routing from u to v is done in the following manner:

1. If v ∈ B(u) or c(u) = h(v) then u routes directly to v
with stretch 1.

2. Otherwise, u forwards the packet to w ∈ B(u) such
that c(w) = h(v). Then from w the packet goes di-
rectly to v. The stretch is at most 3 since d(u, w) +
d(w, v) ≤ d(u, v) + 2d(u, v).

Note that in a general graph the main difficulty is in im-
plementing the path from w to v.

3.5 Routing on trees
We make use of the following result concerning topology-

dependent labeled routing:

Lemma 3.3. [7, 18] There is a routing scheme for any
tree T with n nodes that routes optimally between every pair
of nodes. The storage per node in T and the header size are
O(log2 n/ log log n) bits. Given the information of a node
and the label of the destination, routing decisions take con-
stant time.

For a tree T containing a node v, we let µ(T, v) denote the
routing information of node v from Lemma 3.3 and λ(T, v)
denote the destination label of v in T .

We shall apply Lemma 3.3 to several trees in the graph.

Each node will participate in Õ(
√

n) trees, so its total tree

routing information will be of size Õ(
√

n).

3.6 Landmarks
Borrowing from [3, 6], we designate one color to be special,

e.g., we set color 1 as the special color and call its color red.
We use the red nodes as routing landmarks. Let L denote
the set of red nodes. We have |L| ≤ 2

√
n. We have already

shown how to assign colors such that for every v ∈ V , the
vicinity B(v) contains one red node from L. For a node
v ∈ V , let `v denote an arbitrarily red node in B(v). For any
red node ` ∈ L, denote by T (`) the single-source minimum

cost tree rooted at `. Note that there are only Õ(
√

n) red
trees.

3.7 Partial shortest path trees
For any node u let T (u) denote the single-source minimum

cost tree rooted at u. In a partial shortest path tree, every
node v maintains µ(T (u), v) if and only if u ∈ B(v). Notice
that the set of nodes that maintain µ(T (u), ·) is a subtree of
T (u) that contains u.

Lemma 3.4. If x ∈ B(y) then given the label λ(T (x), y),
node x can route to node y along a minimum cost path.

Proof. By Property 3.1 for any node w on the minimum
cost path of T (x) between x and y we have x ∈ B(w). Thus
every node w on this path maintains µ(T (x), w).

3.8 The stretch 3 scheme
Every node u stores the following:

1. The names of all the nodes in the vicinity B(u) and
what link to use to reach them.

2. Routing information µ(T (`), u) of the tree T (`) for ev-
ery red node ` ∈ L.

3. Routing information µ(T (x), u) of the tree T (x) for
every node x ∈ B(u).

4. The names of all the nodes v such that c(u) = h(v).
For every node v such that c(u) = h(v), store one of
the following two options that produces the minimum
cost path out of the two:

(a) Store the labels 〈λ(T (`v), `v), λ(T (`v), v) 〉. The
routing path in this case would be from u to `v ∈
B(v) using λ(T (`v), `v) on the tree T (`v), and
from `v to v using λ(T (`v), v) on the tree T (`v).

(b) Let P (u, w, v) be a path from u to v com-
posed of a minimum cost path from u to w,
and of a minimum cost path from w to v with
the following properties: u ∈ B(w), and there
exists an edge (x, y) along the minimum path
from w to v such that x ∈ B(w) and y ∈
B(v). Among all these paths choose the low-
est cost path P (u, w, v) and store the labels
〈λ(T (u), w), x, (x → y), λ(T (y), v) 〉.
The routing path in this case would be from u to
w on T (u) using λ(T (u), w). This part is possible
by Lemma 3.4 on u ∈ B(w). Then from w to
y since x ∈ B(w) and the port number (x →
y) is stored. Finally from y to v on T (y) using
λ(T (y), v). This part is possible by Lemma 3.4
on y ∈ B(v).

Routing from u to v is done in the following manner:

1. If v ∈ B(u) or v ∈ L (v is a red node) or c(u) = h(v)
then u routes to v using its own information.

2. Otherwise, u forwards the packet to w ∈ B(u) such
that c(w) = h(v). Then from w the packet goes to v
using w’s routing information.

3.9 Analysis

Theorem 3.5. Let s, t ∈ V be any two nodes. The route
of the above scheme from s to t has stretch at most 3.

Proof. There are three cases to consider:

1. If t ∈ B(s) or t ∈ L then s routes on a minimum cost
path directly to t.

Otherwise, denote d = d(s, t), let z be a node such that
z ∈ B(s) and c(z) = h(t). For the case c(s) = h(t), we set
z = s. Let p(z, t) be the cost of the path chosen by z as the
lowest cost path from z to t among options 4a and 4b.

2. If on every minimum cost path from s to t there is a
node y such that y 6∈ B(s) and y 6∈ B(t) then b(s) +
b(t) ≤ d(s, t).

By examining option 4a the cost d(s, z)+p(z, t) of the
path taken by our routing scheme is bounded by the
cost of the path s z `t t. Thus d(s, z) +
p(z, t) ≤ d(s, z) + d(z, `t) + d(`t, t) ≤ b(s) + [b(s) + d +
b(t)] + b(t) ≤ 3d.

3. If there exists a minimum cost path, in which every
node is in B(s)∪B(t) then let (x, y) be an edge of this
path such that x ∈ B(s) and y ∈ B(t).

By examining the best choice in option 4b the cost
d(s, z)+p(z, t) of the path taken by our routing scheme
is bounded by the cost of the path s z s x →
y t. Thus d(s, z) + p(z, t) ≤ d(s, z) + d(z, s) +
d(s, t) ≤ b(s) + b(s) + d ≤ 3d.

4. ON POLYNOMIAL TIME COLORING
In this section, we discuss how to “derandomize” the col-

oring discussed in Section 3.2. We shortly describe how the
coloring of vertices can be done deterministically in polyno-
mial time. Let us first consider our coloring problem in a
slightly more abstract setting.

Given are m subsets of {1, . . . , n}, B1, . . . , Bm, where
|Bi| ≥ αk log n, for all i where k is a parameter and α is
some constant large enough. Our task is to color the n
items with k colors, c : {1, . . . , n} → {1, . . . , k}, such that
the following properties hold: (a) Each color appears at most
(αn log n)/k times; (b) Each color appears in each set Bi.
(In our application the n items are the vertices, m = n, the
m sets are the vicinities of the vertices, and k =

√
n.)

Clearly a random coloring will do the trick, as long as
m is polynomial in n. Very coarse calculations reveal that
the probability that any fixed condition of type (a) or type
(b) is not satisfied is bounded by n−α, for any value of k.
Thus the probability that some condition is not satisfied is
bounded by (mk + k)n−α.

How can we derandomize this construction and obtain
an explicit construction? While O(

√
n log n)-wise indepen-

dence suffices for the argument above, this still does not
provide a deterministic construction. It turns out that this
can be done using the pseudo-random generators for space
bounded computation of [14]. Each of the conditions can
be computed in Logspace and in [13] it is shown how the
seed of the pseudo-random generator can be incrementally
chosen as to pass a Logspace test.

Specifically, we can look at the output string of the gener-
ator as being y1, . . . , yn, where each yi is of length log k bits
and denotes the color of item i. Now, a Logspace machine
with a one-way access to this stream, can verify by simple
counting, for any fixed color j, that color j appears at most
(αn log n)/k times. Similarly, such a machine can verify, for
any fixed Bi and any fixed color j, that Bi includes an ele-
ment of color j. It follows that the output of the generator
will also almost surely pass each one of these tests.

Since the generator of [14] accepts O(log2 n) bits as in-
put, this is still not a complete derandomization. However,
in [13] it is shown how the input bits of the generator can
be incrementally chosen in polynomial time such that the
output passes a given Logspace test. As described in detail
in [15], the same algorithm with the same argument actually
allows choosing the input bits such that the output passes
a given polynomial size family of Logspace tests. As men-
tioned above, this is exactly the case here.

5. ON HASHING IN CONSTANT TIME
In this section, we implement a constant time hashing

function from names to colors assumed in Section 3.3
Suppose that the node names are taken from an arbitrary

space, e.g., IP addresses. We will now find a more efficient
hash function h mapping the n vertex names into the colors
0, . . . ,

√
n. The mapping should be balanced in the sense

that only O(
√

n log n) names map to any color.
The solution by Arias et al. [1] was to let h be a (log n)-

universal hash function, but with current implementations
via degree-(log n) polynomials, the evaluation of this func-
tion takes more than constant time. We suggest an alter-
native implementation of h which takes constant time to
evaluate. Consequently, each routing decision will take con-

stant time with our scheme.
The representation of our hash function will take O(

√
n)

space, but we can still store such a representation with each
node without violating our space bounds.

First we use a standard universal hash function h0 map-
ping names into [n2.5] in constant time. With high proba-
bility this mapping is collision free, that is, no two names
map to the same reduced name. We can check that h0 is
collision free, and if not, try another h0.

Set p = (log n)/2. We are now dealing with reduced names
of 5p bits, and we want to get down to colors of p bits. We
will use an idea of Tarjan and Yao [16]. For i = 1, . . . , 4,
let Ti be a random table mapping p bits into (5 − i)p bits.
Note that each table has 2p =

√
n entries. We then hash a

(5p)-bit reduced name x as follows. For i = 1, . . . , 4, let y be
the p least significant bits of x, and set x = Ti[y]⊕ (x � p).
At the end, x has only p = (log n)/2 bits which we return
as the color.

The above computation of colors from reduced names
takes constant time, and it is straightforward to show that
we expect a maximum of O(

√
n log n) reduced names to

map to the same color. Since the initial mapping to re-
duced names took constant time and was collision free, we
conclude that the overall mapping takes constant time and
maps only O(

√
n log n) names to each color.

The above construction use the same ingredients as are
used for the deterministic dictionaries of Hagerup et al. [12].
Using the techniques from [12], we can derandomize our con-
struction to run in O(n log n) time, yielding the desired bal-
anced constant-time mapping from names to colors.

6. ACKNOWLEDGEMENTS
We would like to thank the anonymous referee for helpful

comments.

7. REFERENCES
[1] M. Arias, L. J. Cowen, K. A. Laing, R. Rajaraman,

and O. Taka. Compact routing with name
independence. In Proceedings of the 15th annual ACM
Symposium on Parallel Algorithms and Architectures
(SPAA), pages 184–192, 2003.

[2] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg.
Compact distributed data structures for adaptive
routing. In Proceedings of the 21st annual ACM
Symposium on Theory of Computing (STOC), pages
479–489, 1989.

[3] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg.
Improved routing strategies with succinct tables.
Journal of Algorithms, 11(3):307–341, 1990.

[4] B. Awerbuch and D. Peleg. Sparse partitions. In
Proceedings of the 31st IEEE Symposium on
Foundations of Computer Science (FOCS), pages
503–513, 1990.

[5] J.L. Carter and M.N. Wegman. Universal classes of
hash functions. J. Comp. Syst. Sci., 18:143–154, 1979.

[6] L. J. Cowen. Compact routing with minimum stretch.
In Proceedings of the 10th annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages
255–260, 1999.

[7] P. Fraigniaud and C. Gavoille. Routing in trees. In
Proceedings of the 28th International Colloqium on

Automata, Languages and Programming (ICALP),
pages 757–772. Volume 2076 of LNCS, 2001.

[8] Pierre Fraigniaud and Cyril Gavoille. A space lower
bound for routing in trees. In 19th Annual Symposium
on Theoretical Aspects of Computer Science (STACS),
volume 2285 of LNCS, pages 65–75, 2002.

[9] C. Gavoille. Routing in distributed networks: overview
and open problems. ACM SIGACT News,
32(1):36–52, 2001.

[10] C. Gavoille and M. Gengler. Space-efficiency for
routing schemes of stretch factor three. Journal of
Parallel and Distributed Computing, 61(5):679–687,
2001.

[11] C. Gavoille and D. Peleg. Compact and localized
distributed data structures. Distributed Computing,
16(2-3):111–120, 2003.

[12] T. Hagerup and P.B. Miltersen, R. Pagh:
Deterministic Dictionaries. J. Algorithms 41(1): 69-85
(2001).

[13] N. Nisan. RL ⊆ SC. In Proceedings of the 24th annual
ACM Symposium on Theory of computing (STOC),
pages 619–623, 1992.

[14] N. Nisan. Pseudorandom generators for space-bounded
computation. Combinatorica, 12(4):449–461, 1992.

[15] D. Sivakumar. Algorithmic derandomization via
complexity theory. In Proceedings of the 34th annual
ACM Symposium on Theory of Computing (STOC),
pages 619–626, 2002.

[16] R. E. Tarjan and A. C. Yao. Storing a Sparse Table.
Commun. ACM 22(11): 606–611 (1979)

[17] M. Thorup and U. Zwick. Approximate distance
oracles. In Proceedings of the 33rd annual ACM
Symposium on Theory of Computing (STOC), pages
183–192, 2001.

[18] M. Thorup and U. Zwick. Compact routing schemes.
In Proceedings of the 13th annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA), pages
1–10, 2001.

	Introduction
	Our results

	Preliminaries
	The Stretch 3 Scheme
	Vicinity balls
	Coloring
	Hashing names to colors
	Stretch 3 for metric spaces
	Routing on trees
	Landmarks
	Partial shortest path trees
	The stretch 3 scheme
	Analysis

	On Polynomial Time Coloring
	On Hashing in Constant Time
	Acknowledgements
	REFERENCES -9pt

