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ABSTRACT
We prove that any graph excluding Kr as a minor has can
be partitioned into clusters of diameter at most ∆ while re-
moving at most O(r/∆) fraction of the edges. This improves
over the results of Fakcharoenphol and Talwar, who building
on the work of Klein, Plotkin and Rao gave a partitioning
that required to remove O(r2/∆) fraction of the edges.
Our result is obtained by a new approach that relates the
topological properties (excluding a minor) of a graph to
its geometric properties (the induced shortest path metric).
Specifically, we show that techniques used by Andreae in
his investigation of the cops and robbers game on graphs
excluding a fixed minor, can be used to construct padded
decompositions of the metrics induced by such graphs. In
particular, we get probabilistic partitions with padding pa-
rameter O(r) and strong-diameter partitions with padding
parameter O(r2) for Kr-free graphs, O(k) for treewidth-k
graphs, and O(log g) for graphs with genus g.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph al-
gorithms

∗Supported in part by NSF awards CCF-1016799 and CCF-
1319811, and grant from the CMU-Microsoft Center for
Computational Thinking.
†Supported in part by ISF grant No. (523/12) and
by the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement n◦303809.
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
STOC’14, 31 May 31 - 3 June, 2014, New-York, NY, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-2710-7/14/05 ...$15.00
http://dx.doi.org/10.1145/2591796.2591849.

General Terms
Algorithms, Theory

Keywords
Padded decomposition, excluded minor, cops and robbers

1. INTRODUCTION
This paper considers the problem of constructing random
partitioning schemes for minor-free graphs. Loosely speak-
ing, the goal is to find a partition of the graph vertices so
that each part (called a cluster) has small diameter, and
the probability of any local neighborhood being cut (and
not lying within some cluster) is small. There is a natural
tradeoff between these two parameters (the diameter, and
the probability of being cut). Such random partitions have
found numerous applications in algorithm design, includ-
ing: flow/cut gaps, metric embeddings, and recently as core
primitives for several near linear time algorithms. There-
fore improving the parameters of the partitions is a research
program of considerable interest.
While tight parameters for such partitions are known in
several settings, for the case of graphs that exclude some
given graph H as a minor, the problem of finding the op-
timal tradeoff remains open. Progress was made in the
seminal work of Klein, Plotkin and Rao [18], and improved
by Fakcharoenphol and Talwar [13]. Despite attracting the
attention of several researchers (see, e.g., [19]), the KPR
framework remained the only known approach to this prob-
lem for over 20 years.
In this paper we make progress on this question and improve
known parameters. Equally importantly, we also introduce
techniques and structural insights that we hope will be use-
ful for further improvements on this and related problems.
In particular, we observe that the result of Andreae [3] can
be reinterpreted as a structure theorem for graphs exclud-
ing a fixed minor. It constructively gives us a cop decom-
position of a graph, which is a lot like a tree decomposition
except that instead of r vertices per bag, we have r shortest-
like paths in each bag. The cop decomposition gives weaker
structure than the beautiful work of Robertson and Seymour
[28], but has the benefit of significantly better dependence
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on r. We extend this cop decomposition framework to pro-
duce probabilistic partitions, and we believe that this high
level approach may be useful in getting better algorithms
for other problems involving excluded minor graphs.
We begin with some notation. For an undirected weighted
graph G = (V,E) and a subset C ⊆ V , denote by G[C]
the induced subgraph on C. Let dG denote the shortest
path metric on G. The (weak) diameter of a set S ⊆ V is
maxx,y∈S dG(x, y), whereas the strong diameter of the set
S is maxx,y∈S dG[S](x, y)—note that the latter distance is
being measured in the induced subgraph.

Definition 1 (∆-bounded partitions). A partition
P = {C1, . . . , Ct} is ∆-bounded if for all i, the weak-diameter
diam(Ci) ≤ ∆. Partition P is strong-diameter ∆-bounded
if the strong diameter diam(G[Ci]) ≤ ∆ for all i.

Given a partition P = {C1, . . . , Ct} of V , let P (z) denote
the unique cluster containing z.

Definition 2. A distribution P over ∆-bounded parti-
tions is (β, δ)-padded if for any z ∈ V and any 0 ≤ γ ≤ δ,

Pr[B(z, γ∆) ⊆ P (z)] ≥ 2−βγ .

We call P β-padded if it is (β, δ)-padded where δ is a uni-
versal constant that does not depend on β, and efficient if it
can be sampled in polynomial time.

Our main result is the following.

Theorem 3. Every Kr-minor-free graph G admits an ef-
ficient O(r)-padded partition scheme.

It has long been known that for arbitrary graphs the best
possible padding parameter is Θ(log |V |). For special cases
better bounds are known, e.g., for metrics of doubling con-
stant λ, the padding parameter is Θ(log λ) [15]. For graphs
that can be drawn on a surface of genus g, ideas developed
in a recent sequence of papers [16, 8, 29] have culminated in
the optimal padding parameter of Θ(log g) [22].
The first bounds for Kr-minor-free graphs were due to the
influential work of Klein, Plotkin, and Rao [18], who gave
(O(r3), 1/r)-padded partition scheme. Fakcharoenphol and
Talwar [13] improved this to an (O(r2), 1/r)-padded parti-
tion scheme. In this work, we improve the padding parame-
ter from O(r2) to O(r); moreover, we provide padding guar-
antees to larger balls—the previous guarantees give padding
only for balls of diameter < O(∆/r), compared to O(∆) for
our result. The partitioning scheme in [18] was motivated by
bounding the maximum-multicommodity-flow/sparsest-cut
gap for Kr-free graphs. Subsequently, it found applications
to metric embeddings [27, 26] with its natural connections to
edge-cut problems [24] and also to vertex-cut problems [14],
to bounding higher eigenvalues and higher-order Cheeger in-
equalities for graphs [7, 17, 20], to metric extension problems
and approximation algorithms [10, 4, 21], and others. The
quantitative improvements given by our results thus give
improvement in all these settings.
Theorem 3 above gives us a weak-diameter guarantee. How-
ever, our techniques are versatile, and can be extended to
give strong-diameter partitions—in particular, we obtain the
following results.

Theorem 4. Let G = (V,E) be an undirected weighted
graph.

1. If G is a Kr-free graph then it admits an efficient
(O(r2), O(1/r2))-padded strong-diameter decomposition
scheme.

2. If G is a tree-width r graph then G admits an effi-
cient (O(r), O(1/r))-padded strong-diameter decompo-
sition scheme.

3. If G is a genus g graph then G admits an efficient
O(log g)-padded strong-diameter decomposition scheme.

The first result in Theorem 4 is an exponential improvement
over the strong-diameter partitions of [1]. The third result
strengthens the result of [22] by providing the same asymp-
totic padding guarantees while ensuring that clusters have
a strong-diameter.

1.1 Discussion of Techniques
How does one prove a property for a graph that does not
contain a Kr minor? One approach relies on the beautiful
results of Robertson and Seymour that turn this negative
property, namely not having a certain minor, into a positive
constructive one, by giving a complete structural character-
ization of how such graphs are built from simple building
blocks by applying simple rules to them. This structure
theorem allows one to prove properties of excluded minor
graphs by structural induction on the constructive proce-
dure. On the negative side this approach typically inher-
its the rather bad dependence on r from the Robertson-
Seymour structure theorem [28]. Nevertheless, this approach
has been highly successful and used to prove several results
for such graphs.
The other, somewhat more mysterious approach, is to work
more directly and design an algorithm establishing the prop-
erty, such that by failing it constructs a Kr minor. This
approach is often problem-specific but usually leads to bet-
ter dependence on r. Examples of this approach include the
work of Andreae [3] for the Cops and Robbers game, results
of Alon, Seymour and Thomas [2] on separators, and the
aforementioned work of Klein, Plotkin and Rao [18].
Let us now give a high-level description of some of the ideas
and techniques used to prove Theorem 3 and Theorem 4.

The Bounded Threatener Program.
A well-studied approach to obtain ∆-bounded β-padded prob-
abilistic partitions is to find a set of “suitable” centers S,
and iteratively build balls around the points in S with radii
drawn from a truncated exponential distribution in the range
[∆/4,∆/2] with rate β. The memoryless property of the ex-
ponential distribution ensures that balls of radius ≈ ∆/β
around any vertex z avoid being cut with constant proba-
bility, conditioned on the exponential distribution not being
truncated. To handle the truncation, we need to bound the
number of centers at distance at most (1/2 + 1/β)∆ from
any vertex z. We will call such centers the threateners of
z. If the number of threateners is bounded by 2O(β) then a
trivial union bound implies that with constant probability:
none of them will reach diameter (1/2 − 1/β)∆ and hence
none of them will intersect the ball B(z,∆/β). A contri-
bution of this work is in extending the bounded threatener
program and showing how a bound on the expected number
of threateners suffices for obtaining probabilistic partitions.

Cop Decompositions.
Andreae [3] considered the following game, a set of cops
plays against a robber. At each round the robber can move
across one edge and then each one of the cops can move
across one edge. The cops win if they land on the same ver-
tex as the robber. A key observation: if the robber is limited
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to a subgraph V ′ ⊂ V and P is a geodesic shortest path with
respect to G(V ′) then eventually a single cop can “patroll”
P and prevent the robber from even stepping on P . Using
this observation, Andreae showed that if G is Kr-free then
O(r2) cops have a winning strategy. The cop strategy is
simple: each cop controls one shortest path and collectively
they try to iteratively build a Kr minor. The shortest paths
controlled by the cops induce a set of supernodes (disjoint
connected subsets) and edges containing a minor that is a
subgraph of Kr. At each round one can fix a center for a
new supernode and use free cops to connect this center to
all previous supernodes via shortest paths. The new center
and each new shortest path is fully contained in the com-
ponent containing the robber that is induced by removing
the supernodes from G (hence these new paths are disjoint
from all previous supernodes). We view Andreae’s result as
constructing a cop-decomposition of width r. A cop decom-
position of width r for a graph G is a rooted tree T whose
vertices are called bags with the following three properties:
(1) for each edge (u, v) of G there exists a bag B ∈ T such
that u, v ∈ B; (2) for each vertex u of G, the set of bags
{B | u ∈ B} induces a subtree of T; (3) For a bag B, let
P (B) be the set of all vertices v ∈ G such that v ∈ B′ and
B′ is an ancestor bag of B. Then for any bag B, the vertices
in B are composed of at most r − 1 shortest paths in the
graph G(V \ P (B)). Note that the core difference between
the width of a cop decomposition and a tree decomposition
is that in the third property we count the number of short-
est paths instead of the number of vertices in each bag. Let
cw(G) be the cop-width of a graph G: the least number r
such that G has cop decomposition of width r. Observe that
trees have cop-width 1. If G excludes Kr then Andrea shows
that cw(G) ≤ r − 2. In fact, Andreae’s cop algorithm con-
structively creates a cop decomposition for G of width r−2,
moreover, each bag is actually a rooted shortest path tree
with at most r − 1 leaves.

From Cop Decompositions to Padded Partitions via Skele-
tons.
The cop decomposition induces a partition of the vertices of
the graph into bags that consist of at most r + 1 shortest
paths. Note that the number of vertices in each bag in a
cop decomposition may be large, and depend on n. Why
are these bags useful? Since each bag contains at most r+ 1
shortest paths in the induced subgraph, one can choose a
“net” of centers along each path so that each node in the
graph is threatened byO(r) centers from any one bag. Hence
it now suffices to bound the number of bags that get close
enough to a vertex z so that some centers from this bag
may threaten z. (We call such a bag a “threatening skeleton”
for z.) As mentioned above, we do not bound the worst-case
number of such threatening skeletons; we prove it suffices to
bound their expected number.

Bounding the Expected Number of Threateners.
How to bound the expected number of threatening skele-
tons for some node z ∈ V ? We need a notion of progress.
The cop-decomposition ensures that in any given moment
there are less than r bags (a.k.a. threatening skeletons) that
z can see on the boundaries of its component, where each
bag consists of a tree with at most r − 1 paths. We ob-
serve the following property of the distances from z to these
trees: if constructing a new tree Tnew in the induced sub-
graph containing z causes some current tree Tcurr to become

farther from z (or even to be disconnected from z) because
it cuts off some short path from z to Tcurr, the distance
from z to Tnew is strictly less than the distance from z to
Tcurr. Indeed, if this distance were to miraculously decrease
(deterministically) by ∆/k then one can prove a bound of
O
(
r+k
k

)
on the number of threateners. But why should such

a large decrease happen? It doesn’t, but we force this to
happen in expectation. We change the above construction
and build a “buffer” of some random radius around each
skeleton we build. Note that the supernodes did not have
to be trees in the above arguments, and hence “fattening”
them by growing buffers around the trees would not change
any of the preceding arguments. Now by choosing the buffer
radius from a truncated exponential with rate O(r), we may
näıvely hope to decrease the distance by ∆/r with constant
probability (assuming no truncation). The proof is much
more subtle, and requires to overcome the truncation of the
buffer. We use a potential function with delicately chosen
parameters, such that for each new tree, this potential in-
creases in expectation by ≈ r/2r. The potential starts at 0
and once it reaches r, it means that z is at distance 0 from
some buffered tree and will not be threatened again. Finally,
the optional stopping theorem helps us bound the expected
number of threateners by ≈ 2r.

Bounding Expected Increase in Potential.
In order to bound the number of threateners for z, the poten-
tial function we use is a sum of exponentials

∑
buffersB e

−αd(z,B)

for some parameter α; the sum is over those buffered trees
that the node z can see. The main challenge is that in the
worst case, one new buffered tree can cause all the other cur-
rent buffered trees to be disconnected from the component
containing z, hence losing r summands of the potential. To
overcome this we need to guarantee that the expected gain
from the new tree is O(r) times more than the expected loss
of any single current tree, which is one of the technical cores
of the analysis. We note that obtaining any deterministic
bound on the number of threateners using a cop decompo-
sition remains an open question.

1.2 Other Related Work
The ideas of either finding a “good” decomposition or else
building a Kr-minor used by [18, 3] also appear in “shallow-
minor theorems”of Alon, Seymour, and Thomas [2], Plotkin,
Rao, and Smith [25], and others. The parameters and run-
times of these constructions have been considerably improved,
see the paper of Wulff-Nilsen [30] and the references therein.
Busch, LaFortune, and Tirthapura [9] first suggested the
idea of decomposing a graph into paths and building balls
around these paths; they considered this in the context of
strong-diameter covers. They give the best constants for
covers of planar graphs; for Kr-free graphs, they give O(1)-
padding and O(log |V | · f(r))-overlap, where f(r) depends
on the Robertson-Seymour structure theorem.
In contrast to the weak-diameter partitions of [18, 13], the
previously best strong-diameter partitions are due to [1],
who guarantee strong diameter ∆ and probability of an edge

{u, v} being separated is O(6rr2 · d(u,v)
∆

). [1] also present

sparse covers with strong-diameter ∆, padding of O(r2) and

overlap of 2O(r)r!.
The papers [16, 8, 29] give algorithms to probabilistically

embed genus-g graphs into planar graphs with 2O(g), O(g2)
and O(log g) distortion respectively. The ideas developed in
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this line of work lead to an asymptotically optimal padding
parameter of O(log g) for genus-g graphs [22].
For general graphs, the decomposition schemes in, e.g., [5,
23, 6, 10, 12] give asymptotically optimalO(log |V |) padding.
The best result known for tree-width-r graphs was the same
as for Kr-free graphs, i.e., O(r2)-padding partitions.

1.3 Organization of the Paper
After a few preliminary definitions, we provide in Section 3
a bound on the expected number of threateners for a wide
range of partition algorithms, and show how to use this to
bound the padding probability (proofs are deferred to the
full version). Our main result Theorem 3 is proved is Sec-
tion 4. The first two assertions of Theorem 4 are then proven
in Sections 5 and 6, while the last is deferred to the full ver-
sion.

2. DEFINITIONS AND NOTATION

Graphs.
We assume familiarity with graph-theoretic notions; see,
e.g., [11] for background. Here are some definitions we will
use. Given a graph G = (V,E), a ball around v ∈ V of
radius r ≥ 0 is BG(v, r) = {u ∈ V | dG(v, u) ≤ r}, and simi-
larly for a subset A ⊆ V , B(A, r) = {u ∈ V | dG(A, u) ≤ r}.
Also let N(A) = {u ∈ V | ∃v ∈ A, {u, v} ∈ E}. For subsets
A,B ⊆ V define a relation ∼ where A ∼ B iff A∩N(B) 6= ∅,
that is, iff there is an edge between A and B.
A minor of G is a graph G′ obtained by deleting and con-
tracting edges. Equivalently, G′ is a minor of G if there
exists a map f : V (G) → V (G′) such that (a) for each
u′ ∈ V (G′) the “supernode” f−1(u′) is connected in G, and
(b) for every edge {u′, v′} ∈ E(G′), there is at least one edge
between f−1(u′) and f−1(v′) in E(G). A graph G is H-free
(or excludes an H-minor) if G does not contain a subgraph
isomorphic to H as a minor. As is well-known, planar graphs
are exactly the graphs excluding K3,3 and K5 as minors. In
fact, Robertson and Seymour proved that every graph fam-
ily closed under taking minors is characterized by a set of
excluded minors.
Many one-way implications are also known: if we can show
that a class G of graphs is closed under taking minors, and
H 6∈ G , then G contains only H-free-graphs. Hence, graphs
with tree-width at most r are Kr+2-free (since tree-width of
a clique is one smaller than its size, and the tree-width of a
graph does not increase under edge deletions and contrac-
tions); graphs with genus g exclude Kr as a minor for some
r = Θ(g2), since the genus of Kr is Θ(g2).

Truncated Exponential Distributions.
We will extensively use the following probability distribu-
tion over positive reals. The [θ1, θ2]-truncated exponential
distribution with parameter b is denoted by Texp[θ1,θ2](b),
and has the probability density function:

ftexp;b;θ1,θ2(y) :=
b e−b·y

e−b·θ1 − e−b·θ2 for y ∈ [θ1, θ2].

(2.1)
For the [0, 1]-truncated exponential distribution we drop the
subscripts and denote it by Texp(b); the density function is

ftexp;b(y) :=
b e−b·y

1− e−b for y ∈ [0, 1]. (2.2)

Note that if Y ∼ Texp(b) then u · Y ∼ Texp[0,u](b/u).

3. ANALYSIS
Our algorithms induce an iterative process that creates“skele-
tons” (e.g., trees, paths, or vertices) and remove their neigh-
borhoods (a buffer), defined according to some truncated ex-
ponential distribution, from the graph. Once we have these
skeletons, our algorithms define a second iterative process
that creates clusters from the skeletons1.
Let us abstract out the properties needed from our first and
second processes.

Definition 5. [Skeleton-Process] Given a graph G, pa-
rameters 0 ≤ l < u ≤ 1 and b > 0, any process which
generates a sequence of graphs G = G0, G1, . . . , skeletons
A0, A1, . . . and vertex sets K0,K1, . . . , that satisfies the fol-
lowing property is a skeleton-process:

• For any i ≥ 0 we are given some Ai ⊆ V (Gi), and de-
fine Ki = BGi(Ai, Ri∆), where Ri ∼ Texp[l,u](b/(u −
l)).

The process is threatening if the graph sequence satisfies
Gi+1 = Gi \Ki, and the process is cutting if the graph se-
quence satisfies Gi+1 ⊇ G0 \ (∪j≤iKj).

The first process is a threatening process which creates buffers
around the trees of the cop-decomposition. The second pro-
cess is a cutting process that creates the actual clusters cen-
tered at net-points of the trees. For the strong-diameter
results, we will have a single process that satisfies both def-
initions.

3.1 Analysis of the threatening process: Bound-
ing the expected threats

A crucial property of all of our algorithms is that any point
z can “see” at most s buffers (the Ki sets) at any time,
for some parameter s (in the weak-diameter partition we
will have s = r). By this we mean that for any connected
component C in one of the remaining graphs (after some
buffers were removed), there are at most s buffers that are
connected to C by an edge. This property will enable us to
prove that any vertex z is expected to be “threatened” by a
small number of skeletons, that is, we expect a few skeletons
that are sufficiently close to cut a certain ball around z.
Consider a threatening skeleton-process with parameters l =
0, u ∈ [0, 1] and b = 2s. We prove a bound on the expected
number of threateners for a ball around any vertex z ∈ V (G)
with padding parameter γ > 0. Let Jz = {Ai | dGi(z,Ai) ≤
(u + γ)∆} be the set of vertex sets whose subset Ki may
intersect Bz = BG(z, γ∆). Observe that once z ∈ Kt for
some integer t then it is removed from the graph, and Jz
cannot increase anymore. For a connected component Ci ∈
Gi let K|Ci

= {Kj | j < i∧Ci ∼ Kj}. (Recall that A ∼ B if
there exists an edge from a node in A to some node in B.)

Lemma 6. Suppose that in a threatening skeleton-process
we have the property that for every i ∈ N and every con-
nected component Ci ∈ Gi, we are guaranteed that |K|Ci

| ≤
s, then

E[|Jz|] ≤ 3e(2s+1)·(1+γ/u) .

We defer the proof to the full version.

1For our strong diameter results we have just one process
that extracts skeletons and clusters in one sweep
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3.2 Analysis of the cutting process: Bounding
the probability of cutting a ball

In this section we give a bound on the probability that a
ball is cut by a cutting skeleton-process, which depends on
the expected number of threateners.
Consider a cutting skeleton-process as in Definition 5 with
parameters 0 ≤ l < u ≤ 1, b > 0. Fix z ∈ V (G), a parameter
γ > 0 and set Bz = BG(z, γ∆). Let Tz = {Ai | dGi(z,Ai) ≤
(u + γ)∆} be the set of vertex sets whose subset Ki may
intersect Bz. Let N := |Tz| be a random variable with
τ = E[N ]. We say that Bz is cut by the skeleton-process if
it intersects more than a single Ki.

Lemma 7. For δ = e−2bγ/(u−l), the probability that Bz =
BG(z, γ∆) is cut by a cutting skeleton-process with the prop-
erty that τ = E[|Tz|], is at most

(1− δ)
(

1 +
τ

eb − 1

)
.

We defer the proof to the full version.

4. A WEAK-DIAMETER PARTITION
In this section, we show how to construct a weak-diameter
partition for Kr+1-free graphs which is O(r)-padded (with
constant δ = 1/40). The ideas here will later extend to the
case of strong-diameter partitions with a weaker
(O(r2), O(1/r2))-padding.

4.1 The Algorithm
At a high level, the algorithm works as follows: in each step,
pick a connected component of the remaining graph, and
find (in a specific way) a shortest-path tree T in this com-
ponent. Delete a random neighborhood of T from the graph,
and recurse on each connected component of the graph, if
any. We then construct a net of points on each tree, and
from these net points grow “balls” of random radius to form
the small-diameter regions of the partition. A key property
to ensure the padding guarantee is that each node is ex-
pected to be close to few of these paths. We show that this
property holds, otherwise we can construct a Kr+1-minor in
G.
More specifically, the algorithm maintains a set of trees Ti
and supernodes Si that will be used in the construction,
each tree and supernode have a “center” vertex associated
with them. Let us describe a generic i-th iteration of the
algorithm. Let S be the set containing all the supernodes
created so far, initially this will be empty. Let C be a con-
nected component in the graph Gi = G \ (∪S), where ∪S is
the set of all vertices lying in the supernodes in S, initially
this will be the entire graph. Let S|C = {S ∈ S : S ∼ C}
be the set of supernodes that have a neighbor in compo-
nent C. Say S|C = {S′1, S′2, . . . , S′k}, and consider the nodes
Fj = N(S′j)∩C for each supernode, which are vertices in C
neighbors of these “adjacent” supernodes. (These Fj ’s may
intersect.) We pick an arbitrary vertex ui from C and build
a tree Ti rooted at ui, which is comprised of shortest paths
from ui to each of the sets Fj . Define the next supernode

Si := BGi(Ti, Ri∆),

where Ri ∼ Texp[0,1/8](16r). (Recall the definition of the
truncated exponential distribution from (2.1).)
In order to create the random partition, choose a ∆/8-net
Ni over Ti, and enumerate Ni = {v1, . . . , v|Ni|}. For each

1 ≤ j ≤ |Ni|, create a cluster BGi(vj , αj∆) ∩ Uj (where Uj
is the set of points which have no cluster yet), where each
αj ∼ Texp[1/4,1/2](20r). This completes the description of
the algorithm; it is also given as Algorithm 1 and 2.

Algorithm 1 Weak-Random-Partition(G,∆,r)

1: Let G0 ← G, i← 0.
2: Let S ← ∅.
3: Let T ← ∅.
4: while Gi is non-empty do
5: Let Ci be a connected component of Gi.
6: Pick ui ∈ Ci. Let Ti be a tree rooted at ui that

consists of shortest paths (in Gi) from ui to the closest
vertex of N(S) for each supernode S ∈ S|Ci

.
7: Let Ri be a random variable drawn independently

from the distribution Texp[0,1/8](16r).
8: Let Si ← BGi(Ti, Ri∆) be a neighborhood of Ti.
9: Add Si to S.

10: Add Ti to T .
11: Gi+1 ← Gi \ Si.
12: i← i+ 1.
13: end while
14: return Create-Balls(G,T ,∆,r).

Algorithm 2 Create-Balls(G,T ,∆,r)

1: P = ∅.
2: for i = 1, . . . , |T | do
3: Let Ni = {v1, . . . , v|Ni|} be a ∆/8-net of Ti.
4: for j = 1, . . . , |Ni| do
5: Let αj be a random variable drawn independently

from the distribution Texp[1/4,1/2](20r)
6: Add BGi(vj , αj∆)\∪P as a cluster to the partition

P .
7: end for
8: end for
9: return P .

4.2 The Analysis
The following invariant holds for each time step i:

Invariant 1. For every i ≥ 0, every connected compo-
nent C of Gi satisfies that if S, S′ ∈ S|C then S ∼ S′.

Proof. The proof is by induction; the base case is triv-
ial as there are no supernodes in S|C . Now by induction,
assume that the invariant holds in Gi. Let Ti and Si be
the tree and supernode constructed in step i in the compo-
nent Ci. Let C be some connected component of Gi+1, and
S, S′ ∈ S|C . If C ∩ Ci = ∅ then C is a component of Gi
as well; moreover, as Si ⊆ Ci it must be that Si � C so
neither of S, S′ can be Si, and hence we can use the induc-
tion hypothesis to infer that S ∼ S′. On the other hand,
suppose that C ⊆ Ci. There are two cases: if Si /∈ {S, S′}
we have S ∼ S′ by the induction hypothesis on Ci. On the
other hand, suppose Si = S (w.l.o.g.). Recall that Ti was
chosen so that it contains a neighbor of every supernode in
S|Ci

and Ti ⊆ Si, we have that Si ∼ S′.
Invariant 1 implies that for each connected component C,
contracting the supernodes of S|C yields a K|S|C | minor, so

we obtain the following corollary.
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Figure 4.1: An iteration of the algorithm. On the top,
there are three supernodes S1, S2, S3 neighboring the
current component with u as a root. In the middle, we
have a tree T4 comprised of three shortest path from
u. On the bottom, the new supernode S4 which is a
1-neighborhood of T4 (observe that this neighborhood
is taken in the connected component containing u).

Corollary 8. If G excludes Kr+1 as a minor, then for
every time step i, the connected component Ci has |S|Ci

| ≤ r.
In particular, the tree Ti is made up of at most r shortest
paths in Gi.

Claim 9. The algorithm above generates a ∆-bounded par-
tition of G.

Proof. First we prove that we generate a partition. In-
deed, we delete supernodes from the graph, and recurse
on the remaining components, so we need to show that
vertices within the supernodes are contained in some clus-
ter. Consider a vertex x in supernode Si. By definition,
dGi(x, Ti) ≤ ∆/8. Since Ni is a ∆/8-net in Ti, some net
point vj ∈ Ni satisfies dGi(x, vj) ≤ ∆/4. And since αj ≥
1/4, the ball BGi(vj , αj∆) contains x. Hence each node
within the deleted supernode is contained in some cluster,
and we get a partition of G. Moreover, each cluster is a ball
of radius at most αj∆ ≤ ∆/2 (and hence diameter at most
∆) in Gi. Finally, distances in Gi are no smaller than those
in G.

Lemma 10. For r ≥ 4, and any γ ≤ 1/40, the probability
that a ball Bz of radius γ∆ is cut by the above process is

Pr[Bz cut] ≤ 1− e−80rγ .
Proof. First observe that the process defined in Algo-

rithm 1. is a threatening skeleton-process, with the sequence

of graphs G0, G1, . . . as defined in the algorithm and with
Ai = Ti, Ki = Si, l = 0, u = 1/8, s = r and b = 2s. Recall
that Bz = BG(z, γ∆) and Jz = {Ti | dGi(z, Ti) ≤ (u+γ)∆}.
By Invariant 1 we get that for all i ∈ N, |S|Ci

| ≤ r, so by
Lemma 6 (using that γ ≤ 1/40),

E[|Jz|] ≤ 3e(2r+1)·(1+γ/u) ≤ 10e5r/2 . (4.3)

For each i such that Ti ∈ Jz, let Ui = {v ∈ Ni | dGi(v, z) ≤
(1/2+γ)∆} be the net points in Ni that are sufficiently close
to threaten Bz, and denote Tz = ∪i|Ti∈JzUi. By Corollary 8,
Ti is comprised of at most r shortest paths, and we claim
that on each shortest path there can be at most 10 points
that are in Ui. This is because the distance between any
two consecutive net points on a path is at least ∆/8, and
if there are q > 10 points, because this is a shortest path,
the distance from the first point to the last is at least (q −
1) ·∆/8 > (1 + 2γ)∆. The triangle inequality implies that
it can’t be that both are within (1/2 + γ)∆ from z. We
conclude that for all i (with Ti ∈ Jz) we have |Ui| ≤ 10r,
thus by (4.3)

τ := E[|Tz|] ≤ 10r · 10e5r/2 = 100r · e5r/2 . (4.4)

Next, we show that our Create-Balls algorithm generates
a cutting skeleton-process. Simply take the sequence
G0, . . . , G0, G1, . . . , G1, G2, . . . , where each Gi is taken |Ni|
times. Then the skeleton sets A are in fact singletons: for
each i we will take |Ni| sets - the points of Ni, to be these
singletons. The parameters for the exponential distribution
are l = 1/4, u = 1/2 and b = 5r. To see the cutting property
of Definition 5, note that once we move from the graph Gi
to Gi+1, Gi+1 will contain all the points yet uncovered by
clusters, because we already observed in Claim 9 that once
all the points of Ni create a cluster, the supernode Si is
completely covered (recall Gi+1 = Gi\Si). Finally, applying
Lemma 7, we obtain that the probability that Bz is cut is
at most

(1−e−2bγ/(u−l))

(
1+

τ

eb − 1

)
= (1−e−40rγ)

(
1+

100r · e5r/2

e5r − 1

)
.

The expression 100r·e5r/2
e5r−1

≤ e−r for r ≥ 4, and this com-
pletes the proof as

(1−e−40rγ)·(1+e−r) ≤ (1−e−40rγ)·(1+e−40rγ) = 1−e−80rγ ,

using that γ ≤ 1/40.

5. A STRONG DIAMETER PARTITION
In the previous section, we saw how to get a weak-diameter
partition for minor-free graphs. In this section, we give a
strong-diameter guarantee with a slightly weaker padding
parameter of (O(r2), O(1/r2)) instead of O(r). However,
this is still an exponential improvement over the best pre-
vious padding for such strong-diameter partitions of minor-
free graphs.

5.1 The Algorithm
The algorithm for strong-diameter partitions is similar in
spirit to that of Section 4.1 for weak-diameter partitions,
but there are some crucial differences that we highlight here.
At a high level, the algorithm works as follows: in each step,
pick a connected component of the remaining graph, and
find (in a specific way) a shortest path P in this component.
Delete a random neighborhood of P from the graph, and
recurse on each connected component of the graph, if any.
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Each such random neighborhood is decomposed into small
diameter regions using cones centered at some of P ’s points.
A key property to ensure the padding guarantee is that each
node is expected to be close to few of these paths. We show
that this property holds, otherwise we can construct a Kr+1-
minor in G.
The algorithm again maintains a set of paths (instead of
trees), and associated supernodes that will be used in the
construction. These will be denoted as Pij and Si respec-
tively, and supernode Si will consist of the union of neigh-
borhoods of the paths Pij . The main difference from the
weak-diameter construction is that instead of building a
shortest-path tree all at once, we build a “tree” one path
at a time, and remove a neighborhood of the path from the
graph before constructing the subsequent paths.
Let us describe the i-th iteration of the algorithm. Let S ⊆
V be the set containing all the supernodes created so far. Let
Ci be a connected component in the graph Gi = G \ (∪S).
Let S|Ci

= {S ∈ S : S ∼ Ci} be the set of supernodes that
have a neighbor in component Ci. We pick an arbitrary
vertex ui from Ci and build a supernode Si. Again, the
intuition behind the construction is that we wish for the
new supernode to “touch” every supernode S ∈ S|Ci

(i.e.,
Si ∼ S). However, this is done slightly differently from
Section 4.1, one path at a time. At the first iteration (j = 1)
we create a shortest path Pij from ui to some supernode
S ∈ S|Ci

, and remove a random neighborhood Sij from the
graph to obtain Gi(j+1). This neighborhood Sij is defined as
all the vertices within distance Rij ·∆ of Pij (in the current
component Cij), where Rij ∼ Texp[0,1/4](8(r2 + r)). We
increase the iteration counter j and continue in this manner
on every connected component of Gij that is contained in Ci,
until the new supernode Si = ∪jSij touches every supernode
S ∈ S|C for every connected component C ⊆ Ci in the
remaining graph Gij .
Finally, each such neighborhood Sij is partitioned to“cones”.
Each coneB, centered at some (yet uncovered) point c ∈ Pij ,
consists of the (yet uncovered) points in Sij whose distance
to c is not “much larger” than their distance to Pij . The no-
tion of being “much larger” is determined by a random vari-
able α drawn independently and uniformly from [∆/8,∆/4].
The algorithms are formally presented as Algorithms 3 and 4
respectively. Observe that the subroutine Create-Cones is
invoked in line 13 of Strong-Random-Partition.

5.2 The Analysis
We begin by arguing that the algorithm creates a partition
C with strong diameter ∆. The following properties will be
useful.

Proposition 11. For any S and P obtained during the
run of the algorithm Create-Cones:

• If u, v ∈ S are such that a shortest path from u to P
contains v, and v ∈ B for a cone B, then also u ∈ B.

• If u, v ∈ S are such that a shortest path from u to c
contains v, and u ∈ B for a cone B centered at c, then
also v ∈ B.

Proof. Let c ∈ P be the center of the cone B. We
begin by proving the first item: Since v ∈ B we have that
dS(v, c) − dS(v, P ) ≤ α∆. Since v is on the shortest path

Algorithm 3 Strong-Random-Partition(G,∆,r)

1: Let G0 ← G, i← 0.
2: Let S ← ∅.
3: Let C ← ∅.
4: while Gi is non-empty do
5: Select a connected component Ci of Gi, and pick ui ∈

Ci.
6: Let W = {ui}.
7: Let j = 1 and Gij = Gi \W .
8: while there exist a connected component Cij in Gij

and a supernode S ∈ S|Cij
such that Cij ∼ S and

Cij ∼W but W � S do
9: Choose u ∈ N(W ) ∩ Cij .

10: Let Pij be a shortest path (in Gij) from u to N(S).

11: Let Rij be a random variable drawn independently
from the distribution Texp[0,1/4](8(r2 + r)).

12: Let Sij ← BGij (Pij , Rij∆) be a neighborhood of
Pij .

13: Create-Cones(Sij ,Pij).
14: W ←W ∪ Sij .
15: Gi(j+1) ← Gij \ Sij .
16: j ← j + 1.
17: end while
18: Set Si = W , and add Si to S.
19: Gi+1 ← Gi \ Si.
20: i← i+ 1.
21: end while

Algorithm 4 Create-Cones(S,P )

1: while P 6= ∅ do
2: Choose c ∈ P .
3: Choose α ∈ [1/8, 1/4] uniformly at random.
4: Let B = {u ∈ S | dS(u, c)− dS(u, P ) ≤ α∆}. Add B

to C.
5: Set S ← S \B.
6: Set P ← P \B.
7: end while
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from u to P , dS(u, P ) = dS(u, v) + dS(v, P ) and thus

dS(u, c)− dS(u, P )

≤ (dS(u, v) + dS(v, c))− (dS(u, v) + dS(v, P ))

= dS(v, c)− dS(v, P )

≤ α∆ ,

which implies that u ∈ B.
The second item is proved in a similar manner: Since u ∈ B
we have that dS(u, c) − dS(u, P ) ≤ α∆. Since v is on the
shortest path from u to c, dS(v, c) = dS(u, c)− dS(u, v) and
thus

dS(v, c)− dS(v, P )

≤ (dS(u, c)− dS(u, v))− (dS(u, P )− dS(u, v))

= dS(u, c)− dS(u, P )

≤ α∆ ,

which implies that v ∈ B.

Lemma 12. Each cone B created in the algorithm has
diam(G[B]) ≤ ∆.

Proof. Recall that each neighborhood S of a shortest
path P contains points within distance at most ∆/4 from
P . Let S be the remaining part after some cones have been
created, and P is the remaining path. The first property
in Proposition 11 implies that the shortest path from any
u ∈ S to P is fully contained in S, and thus

dS(u, P ) ≤ ∆/4 . (5.5)

Consider a certain cone B centered at c ∈ P , and by defini-
tion of B, for each u ∈ B,

dS(u, c) ≤ α∆ + dS(u, P )
(5.5)

≤ ∆/4 + ∆/4 = ∆/2 . (5.6)

By the second property of Proposition 11, if u ∈ B then
surely any v ∈ S on the shortest path from u to c will also be
in B, so dB(u, c) ≤ ∆/2 as well, and thus diam(G[B]) ≤ ∆.
Finally, it remains to see that cut-cones is indeed a parti-
tion of S (i.e. that it covers S), and this can be verified by
the first property of Proposition 11. If for u ∈ S there is
a shortest path from u to P ending at v ∈ P , then when-
ever v is covered by a cone, u must be covered as well (the
algorithm does not stop until P = ∅).
For a time step i, we say that W is the working supernode,
and at the end of this step it will become the supernode
Si. Note that W induces a connected subgraph, because we
always choose a node u in N(W ) to be a start of the next
path. We denote by Gi0 = Gi. The following invariant holds
for each time step i:

Invariant 2. For every i, j ≥ 0, every connected compo-
nent C of Gij satisfies that if S, S′ ∈ S|C then S ∼ S′.

Proof. Assume inductively that the invariant holds until
time step i at iteration j. First consider the case j > 0, then
as Gij is obtained from Gi(j−1) by removing some vertices,
and the set of supernodes remains unchanged, the invariant
will still hold: Every connected component C of Gij is a
subset of a connected component D of Gi(j−1), in particular
S|C ⊆ S|D, and so any pair of supernodes S, S′ ∈ S|C is also
in S|D and thus S ∼ S′.
For the case j = 0, a new supernode Si−1 was just intro-
duced, but the termination condition of line 9. guarantees
that for any connected component C in Gi, any supernode
S ∈ S|C must have S ∼ Si−1.

Corollary 13. If G excludes Kr+1 as a minor, then
for every time step i and iteration j, the connected com-
ponent Cij has |S|Cij

| ≤ r. Moreover, fix some z ∈ V . If
Pi1, . . . , Pil are the shortest paths chosen while creating Si
in the components containing z, then l ≤ r.

Proof. If |S|Cij
| = q, then using Invariant 2, contracting

each supernode in S|Cij
will yield a Kq minor, so it must

be that q ≤ r. To see the second part of the assertion, note
that each Pij will connect the component containing z with
some supernode S ∈ S|Cij

, so that Sij ∼ S. Finally, as
|S|Cij

| ≤ r, there can be at most r such paths.

Lemma 14. For γ ≤ 1/r2, the probability that a ball Bz
of radius γ∆ is cut by the above process is

Pr[Bz cut] ≤ O(γr2) .
Proof. First observe that our algorithm is a threatening

skeleton-process with parameters l = 0, u = 1/4, s = r2 + r,
b = 2s and the Gi (respectively Ai, Ki) are the Gij (resp.
Pij , Sij) ordered lexicographically. By Invariant 2 we get
that for all i, j ∈ N, |S|Cij

| ≤ r. By Corollary 13, each
of these supernodes S ∈ S|Cij

can have at most r paths
that were built in a component containing Cij , so it may
contribute at most r to the number of sets in K|Cij

, to a

total of r2. We must also add in the (at most) r paths of
the current working supernode, to obtain that |K|Cij

| ≤ s.
Recall that Tz = {Pij | dGij (Pij , z) ≤ (u + γ)∆}, and let
τ = E[|Tz|]. With this we may apply Lemma 6 to infer that

τ ≤ 3e(2s+1)·(1+γ/u) .

Next, we show that our process is also a cutting skeleton-
process, with the graph sequence Gij and the skeletons are
the Pij , ordered lexicographically. The parameters are the
same as before: l = 0, u = 1/4 and b = 2s (this is the ex-
act same process, after all). The condition that the graph
sequence contains every uncovered point is trivial by defi-
nition of Gij . By Lemma 7 we obtain that the probability
that Bz is cut is at most

(1− e−2bγ/(u−l))

(
1 +

τ

eb − 1

)
≤ (1− e−20r2γ) · (1 + 9e10r2γ)

= O(γr2) , (5.7)

where the last equality follows as γ ≤ 1/r2. In what follows
we bound the probability of event Econe, which is the event
that the ball Bz is cut in the cut-cones procedure, while
conditioning that it was not cut while creating the Sij . Let
S = Sij be the set that contains Bz, which was built around
the path P = Pij . Let c1, . . . , ck be the centers chosen in
cut-cones(S,P ). We claim that there can be at most 9
of them that may cut Bz. To see this, observe that each
cone contains a ball of radius at least ∆/8, and since P is a
shortest path, in any set of 10 centers there are two centers
cg, ch such that dS(cg, ch) ≥ 9∆/8 > 2(1/2 + γ)∆. By the
triangle inequality it must be that at least one of them is
more than (1/2 + γ)∆ away from z. Finally, by Lemma 12
any cone centered at c may only contain points at distance
at most ∆/2 from c (see (5.6)), so it may not be the first
to cut Bz. As α is chosen uniformly from an interval of size
∆/8, the probability that a ball of radius γ∆ will be cut is
at most 2γ∆/(∆/8) = 16γ. By a simple union bound,

Pr[Econe | Bz ⊆ S] < 144γ ,
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which is dominated by (5.7), thus the final bound is

Pr[Bz is cut] ≤ O(γr2) .

6. BOUNDED TREE-WIDTH GRAPHS
Since graphs of tree-width r are Kr+2-free, the result of
Section 4 already implies a (weak diameter) probabilistic
partition which is O(r)-padded. The purpose of this section
is to show a strong diameter (O(r), O(1/r))-padded partition
for graphs of bounded tree-width. We will use the same
framework as the previous sections, and exploit the special
structure of bounded tree-width graphs.

Definition 15. A graph G = (V,E) has tree-width r if
there exists a collection of sets I = {X1, . . . , Xk} with each
Xi ⊆ V , and a tree T = (I, F ), such that the following
conditions hold:

• ∪i∈[k]Xi = V ,

• For all i ∈ [k], |Xi| ≤ r + 1,

• For all {u, v} ∈ E, there exists i ∈ [k] such that u, v ∈
Xi,

• For all u ∈ V , the tree nodes containing u form a
connected subtree of T .

Corollary 16. Let U be a bag in the tree decomposition
T = (I, F ) of G = (V,E). Then if U1, U2 ∈ I lie in different
connected components of T \ {U}, and x1 ∈ U1 \ U , x2 ∈
U2 \U , then x1, x2 are in different connected components of
G \ U .

6.1 The Algorithm
Let G = (V,E) be a graph of tree-width r − 1, and let T
be its tree decomposition, where T has an arbitrary root R.
The height of a tree node U , h(U), is its distance in T from
the root R. For a vertex u ∈ V let h(v) denote the minimal
height of a tree node U containing u, and denote by b(u) = U
the node achieving this minimum. Order the vertices of the
graph (v1, . . . vn) such that for all 1 ≤ i < j ≤ n, h(vi) ≤
h(vj). In the i-th iteration of the algorithm we will have a
graph Gi (initially G1 = G), and if vi ∈ Gi we shall create
a cluster Si = BGi(vi, Ri∆), where Ri ∼ Texp[0,1/2](8r).
Then set Gi+1 = Gi \ Si and continue. If vi /∈ Gi then we
do nothing in this iteration.

Algorithm 5 Tree-width-Partition(G,∆,r)

1: Let G1 ← G.
2: Let P ← ∅.
3: for i = 1, . . . n do
4: if vi ∈ Gi then
5: Let Ri ∼ Texp[0,1/2](8r).
6: Let Si = BGi(vi, Ri∆).
7: Set Gi+1 ← Gi \ Si.
8: else
9: Set Gi+1 ← Gi.

10: end if
11: end for

6.2 The Analysis
Fix some z ∈ V , γ = O(1/r) and Bz = BG(z, γ∆). Let
U = b(z) ∈ I be the tree node containing z such that
h(z) = h(U). The first observation is that when analyzing
the probability that Bz is cut, we may restrict our attention
to vertices v ∈ V whose b(v) lies on the path from R to U
in T . The reason is that if b(vi) is not on this path, then
if C ∈ I is the least common ancestor of U and b(vi) in T ,
we claim that Gi does not contain any vertex from C. To
see this, note that by the choice of ordering all vertices in C
appear before vi, and thus either created a cluster or were
removed from the graph. By Corollary 16 z and vi are in
different component of Gi, so Si cannot be the first to cut
Bz.
Consider then the process restricted to the vertices con-
tained in bags on the path from R to U (we may assume
w.l.o.g that these appear first in the ordering). For any
i ∈ [n], denote by Ci the connected component in Gi that
contains z, and let S|Ci

= {Sj | Sj ∼ Ci}.
Claim 17. For any i ∈ [n], |S|Ci

| ≤ 2r.
Proof. Let R = U1, . . . , Uk = U be the sequence of bags

from the root to U in the tree decomposition. For any
j ∈ [k], let ij ∈ [n] be the minimal such that Uj∩V (Gij ) = ∅.
We prove that |S|Cij

| ≤ r , by noting that there are at most

r supernodes that can intersect Uj (as |Uj | ≤ r). If a su-
pernode Sh does not intersect Uj , then since this supernode
is not centered at some vertex of Uj′ for j′ > j (using the or-
dering and the minimality of ij), then by Corollary 16 there
is no path from z to N(Sh) in Gij . Since there are at most
r new supernodes created between time ij to ij+1 (as each
bag is covered after at most r clusters are formed), the claim
follows.

Observe that the algorithm generates a threatening skeleton-
process with the sequence G1, . . . , the skeletons are Ai =
{vi}, Ki = Si, l = 0, u = 1/2, s = 2r and b = 4r. Let
Jz = {vi | dGi(z, vi) ≤ (u + γ)∆}. By Claim 17 we may
apply Lemma 6 and obtain that

τ ≤ 3e(4r+1)·(1+γ/u) . (6.8)

Finally, as our process can also be made to be a cutting
skeleton-process, as long as we omit the steps in which vi /∈
Gi (note that the next i for which vi ∈ Gi may depend on
previous random choices of Rj for j < i, but this is allowed),
and with l = 0, u = 1/2 and b = 4r. Applying Lemma 7,
we obtain that the probability that Bz is cut is at most

(1− e−2bγ)

(
1 +

τ

eb − 1

)
≤ (1− e−8rγ) · 9e8rγ = O(γr),

using that γ ≤ 1/r.
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