Object Location Using Path Separators

Ittai Abraham¹ Cyril Gavoille²

¹Hebrew University of Jerusalem, Israel

²University of Bordeaux, France

PODC 2006

To design **distributed** data-structures for networks supporting **location** queries like distance or routing

To design **distributed** data-structures for networks supporting **location** queries like distance or routing

Typically:

The distance between any two node
 ⇒ distance labeling

To design **distributed** data-structures for networks supporting **location** queries like distance or routing

Typically:

- The distance between any two node
 ⇒ distance labeling
- One of the compact from any source to any destination
 ⇒ compact routing

To design **distributed** data-structures for networks supporting **location** queries like distance or routing

Typically:

- The distance between any two node
 ⇒ distance labeling
- The route from any source to any destination
 ⇒ compact routing
- Add long range links for efficient greedy routing ⇒ small-world problem

To design **distributed** data-structures for networks supporting **location** queries like distance or routing

Typically:

- The distance between any two node
 ⇒ distance labeling
- The route from any source to any destination
 ⇒ compact routing
- Add long range links for efficient greedy routing ⇒ small-world problem

What knowledge is needed to solve a task?

Overview for distance labeling

Networks = weighted graph with n nodes and aspect ratio Δ Trade-offs between stretch and label size

network	stretch	label size (bits)
arbitrary	2k - 1	$n^{1/k}\log n\log\Delta$

Overview for distance labeling

Networks = weighted graph with n nodes and aspect ratio Δ Trade-offs between stretch and label size

network	stretch	label size (bits)
arbitrary	2k - 1	$n^{1/k}\log n\log\Delta$
tree, treewidth- k	1	$k\log n\log\Delta$
(k-separator)	$1 + \varepsilon$	$k \log n \log(\varepsilon^{-1} \log \Delta)$

Overview for distance labeling

Networks = weighted graph with n nodes and aspect ratio Δ Trade-offs between stretch and label size

network	stretch	label size (bits)
arbitrary	2k - 1	$n^{1/k}\log n\log\Delta$
tree, treewidth- k (k -separator)	$egin{array}{c} 1 \ 1+arepsilon \end{array}$	$ k \log n \log \Delta \\ k \log n \log(\varepsilon^{-1} \log \Delta) $
bounded doubling dimension (Euclidian, bounded growth,)	$1 + \varepsilon$	$\log\Delta \log n \log(arepsilon^{-1}\log\Delta)$

Similar bounds for compact routing ...

Shortest path metrics of planar graphs are difficult to capture

- Planars are \neq Euclidian networks (TSP, ℓ_p embedding, ...)
- Planars have no tree structure, treewidth can be $\Omega(\sqrt{n})$

Shortest path metrics of planar graphs are difficult to capture

- Planars are \neq Euclidian networks (TSP, ℓ_p embedding, ...)
- Planars have no tree structure, treewidth can be $\Omega(\sqrt{n})$

Some history

stretch label size (bits) reference

1 $n^{1/3} \dots n^{1/2} \log \Delta$ G., Peleg et al . [SODA '01]

Shortest path metrics of planar graphs are difficult to capture

- Planars are \neq Euclidian networks (TSP, ℓ_p embedding, ...)
- Planars have no tree structure, treewidth can be $\Omega(\sqrt{n})$

Some history

stretch label size (bits) reference

1	$n^{1/3}n^{1/2}\log\Delta$	G., Peleg et al .	[SODA '01]
3	$n^{1/3}\log\Delta$	G., Peleg et al.	[ESA '01]

Shortest path metrics of planar graphs are difficult to capture

- Planars are \neq Euclidian networks (TSP, ℓ_p embedding, ...)
- Planars have no tree structure, treewidth can be $\Omega(\sqrt{n})$

Some history

stretch label size (bits) reference

1	$n^{1/3}n^{1/2}\log\Delta$	G., Peleg et al .	[SODA '01]
3	$n^{1/3}\log\Delta$	G., Peleg et al.	[ESA '01]
3	$\log n \log \Delta$	Gupta et al.	[SICOMP '05]

Shortest path metrics of planar graphs are difficult to capture

- Planars are \neq Euclidian networks (TSP, ℓ_p embedding, ...)
- Planars have no tree structure, treewidth can be $\Omega(\sqrt{n})$

Some history

stretch label size (bits) reference

1	$n^{1/3}n^{1/2}\log\Delta$	G., Peleg et al .	[SODA '01]
3	$n^{1/3}\log\Delta$	G., Peleg et al.	[ESA '01]
3	$\log n \log \Delta$	Gupta et al.	[SICOMP '05]
$1 + \varepsilon$	$\varepsilon^{-1}\log n\log\Delta$	Thorup	[JACM '04]

In this paper ...

Contribution

Weighted graphs excluding a fixed minor have an stretch- $(1 + \varepsilon)$ distance labeling scheme with $O(\varepsilon^{-1} \log n \log(\varepsilon^{-1} \log \Delta))$ -bit labels.

Rem: scheme polynonially constructible, constant depending on the excluded minor. Similar bounds for routing.

 $\begin{array}{l} \mathsf{Planars} \subset K_5\text{-minor-free} \\ \subset K_{3,3}\text{-minor-free} \end{array}$

In this paper ...

Contribution

Weighted graphs excluding a fixed minor have an stretch- $(1 + \varepsilon)$ distance labeling scheme with $O(\varepsilon^{-1} \log n \log(\varepsilon^{-1} \log \Delta))$ -bit labels.

Rem: scheme polynonially constructible, constant depending on the excluded minor. Similar bounds for routing.

 $\begin{array}{l} \mathsf{Planars} \subset K_{\mathsf{5}}\text{-minor-free} \\ \subset K_{\mathsf{3},\mathsf{3}}\text{-minor-free} \end{array}$

Definition

H is a *minor* of G if H can be obtained from G by edge contraction and taking subgraph (node and edge deletion).

Minor-free graphs

A lot of network topologies can be characterized in terms of graphs excluding some fixed minor

- trees $\subset K_3$ -minor-free
- outerplanar $\subset K_{2,3}$ -minor-free
- series-parallel $\subset K_4$ -minor-free
- planar $\subset K_5$ -minor-free
- genus- $g \subset K_{O(\sqrt{g})}$ -minor-free
- treewidth- $k \subset K_{k+2}$ -minor-free
- ...

Minor-free graphs

A lot of network topologies can be characterized in terms of graphs excluding some fixed minor

- trees $\subset K_3$ -minor-free
- outerplanar $\subset K_{2,3}$ -minor-free
- series-parallel $\subset K_4$ -minor-free
- planar $\subset K_5$ -minor-free
- genus- $g \subset K_{O(\sqrt{g})}$ -minor-free
- treewidth- $k \subset K_{k+2}$ -minor-free
- ...

The Graph Minor Theorem [Robertson & Seymour]

Every graph family closed under minor taking can be characterized by a finite set of finite forbidden minors.

Small-world problems

Polylog(*n*) number of hops (in expectation) known for: grids (Kleinberg), *d*-dimensional meshes (Fraigniaud et al.), bounded growth (Duchon et al.), bounded doubling dimension (Slivkins), trees & bounded treewidth (Fraigniaud), ... Open for planars

Small-world problems

Polylog(*n*) number of hops (in expectation) known for: grids (Kleinberg), *d*-dimensional meshes (Fraigniaud et al.), bounded growth (Duchon et al.), bounded doubling dimension (Slivkins), trees & bounded treewidth (Fraigniaud), ... Open for planars

Contribution

Every weighted graph excluding a fixed minor can be augmented with one long range link per node so that greedy routing performs in $O(\log^2 n \log^2 \Delta)$ expected number of hops.

Rem: scheme polynonially constructible, constant depending on the excluded minor

Definition (Main)

A weighted graph G with n nodes is k-path separable if there exists a subgraph S, called k-path separator, such that:

Definition (Main)

A weighted graph G with n nodes is k-path separable if there exists a subgraph S, called k-path separator, such that:

• $S = P_0 \cup P_1 \cup \cdots$, where each subgraph P_i is the union of k_i shortest paths in $G \setminus \bigcup_{j < i} P_j$;

Definition (Main)

A weighted graph G with n nodes is k-path separable if there exists a subgraph S, called k-path separator, such that:

• $S = P_0 \cup P_1 \cup \cdots$, where each subgraph P_i is the union of k_i shortest paths in $G \setminus \bigcup_{j < i} P_j$;

2
$$\sum_i k_i \leqslant k$$
; and

Definition (Main)

A weighted graph G with n nodes is k-path separable if there exists a subgraph S, called k-path separator, such that:

• $S = P_0 \cup P_1 \cup \cdots$, where each subgraph P_i is the union of k_i shortest paths in $G \setminus \bigcup_{j < i} P_j$;

2
$$\sum_i k_i \leqslant k$$
; and

3 each connected component of $G \setminus S$ is k-path separable and has at most n/2 nodes.

Definition (Main)

A weighted graph G with n nodes is k-path separable if there exists a subgraph S, called k-path separator, such that:

• $S = P_0 \cup P_1 \cup \cdots$, where each subgraph P_i is the union of k_i shortest paths in $G \setminus \bigcup_{j < i} P_j$;

2
$$\sum_i k_i \leqslant k$$
; and

③ each connected component of $G \setminus S$ is k-path separable and has at most n/2 nodes.

If Q is a path forming P_i , then:

- Q is not necessarily of bounded size
- Q is not necessarily a shortest path in G

• Unweighted meshes are 1-path separable

• Unweighted meshes are 1-path separable

- Unweighted meshes are 1-path separable
- Trees are 1-path separable

- Unweighted meshes are 1-path separable
- Trees are 1-path separable

- Unweighted meshes are 1-path separable
- Trees are 1-path separable

Lemma (Thorup [JACM '04])

Every *n*-node planar graph G has a shortest-path tree T with at most 3 leaves such that each component of $G \setminus T$ has $\leq n/2$ nodes.

 \Rightarrow planars are 3-path separable

Every *n*-node *H*-minor-free graph has a shortest-path tree *T* with at most $\ell = \ell(H)$ leaves such that each component of $G \setminus T$ has $\leq n/2$ nodes.

Every *n*-node *H*-minor-free graph has a shortest-path tree *T* with at most $\ell = \ell(H)$ leaves such that each component of $G \setminus T$ has $\leq n/2$ nodes.

True for $H = K_2, K_3, K_4, K_5$, also true if H is planar

Every *n*-node *H*-minor-free graph has a shortest-path tree *T* with at most $\ell = \ell(H)$ leaves such that each component of $G \setminus T$ has $\leq n/2$ nodes.

True for $H = K_2, K_3, K_4, K_5$, also true if H is planar

Wrong for K_6 ! There are K_6 -minor-free graphs for which a **sequence** of **unions** of shortest paths is required!

Every *n*-node *H*-minor-free graph has a shortest-path tree *T* with at most $\ell = \ell(H)$ leaves such that each component of $G \setminus T$ has $\leq n/2$ nodes.

True for $H = K_2, K_3, K_4, K_5$, also true if H is planar Wrong for K_6 ! There are K_6 -minor-free graphs for which a sequence of unions of shortest paths is required!

- genus $\Omega(n)$
- tree-width $\Omega(\sqrt{n})$
- no K_6 minor
- $\Omega(\sqrt{n})$ shortest paths to halve
- ... but is 2-path separable

Every *n*-node *H*-minor-free graph has a shortest-path tree *T* with at most $\ell = \ell(H)$ leaves such that each component of $G \setminus T$ has $\leq n/2$ nodes.

True for $H = K_2, K_3, K_4, K_5$, also true if H is planar Wrong for K_6 ! There are K_6 -minor-free graphs for which a sequence of unions of shortest paths is required!

Theorem (Main)

Every *H*-minor-free graph is *k*-path separable for k = k(H).

A $k\mbox{-path}$ separator can be find in $n^{O(k)}$ time

Consequences of the Main Theorem

Theorem (Object Location)

Let G be a weighted k-path separable graph of aspect ratio Δ

- stretch- $(1 + \varepsilon)$ distance labeling with $O(k\varepsilon^{-1}\log n\log(\varepsilon^{-1}\log\Delta))$ -bit labels
- stretch- $(1 + \varepsilon)$ labeled routing scheme with $O(k\varepsilon^{-1}\log^3 n/\log\log n)$ -bit headers and routing tables
- One can augment G with 1 directed edge per node such that greedy routing performs in O(k² log² n log² Δ) expected number of hops
- And others: reachability, distance oracles in digraphs, ...

- $\forall s, t$ -shortest path R in G there exist:
 - a subgraph G' in the separator decomposition of G;
 - a k-path separator S' of G'; and
 - a path Q that composes S^\prime such that
- Q and R intersect and **both** are shortest paths in G'.

- $\forall s, t$ -shortest path R in G there exist:
 - a subgraph G' in the separator decomposition of G;
 - a k-path separator S' of G'; and
 - a path Q that composes S^\prime such that
- Q and R intersect and **both** are shortest paths in G'.

- $\forall s, t$ -shortest path R in G there exist:
 - a subgraph G' in the separator decomposition of G;
 - a k-path separator S' of G'; and
 - a path Q that composes S^\prime such that
- Q and R intersect and **both** are shortest paths in G'.

- $\forall s, t$ -shortest path R in G there exist:
 - a subgraph G' in the separator decomposition of G;
 - a k-path separator S' of G'; and
 - a path Q that composes S^\prime such that
- Q and R intersect and **both** are shortest paths in G'.

- $\forall s, t$ -shortest path R in G there exist:
 - a subgraph G' in the separator decomposition of G;
 - a k-path separator S' of G'; and
 - \bullet a path Q that composes S^\prime such that
- Q and R intersect and **both** are shortest paths in G'.

Node s can select, **independently** of t, few "landmarks" on Q so that one of these landmarks is close to $R\cap Q$

Theorem (Main)

Every *H*-minor-free graph is *k*-path separable for k = k(H).

Theorem (Main)

Every *H*-minor-free graph is *k*-path separable for k = k(H).

The full proof is technical (needs long preliminaries), based on the recent decomposition theorem of Robertson & Seymour:

Theorem (Main)

Every *H*-minor-free graph is *k*-path separable for k = k(H).

The full proof is technical (needs long preliminaries), based on the recent decomposition theorem of Robertson & Seymour:

Roughly speaking,

Theorem (Graph Minor-16, 2003)

Every graph excluding a fixed minor has a tree-decomposition in subgraphs that are h-almost embeddable on a surface of bounded Euler genus.

Theorem (Main)

Every *H*-minor-free graph is *k*-path separable for k = k(H).

The full proof is technical (needs long preliminaries), based on the recent decomposition theorem of Robertson & Seymour:

Actually,

Theorem (Graph Minor-16, 2003)

Every graph excluding a minor H has a tree-decomposition whose the "torso" of its bags are h-almost embeddable on a surface on which H cannot be embedded.

h-almost embeddable graphs

h-almost embeddable graphs

h-almost embeddable graphs

A tree of h-almost embeddable graphs

A tree of h-almost embeddable graphs

Some remarks:

- shortest paths go everywhere
- Σ can be non-orientable
- Jordan curve Theorem does not work (vortices!)

Some remarks:

- shortest paths go everywhere
- Σ can be non-orientable
- Jordan curve Theorem does not work (vortices!)

Some remarks:

- shortest paths go everywhere
- Σ can be non-orientable
- Jordan curve Theorem does not work (vortices!)

Note: a vortex-path can be covered by a constant number of shortest paths if segments are shortest paths

Note: a vortex-path can be covered by a constant number of shortest paths if segments are shortest paths

Lemma

If the center subgraph is "nearly-planar" (= no apices and $\Sigma = \mathbb{R}^2$), there are three vortex-paths whose segments are shortest paths, and whose deletions leave components of size $\leq n/2$.

Q.E.D.

Thanks!