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The family of problems we consider

To design distributed data-structures for networks supporting
location queries like distance or routing

Typically:

1 The distance between any two node
⇒ distance labeling

2 The route from any source to any destination
⇒ compact routing

3 Add long range links for efficient greedy routing
⇒ small-world problem

What knowledge is needed to solve a task?
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Overview for distance labeling

Networks = weighted graph with n nodes and aspect ratio ∆

Trade-offs between stretch and label size

network stretch label size (bits)

arbitrary 2k − 1 n1/k log n log ∆

tree, treewidth-k 1 k log n log ∆
(k-separator) 1 + ε k log n log(ε−1 log ∆)

bounded doubling dimension 1 + ε log ∆
(Euclidian, bounded growth, ...) log n log(ε−1 log ∆)

Similar bounds for compact routing ...
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In this paper ...

Contribution
Weighted graphs excluding a fixed minor have an
stretch-(1 + ε) distance labeling scheme with
O(ε−1 log n log(ε−1 log ∆))-bit labels.

Rem: scheme polynonially constructible, constant depending
on the excluded minor. Similar bounds for routing.

Planars ⊂ K5-minor-free

Planars

⊂ K3,3-minor-free

Definition
H is a minor of G if H can be obtained from G by edge
contraction and taking subgraph (node and edge deletion).
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Minor-free graphs

A lot of network topologies can be characterized in terms of
graphs excluding some fixed minor

trees ⊂ K3-minor-free

outerplanar ⊂ K2,3-minor-free

series-parallel ⊂ K4-minor-free

planar ⊂ K5-minor-free

genus-g ⊂ KO(
√

g)-minor-free

treewidth-k ⊂ Kk+2 -minor-free

...

The Graph Minor Theorem [Robertson & Seymour]

Every graph family closed under minor taking can be
characterized by a finite set of finite forbidden minors.
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Small-world problems

Polylog(n) number of hops (in expectation) known for: grids
(Kleinberg), d-dimensional meshes (Fraigniaud et al.),
bounded growth (Duchon et al.), bounded doubling dimension
(Slivkins), trees & bounded treewidth (Fraigniaud), ... Open
for planars

Contribution
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augmented with one long range link per node so that greedy
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Our approach: path separator technique

Definition (Main)

A weighted graph G with n nodes is k-path separable if there
exists a subgraph S, called k-path separator, such that:

1 S = P0 ∪ P1 ∪ · · · , where each subgraph Pi is the union
of ki shortest paths in G \

⋃
j<i Pj;

2
∑

i ki 6 k; and

3 each connected component of G \ S is k-path separable
and has at most n/2 nodes.

If Q is a path forming Pi, then:

Q is not necessarily of bounded size

Q is not necessarily a shortest path in G
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Unweighted meshes are 1-path separable
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⇒ planars are 3-path separable
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Conjecture (Thorup)

Every n-node H-minor-free graph has a shortest-path tree T
with at most ` = `(H) leaves such that each component of
G \ T has 6 n/2 nodes.

True for H = K2, K3, K4, K5, also true if H is planar

Wrong for K6! There are K6-minor-free graphs for which a
sequence of unions of shortest paths is required!
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Conjecture (Thorup)

Every n-node H-minor-free graph has a shortest-path tree T
with at most ` = `(H) leaves such that each component of
G \ T has 6 n/2 nodes.

True for H = K2, K3, K4, K5, also true if H is planar

Wrong for K6! There are K6-minor-free graphs for which a
sequence of unions of shortest paths is required!

Theorem (Main)

Every H-minor-free graph is k-path separable for k = k(H).

A k-path separator can be find in nO(k) time



Consequences of the Main Theorem

Theorem (Object Location)

Let G be a weighted k-path separable graph of aspect ratio ∆

1 stretch-(1 + ε) distance labeling with
O(kε−1 log n log(ε−1 log ∆))-bit labels

2 stretch-(1 + ε) labeled routing scheme with
O(kε−1 log3 n/ log log n)-bit headers and routing tables

3 One can augment G with 1 directed edge per node such
that greedy routing performs in O(k2 log2 n log2 ∆)
expected number of hops

4 And others: reachability, distance oracles in digraphs, ...



Proving the Object Location Theorem
(≈ extension of Thorup’s data-structures)

∀ s, t-shortest path R in G there exist:

a subgraph G′ in the separator decomposition of G;

a k-path separator S ′ of G′; and

a path Q that composes S ′ such that

Q and R intersect and both are shortest paths in G′.

Rs

t

G

Node s can select, independently of t, few “landmarks” on
Q so that one of these landmarks is close to R ∩Q
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in subgraphs that are h-almost embeddable on a surface of
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Proving the Main Theorem

Theorem (Main)

Every H-minor-free graph is k-path separable for k = k(H).

The full proof is technical (needs long preliminaries), based on
the recent decomposition theorem of Robertson & Seymour:

Actually,

Theorem (Graph Minor-16, 2003)

Every graph excluding a minor H has a tree-decomposition
whose the “torso” of its bags are h-almost embeddable on a
surface on which H cannot be embedded.
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Σ

Vortices
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Σ
Vortex-path

Note: a vortex-path can be covered by a constant number of
shortest paths if segments are shortest paths

Lemma
If the center subgraph is “nearly-planar” (= no apices and
Σ = R2), there are three vortex-paths whose segments are
shortest paths, and whose deletions leave components of size
6 n/2.

Q.E.D.
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Thanks!


