
Université de Bordeaux Licence Informatique, 3e année
Année 2025-2026 TD/TP: feuille 1

Techniques Algorithmiques et Programmation

Traveling Salesperson Problem

Recall the problem definition :

Traveling Salesperson Problem

Instance: A set V = {v0, . . . , vn−1} of points and a distance d on V .
Question: Find a tour of minimum length passing through all points of V , i.e., a permutation

σ of the indices of the elements of V such that
∑n−1

i=0 d(vσ(i), vσ(i+1 mod n)) is minimum.

In the following, we assume that V ⊂ R2 is a set of n points in the plane and that d is the
Euclidean distance between two points. The objective of the lab sessions will be to program and test
the performance of several algorithms on specific instances of the problem.

We will use the data structure point defined by struct{ double x,y; }.

Question 1. Provide the C code for the function dist(A,B) returning the distance between points A
and B.

We will represent a permutation σ of {0, . . . , n− 1} by an array P of size n such that P[i] = σ(i).
For example, int P[]={3,1,2,0}; will represent a permutation for n = 4 that swaps the first and
last elements, defining the tour v3, v1, v2, v0 with a return to v3. In other words, P represents the visit
order of the points of V in the tour.

Question 2. Write the function value(point *V, int n, int *P) which returns the length of the
tour of the n points of V according to the permutation P.

“Brute-Force” Approach

Permutations can be ordered lexicographically from the smallest (in our example P={0,1,2,3}) to
the largest (P={3,2,1,0}). We assume the function bool NextPermutation(int *P,int n) is given ;
it calculates, by updating P, the permutation immediately following P in lexicographical order. Fur-
thermore, the function returns false if and only if, when the function is called, the permutation P
corresponds to the largest permutation. You may use, though it is not necessary, the constant DBL_MAX
(defined in float.h) which defines the largest value representable by a double type variable.

Question 3. Write the function double tsp_brute_force(point *V,int n,int *Q) which, starting
from a set V of n points, returns the permutation Q minimizing the length of the tour according to the
exhaustive approach (or “Brute-Force”) as well as the length of this tour.

We will now optimize the previous procedure into tsp_brute_force_opt(). The first optimization
consists of fixing one of the points of the permutation, either the first or the last (whichever is more
convenient). This allows saving a factor of n on the number of permutations to test.

The second consists of stopping the evaluation during the calculation of value() as soon as the
current length reaches or exceeds that of the best tour already obtained, say w. In this optimization,

do not forget the return to the starting point ; that is, a partial tour using the first i + 1 points
vσ(0), . . . , vσ(i) will have i+1 edges and a length of wi =

(∑i−1
j=0 d(vσ(j), vσ(j+1))

)
+ d(vσ(i), vσ(0)). The

observation is that if the length of the partial tour wi ⩾ w, then one can directly skip to the largest
permutation with prefix σ(0), . . . , σ(i).

Question 4. Does the observation assume the triangle inequality ?

Question 5. Write a function double value_opt(V,n,P,w) which returns :
• the length of the tour if it is smaller than w ; or
• -k if k is the number of edges of the first partial tour that exceeds w.

(NB : Pay attention to the returned index k ! The function can be further improved by considering
the return distance d(vσ(i), vσ(n−1)) + d(vσ(n−1), vσ(0)) instead of d(vσ(i), vσ(0)). Why ?)

Question 6. Write a function MaxPermutation(P,n,k) which returns in P the largest permutation,
in lexicographical order, whose prefix of size k is that of P. (You may assume that P was the smallest
permutation possessing this prefix.) What is the complexity of your function ? Deduce the code for
double tsp_brute_force_opt(point *V,int n,int *Q).

Lab Session

Download (Save link as...) the files corresponding to the lab session from the course page available
below, and place everything in the same directory :

http://dept-info.labri.fr/~gavoille/UE-TAP/

You will need to edit tsp_brute_force.c, compile with make tsp_main or make -B tsp_main, and
run the execution with ./tsp_main. Implement and test tsp_brute_force() and then the optimized
version tsp_brute_force_opt().

Start with a small number of points (default n = 10) then test the various optimizations by
increasing n, which you can pass in the command line to ./tsp_main. One way to test your results
is to use the point generation method generateGrid(). With points on regular grids such as 2× 2 or
1× 6, you should be able to easily confirm/compare your results.

If necessary, use the same seed in the random generator, with srandom() (via the variable seed), so
that you can compare your experiments (comment/uncomment parts of main()). You should observe
a gain of a factor of 20 to 100 for the optimized versions.

To be able to exit the window during execution, press ’q’ but also change the while of your
tsp_brute_force functions to while(NextPermutation(...) && running). For an animation, add the
instructions drawTour(V,n,P); SDL_Delay(500); in the heart of your tsp_brute_force() functions to
visualize the current tour given by P with a delay in milliseconds (cf. man SDL_Delay). But beware !
n! × 0.5s can be very long ! Only use this in combination with (... && running) to be able to exit
prematurely. Press ’h’ to discover the graphical interface commands.

Other optimizations. You can use the hypot() function from math.h to simplify the distance
calculation (see online help man hypot), but in terms of computation time the gain is not obvious.
Test it. You can also avoid the %n in value(), which saves about 15%. Next, you can rewrite value()
(or value_opt()) to pre-calculate all distances in a table D[][] rather than calling dist(). This should
only be done once, of course. Your new function should then look like :

http://dept-info.labri.fr/~gavoille/UE-TAP/

double value(point *V, int n, int *P){
static double **D=NULL; // initialized at compilation
if(D==NULL){ // will be executed only once

D=malloc(n*sizeof(double*));
for(int i=0;i<n;i++){

D[i]=malloc(n*sizeof(double));
for(...) ...;

You should gain a factor of two. How can you free the table D (or what conventions should be
adopted to do so) ?

You could also gain an additional factor of two by noticing that the tsp_brute_force() function (as
well as the tsp_brute_force_opt variant) visits twice as many tours as necessary. Indeed, traveling
in one direction or the other results in a tour of the same length, even though the two tours will
be considered different by tsp_brute_force(). How can you change the main loop to visit at most
(n− 1)!/2 tours ?

