2E ANNÉE ENSEIRB-MATMÉCA

Vous avez droit à une feuille recto-verso de notes personnelles.

Complexité de communication

Question 1. Expliquez ce qu'est un protocole de communication qui calcule une fonction booléenne f, et quel est l'objectif recherché. À quel problème d'algorithmique distribué vu en cours la complexité de communication nous a-t'elle servi?

On considère la fonction booléenne $\operatorname{gt}_n(x,y) \in \{0,1\}$ qui étant donné deux mots binaires x,y de n bits chacun renvoie 1 si et seulement si « x>y » (greater-than), c'est-à-dire si l'entier codé en binaire par x est strictement supérieur à l'entier codé par y. Par exemple, $\operatorname{gt}_2(11,01)=1$ car « 11>01 ». En effet, $11_{\operatorname{deux}}=3_{\operatorname{dix}}>1_{\operatorname{dix}}=01_{\operatorname{deux}}$.

Question 2. Donnez la matrice de toutes entrées de gt_n pour n=2.

On rappelle qu'un ensemble discriminant pour une fonction booléenne f et une valeur $v \in \{0, 1\}$ est un ensemble F_v d'entrées (x, y) pour f tel que, pour tout $(x, y) \neq (x', y') \in F_v$, f(x, y) = f(x', y') = v et $\bar{v} \in \{f(x, y'), f(x', y)\}$, où \bar{v} est la valeur complémentaire de v, soit $\bar{v} = 1 - v$. Cela revient donc à dire qu'on ne peut pas avoir f(x, y') = f(x', y) = v.

Question 3. Donnez un ensemble discriminant F_0 pour gt_2 le plus grand possible. Même question pour un ensemble discriminant F_1 .

Question 4. Généralisez la question précédente à tout n et montrez une borne inférieure, fonction de n, sur le nombre de scripts minimum de tout protocole de communication calculant gt_n . En déduire la complexité de communication de gt_n .

Bellman-Ford

Dans le cours, nous avons vu l'algorithme de Bellman-Ford distribué (BFD) permettant de calculer, dans le cas asynchrone, un arbre couvrant de plus courts chemins dans un graphe G depuis un sommet racine r_0 fixé. Le principe, pour un sommet u, est d'envoyer la longueur d du chemin courant à r_0 à tous ses voisins dès que cette distance diminue tout en mettant à jour son père.

On rappelle qu'un graphe (G, ω) est dit valué (on dit parfois pondéré) si chaque arête uv possède un certain poids $\omega(uv) \in \mathbb{R}^+$. Bien évidemment, un arbre couvrant de plus courts chemins dans un graphe valué doit tenir compte du poids de ses arêtes. Un graphe est dit $non \ valué$ si chaque arête à un coût unitaire.

Question 5. Donnez une description de BFD, c'est-à-dire le pseudo-code comme vu en cours pour un sommet u quelconque, lorsque le graphe G est valué. Vous supposerez que la racine r_0 est connue de u ainsi que $\omega(uv)$ pour chaque voisin v de u.

Question 6. Modifiez votre pseudo-code de façon à ce que chaque sommet u possède, en plus de la variable PERE(u), une variable FILS(u) contenant tous ses fils dans l'arbre calculé par BFD.

Question 7. Décrivez un graphe non valué à n sommets et un scenario catastrophe où BFD produit $\Omega(n^3)$ messages.

Pour un graphe G sur lequel s'exécute BFD, on notera D le diamètre du graphe, n le nombre de sommets et m le nombre d'arêtes.

Pour tout sommet u, on note $\mu(u)$ le nombre de fois où le sommet u met à jour sa variable locale LAYER(u) durant l'exécution de BFD dans le pire des scenarios. On a vu que le nombre de messages produits par l'algorithme étant plus petit que $\sum_{u \in V(G)} \mu(u) \cdot \deg(u) \leqslant 2m\mu$, où $\mu = \max_{u \in V(G)} \mu(u)$. Nous avons aussi vu, dans le cas non valué, que $\mu < n$.

Question 8. Tout en justifiant, donnez un majorant du nombre de messages de BFD sur un graphe non valué dans le cas d'un scenario synchrone.

Pour tout réel $\alpha \in [0,1]$, on dira qu'un scenario est α -synchrone si chaque message prend un temps au moins α pour traverser une arête. Dit autrement, le temps de traversée de chaque message prend un temps imprévisible de $[\alpha,1]$. Le cas 1-synchrone correspond au cas synchrone et 0-synchrone au cas asynchrone.

Question 9. Donnez un majorant du nombre de messages BFD lors d'un scenario α -synchrone dans le cas non valué, en fonction des paramètres n, m, D et bien sûr α que vous pourrez supposer non nul.

Question 10. En supposant que les poids des arêtes du graphe G sont des entiers de $\{1, \ldots, W\}$, donnez un majorant sur le nombre de messages générés par BFD dans ce cas.

Question 11. Même question si, de plus, le scenario est α -synchrone.

Étant donné un graphe G et un sommet r_0 , soit $\Gamma(G, r_0)$ l'ensemble de tous les chemins simples 1 de G issus de r_0 . Si le graphe est valué par ω , on notera $\omega(P)$ le coût d'un chemin P, la somme des poids de ses arêtes, en posant $\omega(P) = 0$ si $P = \{r_0\}$ n'a pas d'arête. Notez que les chemins de $\Gamma(G, r_0)$ ne dépendent pas de ω et possèdent entre 0 et n-1 arêtes. Il est facile de voir, par exemple, que si G est un chemin et r_0 une de ses extrémités, alors $|\Gamma(G, r_0)| = |V(G)| = n$.

Soit $W(G, \omega, r_0) = \{\omega(P) : P \in \Gamma(G, r_0)\}$, c'est-à-dire l'ensemble des coûts possibles pour les chemins de $\Gamma(G, r_0)$. Notez que $|W(G, \omega, r_0)| \leq |\Gamma(G, r_0)|$, puisqu'au pire les chemins ont des coûts tous différents. Il y égalité dans l'exemple précédent, où G est un chemin et r_0 une de ses extrémités.

Question 12. Décrivez un exemple de graphe à n sommets avec un sommet r_0 où $|\mathcal{W}(G,\omega,r_0)| = O(1)$ alors que $|\Gamma(G,r_0)| = \Omega(n^2)$. Pensez à un graphe de petit diamètre.

Question 13. Majorez le nombre de messages pour BFD appliqué à (G, ω) depuis r_0 en fonction des paramètres précédents, notamment $|\Gamma(G, r_0)|$ et/ou $|\mathcal{W}(G, \omega, r_0)|$. Justifiez.