
Distributed Algorithms 25 novembre 2021

Master2 Informatique

This individual homework must be uploaded on the moodle page of the lecture no later than
December 13th, 2021. The deposit must be composed of a unique file, either in the plain text
format or in pdf format (no .zip of .docx files). Important: all questions must be fully argued, and
this will take into account for the scoring of your homework. The langage for your answers can be
either French or English. Please avoid to mix both langages.

Layer Coloring

We shall consider only deterministic and distributed algorithms in the LOCAL model. We use the
same notations as in the lecture notes. In particular, for a graph G, let ∆ = max {deg(u) : u ∈ V (G)}
denote the maximum degree of the graph G.

Question 1. For the (∆ + 1)-coloring problem, what is the motivation for the choice of this number
of colors? That is, why do we choose ∆ + 1 colors rather than another number of colors, say d∆/2e
or n colors for instance?

Solution. On peut toujours colorier en ∆ + 1 couleurs, mais pas forcément en moins comme le
montre une clique avec ∆ + 1 sommets qui nécessite ∆ + 1 > d∆/2e dès que ∆ > 0. Et puis avoir
plus de couleurs est inutile car moins on en a mieux seront efficaces les applications utilisant se
nombre de couleurs.

Let f(∆, n) be the time complexity of some fast distributed algorithm providing, for every graph
G of n vertices, an (∆ + 1)-coloring.

Question 2. Without any proof, give an upper bound on f(∆, n) that is described in the lecture
notes.

Solution. f(∆, n) = log∗ n + 2O(∆).

We will introduce now a new coloring method that applies to graphs having some nice decomposi-
tion. More precisely, a (k, t)-decomposition of a graph G is a sequence (G1, G2, . . . , Gt) of t induced
subgraphs of G such that:

each vertex u of G

• appears in a unique subgraph Gi of the decomposition, and we will say that u is of level i.
• has at most k neighbors of level that is greater or equal to its own level.

For convenience, we denote by G+
i the subgraph of G induced by all the vertices of level > i. Of

course, G+
1 = G.

A (sequential) way to obtain a (k, t)-decomposition for G, if it exists, is to place in G1 all the
vertices of G+

1 (i.e., G) with degree 6 k, and to remove them from G in order to obtain the subgraph
G+

2 . Then, we continue similarly by removing all the vertices of degree 6 k from G+
2 , and move

them into G2, in order to obtain G+
3 . And so on, t times, until to get the complete sequence

(G1, . . . , Gt). In practice one can stop whenever one get an empty subgraph G+
i because if G has

a (k, t)-decomposition1 (G1, . . . , Gt−1,∅), then (G1, . . . , Gt−1) is a (k, t − 1)-decomposition of G as
well.

Question 3. Give a (1, 3)-decomposition of the following tree, by simply reporting the level of each
vertex.

1By denoting by ∅ the empty graph, so the graph with no vertices.

https://moodle1.u-bordeaux.fr/course/view.php?id=9727

o o

o o o o o

o o

Solution.

1 1

1 2 3 2 1

1 1

Question 4. What is the condition that must fulfill a graph G with n vertices in order to have a
(k, n)-decomposition?

Solution. Il y a des conditions nécessaires comme avoir au moins un sommet de degré au plus k
ou avoir au plus kn arêtes. Mais il faut et il suffit que tout sous-graphe de G possède un sommet
de degré au plus k. En effet, si c’est bien le cas alors G possède une (k, n)-décomposition. Sinon, il
existe un sous-graphe H avec aucun sommet de degré 6 k. Et H ne pourra plus être re-décomposé.

Let consider the comb graph with n vertices, assuming n is even, be the graph obtained from a
path of n/2 vertices each one having a pending vertex (a vertex of degree 1). Hereafter is a comb
with 10 vertices.

o o o o o

o o o o o

Question 5. What is the minimum number t of levels in a (1, t)-decomposition of a comb with 10
vertices?

Solution. t = 4. Le somme central du chemin sans les feuilles, doit être de niveau 4.

Question 6. In general, what is the minimum number t of levels in a (1, t)-decomposition of a comb
with n vertices?

Solution. On a t = 1 + dn/4e.
Si n/2 = 2i + 1 est impair (comme pour n = 10), alors il n’y a qu’un seul sommet de niveau t, et

ce niveau vaut t = i + 2 = 1 + dn/4e.
Si n/2 = 2i est pair (comme pour n = 8), alors il n’y a deux sommets de niveaux t, et ce niveau

vaut t = i + 1 = 1 + dn/4e.

Question 7. What is the minimum number t of levels in a (2, t)-decomposition of a comb with n
vertices?

Solution. Il faut t = 2 niveaux pour n > 4. En effet, la suppression des sommets de degrés 6 2,
laisse un chemin non vide (donc composé que de sommets de degrés 1 ou 2). Lorsque n 6 4, alors
il faut t = 1 niveaux car le graphe est un chemin.

Question 8. Assume that G is a graph with n vertices and m edges, and that there exist two integers
k, b > 1 such that m 6 (k + 1) · (1− 1/b) · n/2. Show that G has at least n/b vertices of degree 6 k.

Solution. Soit S l’ensemble des sommets de degré 6 k dans G. Notons qu’il y a n−|S| sommets de
degré > k+1 dans G. Ainsi 2m =

∑
u deg(u) > (n−|S|)(k+1) ce qui impliquem > (n−|S|)(k+1)/2.

Soit |S| > n/b, et alors il n’y a rien d’autre à démontrer. Soit |S| < n/b. Mais alors n−|S| > n−n/b =

(1− 1/b)n. Il suit que m > (k + 1)(1− 1/b)n/2 en contradiction avec la définitions de k et b. Donc
|S| > n/b.

In the remaining, you may assume that the property stated in Question 8 is indeed true.

Question 9. Show that every tree with n vertices has a (3, dlog2 ne − 1)-decomposition and also a
(2,
⌈
log3/2 n

⌉
− 1)-decomposition, assuming n is large enough. [Hint: Think that the decomposition

may stop whenever it remains at most k + 1 vertices. Why?]

Solution. De manière générale, il y a t = 1 niveau si b = 1, et si b > 1, il y a environ logb/(b−1) n
niveaux car à chaque fois, en enlevant au moins n/b sommets, on se retrouve avec au plus (1 −
1/b) · n sommets. De manière générale, après i étapes il reste n · (1 − 1/b)i sommets. Notons que
la décomposition se termine juste après l’étape où il reste 6 k + 1 sommets, car à ce moment là
tous les sommets sont de degré 6 k. Donc le nombre d’étapes est le plus petit t tel que (en posant
B = b/(b− 1))

n ·
(
b− 1

b

)t−1

6 k + 1 ⇔ n

k + 1
6

(
b

b− 1

)t−1

= Bt−1

⇔ logB

(
n

k + 1

)
6 t− 1 ⇔ t > logB

(
n

k + 1

)
+ 1

Le plus petit entier t recherché vaut t = dlogB(n/(k + 1))e+ 1.

Pour avoir une (3, ...)-décomposition, il faut prendre k = 3 et b = 2. On vérifie que m 6
4 · (1 − 1/2) · n/2 = n ce qui est bien vrai dans tout arbre (et aussi toute forêt). On a alors B = 2
et t = dlogB(n)− 2e+ 1 = dlogB(n)e − 1.

Pour avoir une (2, ...)-décomposition il faut prendre k = 2 et b = 3. On vérifie aussi que m 6
3 · (1− 1/3) · n/2 = 3 · 2/3 · n/2 = n ce qui est encore vrai pour tout arbre. On a alors B = 3/2, et
t = dlogB(n)− logB(3)e+ 1 = dlogB(n)− 2.70...e+ 1 6 dlogB(n)− 2e+ 1 = dlogB(n)e − 1.

NB: Dans le cas des arbres, on peut en fait faire un peu mieux, et montrer qu’il existe toujours
> n/2 sommets de degré 6 2. Et donc en prenant k = b = 2, on obtient t = dlog2(n)− log2(3)e+1 =
dlog2(n)− 1.58...e+ 1 6 dlog2(n)e, soit une (2, dlog2 ne)-décomposition.

En voici la preuve. Soit ni le nombre de sommets de degré i dans un arbre. En comptant le
nombre d’arête et de sommets, il vient:

2(n− 1) =
∑
i>1

i · ni = n1 + 2n2 + 3n3 + · · · (1)

n =
∑
i>1

ni = n1 + n2 + n3 + · · · (2)

En faisant (1)-(2), on obtient n − 2 = n2 +
∑

i>3(i − 1) · ni > n2 + 2
∑

i>3 ni. On conclut que∑
i>3 ni 6 n/2− 1− n2/2 < n/2. De (2) on déduit que n1 + n2 = n−

∑
i>3 ni > n/2.

We shall present now a method to construct a (k + 1)-coloring of a graph G having a (k, t)-
decomposition (G1, . . . , Gt). We assume that k and t are parameters known by all the vertices, and
that colors are integers taken from [0, k]. We will make the use of the function FirstFree seen in
the lecture and defined by FirstFree(X) = min(N \X), for every subset X ⊆ N.
The three main steps of the method are the following:

1. Compute the level of every vertex of G.
2. Compute (in parallel) a (k + 1)-coloring of every Gi.
3. For each i = t− 1, t− 2, . . . , 1 in this order, update the coloring of vertices only in Gi thanks

to FirstFree applied by colors and for the graph G+
i .

Question 10. Show that this method indeed provides a valid (k + 1)-coloring for G.

Solution. Cette méthode donne bien une (k + 1)-coloration en remarquant que chaque sommet
u de niveau i qui se re-colorie (avec FirstFree) est de degré 6 k dans G+

i laissant une couleur
libre pour u. De plus, on peut vérifier qu’il n’y a jamais deux voisins de G qui se re-colorient (avec
FirstFree) à la même ronde.

The goal now is to give a full description of a distributed algorithm for this method. We will
assume that a vertex does not know its degree in G when it starts its computation. But note that it
can learn it within a single round of communication with its neighbors.

Question 11. Describe a distributed algorithm for Step 1 of the medthod that is in charge of com-
puting the level of each vertex u of G, hereafter denoted by `(u). Give an analysis of the number of
rounds.

Solution. On considère le code suivant qui s’exécute en t rondes.

• `(u) := 0
• Pour i := 1 à t:

• NewRound
• si `(u) > 0, STOP
• SendAll(0, v)
• #Receive(v) 6 k, alors `(u) := i

Tant que le niveau d’un sommet n’est pas fixé, il participe aux échanges. Le numéro de ronde où il
reçoit 6 k messages détermine son niveau.

Question 12. Describe a distributed algorithm for Step 2 of the medthod. Using fonction f defined
above in Question 2, give an analysis of the number of rounds.

Solution. Il faut calculer une (k + 1)-coloration dans Gi, qui a au plus n sommets. Il faut donc
f(k, n) rondes par définition de f .

Question 13. Describe a distributed algorithm for Step 3 of the medthod. Give an analysis of the
number of rounds.

Solution. Le FirstFree dans G+
i prend une ronde. On l’applique pour les k + 1 couleurs de Gi,

et pour t− 1 graphes Gt−1, . . . , G1, soit (t− 1) · (k + 1) rondes pour l’étape 3.

Question 14. Give the total number of rounds of your distributed algorithm for computing a (k+1)-
coloring for G.

Solution. D’après les questions précédentes, il faut un total de t + f(k, n) + (t − 1)(k + 1) <
t · (k + 2) + f(k, n) rondes.

Question 15. Explain and justify how to compute in O(log n) rounds a 3-coloring of a tree with n
vertices.

Solution. Il faut prendre une (2,
⌈
log3/2(n)

⌉
− 1)-décomposition, soit k = 2 et t =

⌈
log3/2(n)

⌉
− 1.

On obtient une (k + 1)-coloration, soit une 3-coloration en temps (t − 1) · (k + 1) + f(k, n) =
4t + f(4, n) = O(log n), car f(4, n) = O(log∗ n + 2O(1))� O(log n).

NB: Il s’agit d’un résultat connu de [MR89]: G.L. Miller and J.H. Reif. Parallel Tree Contraction
Part 1: Fundamentals. Advances in Computing Research, 5:47–72, 1989.

Question 16. Discuss whether this coloring is a progress or not with respect to the 3-coloring
distributed algorithm for trees and cycles we have seen in the lecture and that runs in O(log∗ n)
rounds.

Solution. L’algorithme en O(log∗ n) ne s’applique que si G possède une 1-orientation (u 7→
parent(u)), alors qu’ici l’algorithme fonctionne sans aucune orientation. Il est donc plus général,

bien que moins rapide.

Question 17. Consider a square grid G with a total of n vertices. Give a (3, t)-decomposition
for G with the minimum possible t. What is this minimum t. Justify. Same question for a (2, t)-
decomposition.

Solution. Les sommets de degrés k 6 3 sont situés sur le périmètre de la grille. Lorsqu’on enlève
un périmètre, on enlève 2 lignes et 2 colonnes. Et donc après t =

√
n/2 + O(1) étapes la grille est

vide.

Les sommets de degré k = 2 sont situés sur les coins. On enlève donc succéssivement, en rognant
chaque coin, 4× 1, 4× 2, 4× 3 ... 4i sommets jusqu’à atteindre un diamant central à la grille et de
coté i =

√
n/2, ce qui prend i =

√
n/2 étapes. Puis cela rediminue de 4i jusqu’à 4× 3, 4× 2, 4× 1 et

éventuellement 1 sommet, ce qui prend encore aussi
√
n/2 étapes. Au final c’est donc t =

√
n+O(1)

étapes environ. Voir l’exemple ci-dessous pour une grille 5× 5 avec ces 5 niveaux.

1 2 3 2 1

2 3 4 3 2

3 4 5 4 3

2 3 4 3 2

1 2 3 2 1

Question 18. Show that every planar graph with n vertices has a distributed algorithm for computing
a 7-coloring in O(log n) rounds.

Solution. Prendre k = 6 et b = 7. On a alorsm 6 (6+1)×(1−1/7)×n/2 = 7×6/7×n/2 = 3n ce qui
est vrai pour les graphes planaires qui ont au plus 3n−6 arêtes. On a alors, avec B = b/(b−1) = 7/6,
t = logB n + O(1), ce qui fait O(log n) rondes.

NB: Il a été montré par en 2019 qu’il est possible de produire une 6-coloration [CM19], mais
aussi une 5-coloration en O(log n) rondes [Postle19], alors qu’une 4-coloration nécessite Ω(n) rondes
[CM19] (et O(n) sont clairement suffisantes).

FIN.

