

Master2 Informatique UE: ALGORITHMIQUE DISTRIBUÉES – 4TIN905U Responsable : M. Gavoille Date : 5 janvier 2017 Durée : 1h30 Cours et notes de cours autorisés

A Maximal Independent Set (MIS for short) for a graph G is an independent set M which is maximal for inclusion. More precisely, M is a subset of nodes of G such that no two nodes of M are neighbors (independent), and every node not in M is adjacent to at least one node of M (maximal).

Question 1. For the graph depicted below, give a 3-coloring such that, for each color *i*, the set of nodes of color *i* is not a MIS.

In the remaining we consider the LOCAL model.

Question 2. Recall the characteristics of the LOCAL model.

Recall that G is 1-oriented (or has a 1-orientation) if all its edges are oriented into arcs such that each of its nodes has at most one outgoing arc.

In the distributed setting, whenever we say that G is 1-oriented (or has a 1-orientation), we mean that every node u with outgoing arc $u \to v$ has a local variable PARENT(u) = v. We set $PARENT(w) = \bot$ if a node w has no outgoing arc. Similarly, whenever we say that G has a MIS M, it means that every node u has a boolean variable M(u) that is TRUE iff $u \in M$.

Question 3. Consider a cycle that is 1-oriented and with a MIS M. Give a constant time distributed algorithm that computes, in a variable COLOR, a 3-coloring for such a graph. Express the number of rounds. Justify.

We would like now to answer to the same question not only for cycles, but for more general graphs. Unfortunately, that's not so easy.

Question 4. Construct a 1-oriented graph with a MIS for which the algorithm you gave at the previous question fails.

Question 5. Based on your previous construction, describe a 1-oriented graph with n nodes and a MIS for which the number of rounds to compute a 3-coloring is unbounded. Give a lower bound in term of n on this number of rounds. (Hint: Reduce to the coloring lower bound proved in the course for oriented cycles.)

A simple algorithm to compute a MIS M consists to apply (possibly in parallel) the following rule: if node u and none of its neighbors is in M, then add u to M, under the condition that none of the neighbors of u applies the same rule simultaneously.

Question 6. Assume that a graph G with n nodes has a k-coloring via a local variable COLOR(u) for each node u. Give a distributed algorithm computing a MIS for G. Express its number of rounds.

Question 7. Explain briefly how to distributively compute a MIS for a cycle or a path with n nodes in $O(\log^* n)$ rounds. Unlike previous questions, note that here the cycle has no orientation.

We now consider the problem of efficiently computing a "small" dominating set. The goal is to show that in $O(\log^* n)$ rounds one can compute a small dominating set for every connected graph with a 1-orientation.

Recall that a dominating set of a graph G is a subset D of nodes of G such that every node not in D is adjacent to at least one node of D. Observe that a MIS is a particular dominating set. We say that $X \subseteq V(G)$ is "small" if there is an absolute constant $\lambda < 1$ such that $|X| < \lambda n + 1$ where n = |V(G)|. Recall that |X| denotes the cardinality of the set X.

Question 8. Construct a graph with n nodes and $m \leq n$ edges with no small dominating set.

Question 9. Show that any MIS of a connected graph of maximum degree at most two is a small dominating set.

Let G be a connected graph having a 1-orientation. We consider the following two subsets of nodes of G: $B := \{u : \deg(u) > 2\}$ (the "big" degree nodes); and $S := V(G) \setminus B$ (the "small" degree nodes). The general idea to find a small dominating set is to apply a different strategy for nodes in B and in S.

For nodes in B, this is very simple: just add all of them to the final wanted dominating set D. (You will need to argue that B is necessarily small.) For nodes in S, compute efficiently a MIS M for G[S], the subgraph of G induced by the nodes of S. Then, we would like to argue that M is a small dominating set and conclude by setting $D := B \cup M$.

Unfortunately, this does work because G[S] is not necessarily connected. So, we cannot positively conclude that M is a small dominating set of G[S]. Observe also that the union of two small disjoint sets is not necessarily small. Fortunately, since we have $B \subseteq D$, we can analyze more carefully the situation of the nodes in S, and apply the following local rule: a node $u \in S$ is added to D only if $u \in M$ and u has at least a neighbor in S.

Question 10. Summarize the above discussion, and give a distributed algorithm that, given a connected 1-oriented graph G with n > 1 nodes, that computes a small dominating set D for G in $O(\log^* n)$ rounds. Express the value λ that bounds the size of D.