

Introduction

- Les erreurs de transmission sont :
 - rares sur des supports numériques (fibre optique),
 - beaucoup plus **fréquentes** sur les boucles locales du RTC (paires torsadées analogiques) ou les réseaux sans fil.
 - Ces erreurs se produisent la plupart du temps en rafale :
 - Avantage (par rapport aux erreurs isolées, ie 1 seul bit) : en moyenne, moins de blocs de bits sont affectés. Exemple :
 - Soit la taille des blocs = 1000 bits, le taux d'erreur = 1/1000
 - Erreurs isolées : la plupart des blocs contiennent 1 erreur
 - Erreurs en rafale de 100 ou plus : 1 ou 2 blocs sur 100 seulement
 - Inconvénient : beaucoup plus difficiles à détecter et à corriger

Il faut donc apprendre à vivre avec les erreurs,...

- Deux stratégies ont été développées. L'émetteur inclut dans le bloc de données :
 - 1. suffisamment de redondance pour que le récepteur puisse reconstituer les données originales.
 - ⇒ utilise des codes correcteurs d'erreur
 - ⇒ plutôt pour des canaux non fiables comme le sans fil
 - 2. juste assez de redondance pour que le récepteur puisse détecter les erreurs et demander une retransmission.
 - ⇒ utilise des codes détecteurs d'erreur
 - ⇒ plutôt pour des canaux fiables comme la fibre optique

Principe

- On souhaite envoyer m bits de données.
- On y rajoute **r** bits de redondance selon un certain « algorithme » ou « codage ».
 - \Rightarrow Ainsi, la longueur de la trame envoyée est $\mathbf{n} = \mathbf{m} + \mathbf{r}$. (cette séquence de \mathbf{n} bits \equiv un mot du code)
- A la réception, en fonction du « codage », on pourra détecter (2.) et/ou corriger (1.) des erreurs.
- En général, l'approche (1.) induit davantage de redondance, ce qui diminue le débit utile du canal...

Généralités sur les codes

• Un code C de longueur n est un ensemble de mots (séquences) de n bits.

```
Ex: n = 3, C = \{110, 101, 011\}
```

- Parmi toutes les séquences possibles de n bits (2ⁿ):
 - celles qui <u>appartiennent</u> à C sont <u>valides</u>.
 - celles qui <u>n'appartiennent pas</u> à C sont <u>invalides</u>.

Ex: 111 est invalide 101 est valide

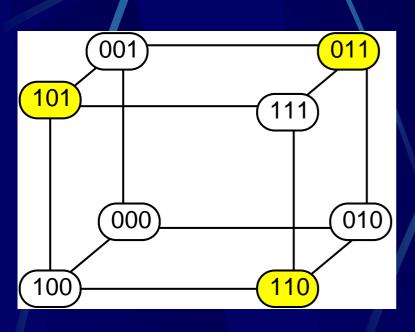
A la réception d'une séquence S de n bits...

- Soit S est invalide (n'appartient pas au code C).
 - Il y a forcément eu une (ou plusieurs) erreur de transmission.
 - Le récepteur corrige (1.) ou demande une retransmission (2.).
- Soit S est valide (appartient au code C).
 - La séquence S est « **considérée** » comme correcte et acceptée par le récepteur.
 - Remarque : « considérée » seulement, car...
 si l'émetteur envoie 011 et le récepteur reçoit 101,
 aucun moyen de détecter qu'il y a eu des erreurs (2 ici)...
 car 101 est valide!

Distance de Hamming d'un code

- C'est le critère qui permet d'évaluer le pouvoir détecteur d'un code ainsi que son pouvoir correcteur.
- Distance de Hamming entre 2 mots (noté d_h)
 = nbre de positions qui ont des valeurs distinctes.
 Ex : d_h (110011, 101010) = 3
 (Astuce = nbre de 1 du OU exclusif)
- Distance de Hamming d'un code C (noté $D_H(C)$) = le minimum des distances entre 2 mots du code $Ex : D_H(\{110, 101, 011\}) = 2$ $D_H(\{0011, 0101, 1001, 0110, 1010, 1100 \}) = 2$

Représentation graphique



- Sommets: ts les mots de n bits
- Liens: entre les mots $tq d_h = 1$
- $D_H(C)$ = longueur du plus court chemin entre 2 mots valides

Pouvoir détecteur d'un code

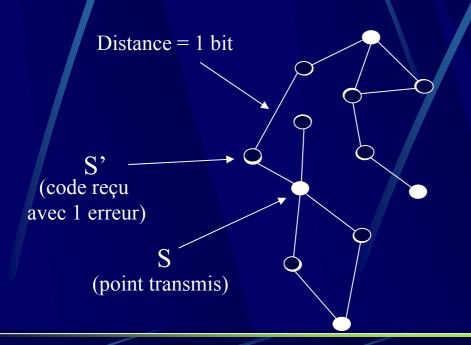
- <u>Déf</u>: On parle d'erreur d'ordre k lorsqu'un mot émis u diffère par k bits du mot reçu v, ie $d_h(u,v) = k$.
- Pour détecter une erreur d'ordre 1, quelle doit être la distance de Hamming du code ?

<u>Réponse</u>: $D_H(C) = 2$ en effet, dans ce cas, 1 erreur simple ne peut pas changer un mot du code en un autre mot du code.

Même question pour une erreur d'ordre k? Réponse : $D_H(C) = k+1$

Pouvoir correcteur d'un code

- mot de code valide
- opoint dans l'espace



0 1 1 0 1 0 1 1 1 0 1 0 0 0

Code transmis = S un point en M dimensions

Au décodeur:

S est toujours le mot de code le plus près du mot reçu S'

→ on décode sans erreur ...

ASR4 - Mars 2006 Notions de codes 10

Pouvoir correcteur d'un code

Pour pouvoir corriger une erreur d'ordre 1, une distance de Hamming $D_H(C) = 2$ est-elle suffisante ?

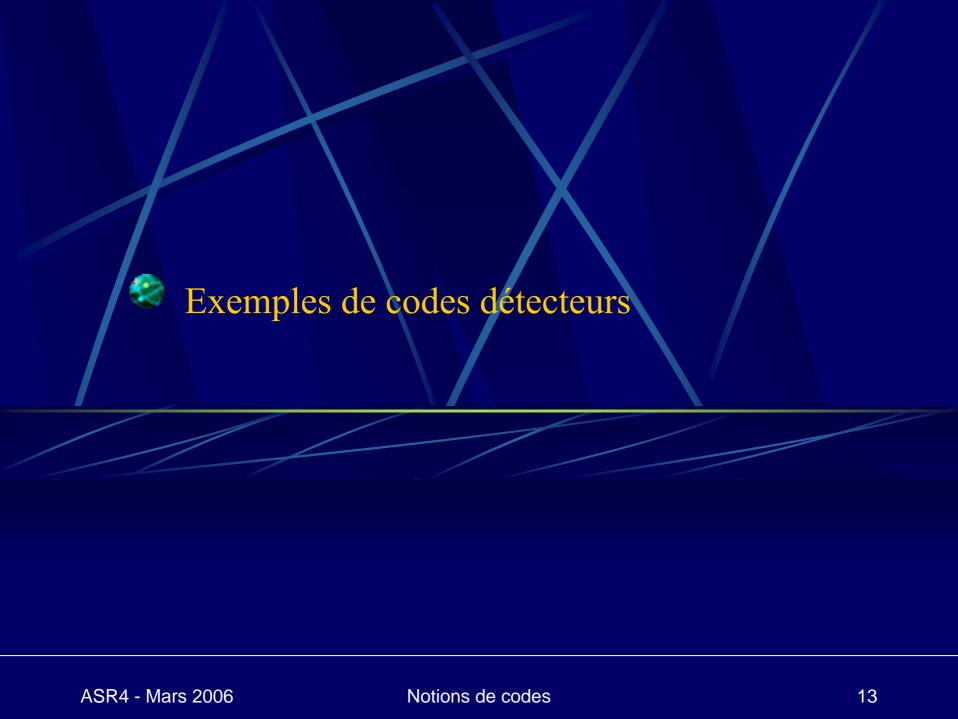
<u>Réponse</u>: non... il faut $D_H(C) = 3$ en effet, si $D_H(C) = 2$, 1 erreur simple peut nous produire un mot exactement « au milieu » de 2 mots du code, à distance 1 de chacun! si $D_H(C) = 3$, 1 erreur simple produit un mot qui reste le plus proche du mot transmis : on peut donc le retrouver!

• Pour corriger une erreur d'ordre k, il faut $D_H(C) = 2k+1$.

Résumé pouvoir détecteur et correcteur

- Un code C peut
 - détecter des erreurs d'ordre $D_H(C) 1$
 - corriger des erreurs d'ordre
 (D_H(C) 1)/2 (partie entière)

Distance	Ordre	Ordre		
de	maximal	maximal		
Hamming	des erreurs	des erreurs		
du code	détectables	corrigibles		
1	-	-		
2	1	-		
3	2	1		
4	3	1		
5	4	2		
6	5	2		



Détection des erreurs

- Permet de vérifier l'intégrité d'une trame au récepteur
- Retransmission des trames corrompues
- Plus efficace que la correction
 - → requiert moins de bits de redondance
 - Parité Verticale
 - Parité Horizontale
 - Parité Verticale et Horizontale
 - CRC: "Cyclic Redundancy Code"
 - → codes de détection couramment utilisés

Parité Verticale (Exo 2.1)

Exemple : envoi de 7 caractères de longueur 3 (m=3).

000 110 Info utile: 000 111 101 011 010 0000 0000 1010 1100 1111 0110 0101 Info envoyée:

Propriétés:

- distance de Hamming est 2 : détecte les erreurs simples
- détecte les erreurs qui sont d'ordre impair
- ignore les erreurs doubles et toutes celles qui sont d'ordre pair

Parité Horizontale (Exo 2.2)

Exemple: envoi de 7 caractères de longueur 3 (m=3).

<u>Info utile:</u> 000 111 000 110 101 011 010

<u>Info envoyée:</u> 000 111 000 110 101 011 010 **010**

ASR4 - Mars 2006 Notions de codes 16

Parité Verticale et Horizontale (Exo 2.3)

Exemple : envoi de 7 caractères de longueur 3 (m=3).

Info utile: Info envoyée:

0	1	0	1/	1	0	0	1
0	1	0	1	0	1	1	0
0	1	0	0	1	1	0	1
0	1	0	0	0	0	1	0

- Propriétés :
 - détecte les erreurs d'ordre 3 et corrige les erreurs simples
 - détecte les erreurs qui sont d'ordre impair

Codes Polynomiaux : CRC

- Codes de blocs particuliers
- Facilement implémentables de façon matérielle
- Excellents résultats
- Principe :
 - Toute séquence de n bits peut être représentée par un polynôme à coefficients binaires.
 - Opérations d'addition et de multiplication modulo 2.
 - -G(X) un polynôme de degré r appelé polynôme générateur.
 - Code polynomial C_{G,n}:
 - Ensemble des séquences de longueur n, dont le polynôme associé est multiple de G(X).

CRC: Propriétés

- Peut détecter 1 erreur isolée si G contient au moins 2 termes
- Peut détecter 2 erreurs (si G ne divise pas x^k+1 , avec $k=fen\hat{e}tre$)
- Peut détecter tous les patrons d'erreurs impairs
 - \rightarrow si (x + 1) est un facteur de G(x)
- Peut détecter *r* erreurs consécutives s'il est d'ordre r ("bursts")
- Trois polynômes standards :

CRC-12 :
$$x^{12} + x^{11} + x^3 + x^2 + x + 1$$

CRC-16 :
$$x^{16} + x^{15} + x^2 + 1$$

CRC-CCITT :
$$x^{16} + x^{12} + x^5 + 1$$